Journal of Mammalian Evolution

, Volume 21, Issue 4, pp 383–393 | Cite as

Avoiding Competition: the Ecological History of Late Cenozoic Metatherian Carnivores in South America

  • Natalia Zimicz
Original Paper


The ecological interaction between small and medium sized South American metatherian carnivores, from the Miocene to Recent, has been analyzed with the objective to understand the ecological interactions between the Hathliacynidae (Sparassodonta) and some Didelphoidea (Didelphimorphia). The species richness through time for these two groups, along with the body mass, diet, and several morphofunctional variables has been analyzed here. The results show a double-wedge geometry of the diversity curve. The climax of the Hathliacynidae took place during the Santacrucian mammal-age with a subsequent decline, in the species richness of this family, followed by the extinction of the family at the Barrancalobian subage. Carnivorous Didelphoidea show a first maximum species richness during the Chapadmalalan followed by a decline and a new rise during Recent times. The coexistence of these mentioned groups took place from the Chasicoan to the Chapadmalalan mammal-ages covering a time span of around 6,000,000 years. The multivariate and univariate analyses of morphofunctional variables suggest a restriction of the Hathliacynidae to hypercarnivory while the Didelphoidea occupied the niche of meso- and hypocarnivory. The body mass analyses show some overlap in small sizes but it is not correlated with any superposition in the morphospace of functional variables. In summary, any passive replacement or active displacement between the Hathliacynidae and carnivorous Didelphoidea are supported by the fossil record. In turn, a partition of the metatherian carnivorous guild seems to have occurred through to the Neogene. The extinction of the Hathliacynidae seems to be a result of environmental change.


Hathliacynidae Didelphoidea South America Competition Replacement 



Many thanks to Yamila Gurovich for language correction and critical reading of the manuscript. Many thanks also to Francisco Prevosti for the critical reading of the manuscript. Thanks to David Flores and Itatí Olivares for allowing me to study the mammal collection at MACN and MLP, respectively. A special thanks to John Wible, Marcos Ercoli, and the two anonymous reviewers who highly improved this manuscript with their comments. The present study was supported by a postdoctoral research grant of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) to N. Zimicz.

Supplementary material

10914_2014_9255_MOESM1_ESM.docx (1.4 mb)
ESM 1 (DOCX 1438 kb)


  1. Alberdi MT, Ortiz Jaureguizar E, Prado JL (1995) Evolución de las comunidades de mamíferos del Cenozoico superior de la Provincia de Buenos Aires, Argentina. Rev Esp Pal 10: 30–36Google Scholar
  2. Argot C (2003) Postcranial functional adaptations in the South American Miocene borhyaenoids (Mammalia, Metatheria): Cladosictis patagonica, Pseudonotictis Pusillus and Sipalocyon gracilis. Alcheringa 27: 303–356CrossRefGoogle Scholar
  3. Argot C (2004) Functional-adaptative analysis of the postcranial skeleton of a Laventan borhyaenoid, Lycopsis longirostris (Marsupialia, Mammalia). J Vertebr Paleontol 24: 689–708CrossRefGoogle Scholar
  4. Benton MJ (1983) Dinosaur success in the Triassic: a noncompetitive ecological model. Quart Rev Bio 58: 29–55CrossRefGoogle Scholar
  5. Bond M (1986) Los carnívoros terrestres fósiles de Argentina: resumen de su historia. Actas IV Congr Arg Pal Bioest 2: 167–171Google Scholar
