Skip to main content

Advertisement

Log in

The Structure of the Mammalian Predator Guild in the Santa Cruz Formation (Late Early Miocene)

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

The Santa Cruz Formation (late early Miocene, Santacrucian age) registers 11 species of mammalian predators (Metatheria, Sparassodonta). Together with large carnivorous flightless birds, they comprised the terrestrial predator guild. The Santacrucian sparassodonts were diverse in body size, had different locomotory habits, and were primarily hypercarnivores. The objective of this work is to analyze the guild structure of the sparassodonts of the Santa Cruz Formation, using the variables of body mass, diet, and locomotion as proxies. Furthermore, we analyze the interaction with other predators and potential prey. The univariated test V of Poole and Rathcke and the multivariated test of Clark-Evans were used to construct the models. In the multivariate test, we made a Principal Component Analysis to resume and standardize the variables. With body mass and locomotion we obtained an evenly spaced pattern of segregation for the sparassodont species, being non-significant and significant, respectively. The pattern was aggregated and significant only with diet. The analysis of all variables together resulted in an evenly spaced and significant pattern, which is consistent with character displacements (segregation of species throughout the morphospace) that would help to diminish interspecific competition during the Santacrucian age and would allow selection of prey species of different sizes and substrate specializations. When the body size pattern of predator birds and sparassodonts were plotted together, the pattern is evenly spaced and non-significant. Other factors, including locomotion, would differentiate these species and their ecological niches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abello MA, Ortiz-Jaureguizar E, Candela AM (2012) Paleoecology of the Paucituberculata and Microbiotheria (Mammalia, Marsupialia) from the late early Miocene of Patagonia. In: Vizcaíno SF, Kay RF, Bargo MS (eds) Early Miocene Paleobiology in Patagonia. Cambridge University Press, Cambridge, pp 156–172

    Chapter  Google Scholar 

  • Argot C (2003a) Functional adaptations of the postcranial skeleton of two Miocene borhyaenoids (Mammalia, Metatheria) Borhyaena and Prothylacynus, from South America. Palaeontology 46:1213–1267

    Article  Google Scholar 

  • Argot C (2003b) Postcranial functional adaptations in the South American Miocene borhyaenoids (Mammalia, Metatheria): Cladosictis, Pseudonotictis, and Sipalocyon. Alcheringa 27:303–356

    Article  Google Scholar 

  • Argot C (2004a) Functional–adaptative analysis of the postcranial skeleton of a Laventan borhyaenoid, Lycopsis longirostris (