  6. Bond M, Carlini AA, Goin FJ, Legarreta L, Ortiz-Jaureguizar E, Pascual R, Uliana MA (1995) Episodes in South American land mammal evolution and sedimentation: testing their apparent concurrence in a Paleocene succession from central Patagonia. Actas VI Congr Arg Pal Bioest: 47–58Google Scholar
  7. Blois JL, Hadly EA (2009) Mammalian response to Cenozoic climatic change. Annu Rev Earth Planet Sci 37:181–208CrossRefGoogle Scholar
  8. Bruch AB, Uhl D, Mosbrugger V (2007) Miocene climate in Europe: patterns and evolution a first synthesis of NECLIME. Palaeogeogr Palaeoclimatol Palaeoecol 253: 1–7CrossRefGoogle Scholar
  9. Carbone C, Teacher A, Rowcliffe JM (2007) The costs of carnivory. PLOS Biol 5(2): 363–368CrossRefGoogle Scholar
  10. Chinsamy A, Chiappe LM, Dodson P (1995) Mesozoic avian bone microstructure: physiological implications. Paleobiology 21:561–574Google Scholar
  11. Cione AL, Tonni EP (2005). Bioestratigrafía basada en mamíferos del Cenozoico superior de la provincia de Buenos Aires, Argentina. In: de Barrio RE, Etcheverry RO, Caballé MF, Llambías E (eds) Geología y Recursos Minerales de la Provincia de Buenos Aires. XVI Congreso Geológico Argentino, La Plata, pp 183–200Google Scholar
  12. Cooper CE, Whiters PC, Cruz-Neto AP (2009). Metabolic, ventilatory, and hygric physiology of the gracile mouse opossum (Gracilinanus agilis). Physiol Biochem Zool 82(2):15362CrossRefPubMedGoogle Scholar
  13. Eagle RA, Schauble EA, Tripati AK, Tutken T, Hulbert RC, Eiler JM (2009) Body temperatures of modern and extinct vertebrates from 13C-18O bond abundances in bioapatite. Proc Natl Acad Sci USA 107(23): 10377–10382CrossRefGoogle Scholar
  14. Ercoli MD (2010) Estudio de los hábitos locomotores en los Borhyaenoidea (Marsupialia, Sparassodonta) de la Formación Santa Cruz (Mioceno inferior de la provincia de Santa Cruz) a partir de la diferenciación morfológica en depredadores vivientes. Dissertation, Universidad Nacional de Buenos AiresGoogle Scholar
  15. Ercoli MD, Prevosti FJ, Alvarez A (2012) Form and function within a phylogenetic framework: locomotory habits of extant predators and some Miocene Sparassodonta (Metatheria). Zool J Linn Soc 165:224–251CrossRefGoogle Scholar
  16. Filippelli GM, Flores JA (2009) From the warm Pliocene to the cold Pleistocene: a tale of two oceans. Geology 37:959–960CrossRefGoogle Scholar
  17. Flores DA (2009) Phylogenetic analyses of postcranial skeletal morphology in dildelphid marsupials. Bull Mus Nat Hist 320: 1–81CrossRefGoogle Scholar
  18. Flower BP, Kennett JP (1994) The middle Miocene climate transition: east Antarctic ice sheet development, deep ocean circulation and global carbon cycling. Palaeogeogr Palaeoclimatol Palaeoecol 108: 537–555CrossRefGoogle Scholar
  19. Flynn JJ, Swisher III CC (1995) Cenozoic South American land mammal ages: correlation to global geochronologies. In: Berggren WA, Kent DV, Aubry MP, Hardenbol J (eds) Geochronology, Time Scales and Global Stratigraphic Correlation. Soc Sedimentol Geol Spec Pub 54: 317–333Google Scholar
  20. Forasiepi AM (2009) Osteology of Arctodictis sinclairi (Mammalia, Metatheria, Sparassodonta) and phylogeny of Cenozoic metatherian carnivores from South America. Monogr Mus Arg Cs Nat n s 6: 1–174Google Scholar
  21. Forasiepi AM, Goin FJ, Martinelli AG (2009) Contribution to the knowledge of the Sparassocynidae (Mammalia, Metatheria, Didelphoidea), with comments on the age of the Aisol Formation (Neogene), Mendoza province, Argentina. J Vertebr Paleontol 29(4):1252–1263Google Scholar
  22. Friscia AR, Van Valkenburgh B, Biknevicius AR (2007) An ecomorphological analysis of extant small carnivores. J Zool 272: 82–100CrossRefGoogle Scholar
  23. Gelfo JN, Goin FJ, Woodburne MO, Muizon C de (2009) Biochronological relationships of the earliest South American Paleogene mammalian faunas. Palaeontology 52(1): 251–269Google Scholar
  24. Goin FJ (1989) Late Cenozoic South American marsupial and placental carnivores: changes in predator–prey evolution. Abstr V Int Ther Cong 1: 271–272Google Scholar
  25. Goin FJ (1991) Los Didelphoidea (Mammalia, Marsupialia) del Cenozoico Tardío de la Región Pampeana. Dissertation, Universidad Nacional de La PlataGoogle Scholar
  26. Goin FJ (1995) Los marsupiales. In: Alberdi MT, Leone G, Tonni EP (eds) Evolución Biológica y Climática de la Región Pampeana durante los Últimos Cinco Millones de Años. Un ensayo de Correlación con el Mediterráneo Occidental Monografías del Museo Nacional de Ciencias Naturales, Madrid, pp 165–179Google Scholar
  27. Goin FJ, Abello A, Bellosi E, Kay R, Madden R, Carlini AA (2007) Los Metatheria sudamericanos de comienzos del Neógeno (Mioceno Temprano, edad-mamífero Colhuehuapense). Parte I: Introducción, Didelphimorphia y Sparassodonta. Ameghiniana 44:29–71Google Scholar
  28. Goin FJ, Abello MA, Chornogubsky L (2010) Middle Tertiary marsupials from central Patagonia (early Oligocene of Gran Barranca): understanding South America’s Grande Coupure. In: Madden RH, Carlini AA, Vucetich MG, Kay RF (eds) The Paleontology of Gran Barranca: Evolution and Environmental Change through the Middle Cenozoic of Patagonia. Cambridge University Press, New York, pp 71–107Google Scholar
  29. Goin FJ, Montalvo C (1988) Revisión sistemática y reconocimiento de una nueva especie del género Thylatheridium Reig (Marsupialia, Didelphidae). Ameghiniana 25:161–167Google Scholar
  30. Goin FJ, Pardiñas UFJ (1996) Revisión de las especies del género Hyperdidelphys Ameghino, 1904 (Mammalia, Marsupialia, Didelphidae), su significado filogenético, estratigráfico y adaptativo en el Neógeno del Cono Sur Sudamericano. Est Geol 52: 327–359CrossRefGoogle Scholar
  31. Goin FJ, Zimicz N, de los Reyes M, Soibelzon L (2009) A new large didelphid of the genus Thylophorops (Mammalia: Didelphimorphia: Didelphidae), from the late Tertiary of the Pampean Region (Argentina). Zootaxa 2005: 35–46Google Scholar
  32. Gordon CL (2003) A first look at estimating body size in dentally conservative marsupials. J Mammal Evol 10: 1–21CrossRefGoogle Scholar
  33. Jansa SA, Forsman JF, Voss RS (2006) Different patterns of selection on nuclear genes IRBP and Dmpl affect the efficiency but not the outcome of phylogeny estimation for didelphids marsupials. Mol Phylogenet Evol 38: 363–380CrossRefPubMedGoogle Scholar
  34. Jansa SA, Voss RS (2005) Phylogenetic relationships of the marsupial genus Hyladelphys based on nuclear gene sequences and morphology. J Mammal 86:853–865CrossRefGoogle Scholar
  35. Köhler M, Moyá-Solá S (2009) Physiological and life history strategies of a fossil large mammal in a resource-limited environment. Proc Natl Acad Sci USA 106 (48): 20354–20358PubMedCentralCrossRefPubMedGoogle Scholar
  36. Krause DW (1986) Competitive exclusion and taxonomic displacement in the fossil record: the case of rodents and multituberculates in North America. In: Flanagan KM, Lillegraven JA (eds) Vertebrates, Phylogeny and Philosophy. Contrib Geol Univ Wyoming Spec Pap 3: 119–130Google Scholar
  37. Lewis AR, Marchanta DR, Ashworthc AC, Hedenäs L, Hemmingf SR, Johnsong JV, Lengh ML, Machlusf ML, Newtoni AE, Rainej JI, Willenbringk JK, Williamsl M, Wolfem AP (2008) Mid-Miocene cooling and the extinction of tundra in continental Antarctica. Proc Natl Acad Sci USA 105 (31): 10677–10680CrossRefGoogle Scholar
  38. Madden RH, Kay RF, Vucetich MG, Carlini AA (2010) Gran Barranca: a 23-million-year record of middle Cenozoic faunal evolution in Patagonia. In: Madden RH, Carlini AA, Vucetich MG, Kay RF (eds) The Paleontology of Gran Barranca: Evolution and Environmental Change through the Middle Cenozoic of Patagonia. Cambridge University Press, Cambridge, pp 423–439Google Scholar
  39. Marshall LG (1977a) A new species of Lycopsis (Borhyaenidae: Marsupialia) from the La Venta fauna (late Miocene) of Colombia, South America. J Paleontol 51: 633–642Google Scholar
  40. Marshall LG (1977b) Evolution of the carnivorous adaptative zone in South America. In: Hecht MK, Goody PC, Hecht BM (eds) Major Patterns in Vertebrate Evolution. Plenum Press, New York, pp 709–722CrossRefGoogle Scholar
  41. Marshall LG (1978) Evolution of the Borhyaenidae, extinct South American predaceous marsupials. Univ Cal Publ Geol Sci 117: 1–89Google Scholar
  42. Marshall LG (1979) Review of the Prothylacyninae, an extinct subfamily of South American “dog-like” marsupials. Fieldiana Geol n ser 3: 1–50Google Scholar
  43. Marshall LG (1981) Review of the Hathlyacyninae, an extinct subfamily of South American “dog-like” marsupials. Fieldiana Geol n ser 7: 1–120Google Scholar
  44. Marshall LG, Cifelli RL (1990) Analysis of changing diversity patterns in Cenozoic Land Mammal Age faunas, South America. Palaeovertebrata 19: 169–210Google Scholar
  45. Marshall LG, Hoffstetter R, Pascual R (1983) Mammals and stratigraphy: geochronology of the continental mammal-bearing Tertiary of South America. Palaeovertebrata mém extra 1983: 1–93Google Scholar
  46. McNab BK (2005) Uniformity in the basal metabolic rate of marsupials: its causes and consequences. Rev Chilena Hist Nat 78: 183–198Google Scholar
  47. McNab BK (2008) An analysis of the factors that influence the level and scaling of mammalian BMR. Compa Biochem Physiol Part A 151: 5–28CrossRefGoogle Scholar
  48. Meachen-Samuels J, Van Valkenburgh B (2009) Craniodental indicators of prey size preference in the Felidae. Biol J Linn Soc 96: 784–799CrossRefGoogle Scholar
  49. Meng J, McKenna MC (1998) Faunal turnover of Palaeogene mammals from the Mongolian Plateau. Nature 394: 364–367CrossRefGoogle Scholar
  50. Muizon C de (1991) La fauna de mamíferos de Tiupampa (Paleoceno Inferior, Formación Santa Lucía) Bolivia. En Suarez-Soruco R (ed) Fósiles y Facies de Bolivia, Volumen, I Vertebrados. Revista Técnica de Yacimientos Petrolíferos Fiscales de Bolivia 12:575–624Google Scholar
  51. Muizon C de (1998) Mayulestes ferox, a borhyaenoid (Metatheria, Mammalia) from the early Palaeocene of Bolivia. Phylogenetic and palaeobiologic implications. Geodiversitas 20: 19–142Google Scholar
  52. Muizon C de, Argot C (2003) Comparative anatomy of the Tiupampa didelphimorphs; an approach to locomotory habits of early marsupials. In: Jones M, Dickman C, Archer M (eds) Predators with Pouches: the Biology of Marsupial Carnivores. CSIRO Publishing, Collingwood, pp 43–62Google Scholar
  53. Ortiz Jaureguizar E (1989) Analysis of the compositional changes of the South American mammal fauna during the Miocene-Pliocene (Panaraucanian Faunistic Cycle). Abstr V Int Ther Cong 1: 277–278Google Scholar
  54. Ortiz Jaureguizar E (2001) Cambios en la diversidad de los mamíferos sudamericanos durante el lapso Mioceno Superior-Holoceno: el caso pampeano. In: Meléndez G, Herrera Z, Delvene G, Azanza B (eds) Los Fósiles y la Paleogeografía. Publ del SEPAZ Univ Zaragoza 5: 397–403Google Scholar
  55. Palmqvist P, Martínez-Navarro B, Pérez-Claros JA, Torregrosa V, Figuerido B, Jiménez-Arenas JM, Patrocinio Espigares M, Ros-MontoyaS, De Renzi M (2011) The giant hyena Pachycrocuta brevirostris: modelling the bone-cracking behavior of an extinct carnivore. Quaternary Internatl 12: 1–19Google Scholar
  56. Pascual R, Bond M (1986) Evolución de los marsupiales cenozoicos de Argentina. Actas IV Congr Arg Pal Bioest 2: 143–150Google Scholar
  57. Pascual R, Ortiz Jaureguizar E (1990) Evolving climates and mammal faunas in Cenozoic South American. J Hum Evol 19: 23–60CrossRefGoogle Scholar
  58. Patterson B, Marshall LG (1978). The Deseadan, early Oligocene, Marsupialia of South America. Fieldiana Geol 41: 37–100Google Scholar
  59. Patterson B, Pascual R (1972) The fossil mammal fauna of South America. In: Keast A, Erk FC, Glass B (eds) Evolution, Mammals and Southern Continents. State University of New York Press, New York, pp 274–309Google Scholar
  60. Prevosti FJ, Forasiepi AM, Ercoli MD, Turazzini GF (2012) Chapter 11: Paleoecology of the mammalian carnivores (Metatheria, Sparassodonta) of the Santa Cruz Formation (late early Miocene). In: Vizcaíno SF, Kay RF, Bargo MS (eds) Early Miocene Paleobiology In Patagonia: High Latitude Paleocommunities Of The Santa Cruz Formation. Cambridge University Press, Cambridge, pp 173–193CrossRefGoogle Scholar
  61. Prevosti FJ, Forasiepi AM, Soibelzon LH, Zimicz N (2009) Sparassodonta vs. Carnivora: ecological relationships between carnivorous mammals in South America. Abstr X Int Mamm Congr 1: 61–62Google Scholar
  62. Prevosti FJ, Forasiepi AM, Zimicz N (2013) The evolution of the Cenozoic terrestrial mammalian predator guild in South America: competition or replacement? J Mammal Evol 20:3–21CrossRefGoogle Scholar
  63. Prothero DR (1994) The late Eocene-Oligocene extinctions. Annu Rev Earth Planet Sci 22:145–165CrossRefGoogle Scholar
  64. Ré G, Bellosi E, Heizler M, Vilas J, Madden RH, Carlini AA, Kay RF, Vucetich, MG (2010) A geochronology for the Sarmiento Formation at Gran Barranca. In: Madden RH, Carlini AA, Vucetich MG, Kay RF (eds) The Paleontology of Gran Barranca: Evolution and Environmental Change through the Middle Cenozoic of Patagonia. Cambridge University Press, Cambridge, pp 46–60Google Scholar
  65. Reig OA (1981) Teoría del origen y desarrollo de la fauna de mamíferos de América del Sur. Monographíae Naturae 1: 1–162Google Scholar
  66. Reig OA, Simpson GG (1972) Sparassocynus (Marsupialia, Didelphidae), a peculiar mammal from the late Cenozoic of Argentina. J Zool 167:511–539CrossRefGoogle Scholar
  67. Rosenzweig ML, McCord RD (1991) Incumbent replacement: evidence for long-term evolutionary progress. Paleobiology 17: 202–213Google Scholar
  68. Savage RJG (1977) Evolution of carnivorous mammals. Palaeontology 20: 237–271Google Scholar
  69. Sepkoski JJr (1996) Patterns of Phanerozoic extinctions: a perspective from global databases. In: Walliser H (ed) Global Events and Event Stratigraphy. Springer, Berlin, pp 35–52Google Scholar
  70. Sepkoski JJr (2001) Competition in evolution. In: Briggs DEG, Crowther PR (eds) Paleobiology II. Blackwell Sciences, Oxford, pp 171–175Google Scholar
  71. Sepkoski JJr, McKinney FK, Lidgard S (2000) Competitive displacement among post-Paleozoic cyclostome and cheilostome bryozoans. Paleobiology 26: 7–18Google Scholar
  72. Simpson GG (1950) History of the fauna of Latin America. Am Scientist 38: 361–389Google Scholar
  73. Simpson GG (1969) South American mammals. In: Fitkau EJ, Illies J, Klinge H, Schwabe GH, Sioli H (eds) Biogeography and Ecology in South America. N.V. Publishers, Netherlands, pp 876–909Google Scholar
  74. Simpson GG (1971) The evolution of marsupials in South America. Anal Acad Bras Cs 43: 103–118Google Scholar
  75. Simpson GG (1974) Notes on Didelphidae (Mammalia, Marsupialia) from the Huayquerian (Pliocene) of Argentina. Am Mus Novitates 2559:1–15Google Scholar
  76. Simpson GG (1980) Splendid Isolation. The Curious History of South American Mammals. Yale University Press, New Haven, 266 ppGoogle Scholar
  77. Smith FA, Lyons KS, Ernest SKM, Jones KE, Kaufman DM, Dayan T, Marquet PA, Brown JH, Haskell JP (2003) Body mass of late Quaternary mammals. Ecology 84(12): 3403CrossRefGoogle Scholar
  78. Soibelzon LH, Prevosti FJ (2007) Los carnívoros (Carnivora, Mammalia) terrestres del Cuaternario de América del Sur. In: Pons GX, Vicens D (eds) Geomorfología Litoral i Quaternari. Homenatge a Joan Cuerda Barceló. Monografia de la Societat d’Història Natural, Palma de Mallorca, pp 49–68Google Scholar
  79. Stehlin HG (1909) Remarques sur les faunules de mammiferes des couches eocenes et oligocenes du Bassin de Paris. Bull Soc Geol Fr 4(9):488–520Google Scholar
  80. Steiner C, Tilak M, Douzery E, Catzeflis FM (2005) New data from a transthyretin nuclear intron suggest an Oligocene to Miocene diversification of living South America opossums. Mol Phylogenet Evol 35: 363–379CrossRefPubMedGoogle Scholar
  81. Szalay FS (1994) Evolutionary History of the Marsupials and Analysis of Osteological Characters. Cambridge University Press, Cambridge, 481 ppGoogle Scholar
  82. Tiedemann R, Sarnthein M, Shackleton NJ (1994) Astronomic timescale for the Pliocene Atlantic δ18O and dust flux records of Ocean Drilling Program site 659: Paleoceanography 9: 619–638CrossRefGoogle Scholar
  83. Van Valkenburgh B (1991) Iterative evolution of hypercarnivory in canids (Mammalia: Carnivore): evolutionary interactions among sympatric predators. Paleobiology 17(4): 340–362Google Scholar
  84. Van Valkenburgh B (1999) Major patterns in the history of carnivorous mammals. Annu Rev Earth Planet Sci 27: 463–493CrossRefGoogle Scholar
  85. Van Valkenburgh B (2007) Déjà vu: the evolution of feeding morphologies in the Carnivora. Integr Comp Biol 47: 147–163CrossRefPubMedGoogle Scholar
  86. Van Valkenburgh B, Koepfli KP (1993) Cranial and dental adaptations to predation in canids. Symp Zool Soc London 65: 15–37Google Scholar
  87. Viera E, Astúa de Moraes D (2003) Carnivory and insectivory in Neotropical marsupials. In: Jones ME, Dickman C, Archer M (eds) Predators with Pouches: the Biology of Carnivorous Marsupials. CSIRO Publications, Collingwood, pp 271–284Google Scholar
  88. Villarroel C, Marshall LG (1983) Two new late Tertiary marsupials (Hathlyacyninae and Sparassocyninae) from the Bolivian Altiplano. J Paleontol 57:1061–1066Google Scholar
  89. Vizcaíno SF, Fariña RA, Zárate MA, Bargo MS, Schultz P (2004) Palaeoecological implications of the mid-Pliocene faunal turnover in the Pampean Region (Argentina). Palaeogeogr Palaeoclimatol Palaeoecol 213: 101–113CrossRefGoogle Scholar
  90. Werdelin L (1987) Jaw geometry and molar morphology in marsupial carnivores: analysis of a constraint and its macroevolutionary consequences. Paleobiology 13: 342–350Google Scholar
  91. Woodburne M, Cione AL, Tonni, EP (2006) Central American Provincialism and the Great American Biotic Interchange. In: Carranza-Castañeda O, Lindsay EH (eds) Advances in Late Tertiary Vertebrate Paleontology in Mexico and the Great American Biotic Interchange. Publ Especial Inst Geol y Centro de Geociencias Univ Nac Autónoma México 4: 73–101Google Scholar
  92. Woodburne MO, Goin FJ, Bond M, Carlini AA, Gelfo JN, López GM, Iglesias A, Zimicz AN (2014) Paleogene Land Mammal Faunas of South America; a response to global climatic changes and indigenous floral diversity. J Mammal Evol 21: 1–73Google Scholar
  93. Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292: 686–693CrossRefPubMedGoogle Scholar
  94. Zimicz AN (2012) Ecomorfología de los marsupiales paleógenos de América del Sur. Dissertation, Universidad Nacional de La PlataGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.CONICET- IBIGEO, Facultad de Ciencias NaturalesUniversidad Nacional de SaltaSaltaArgentina

Personalised recommendations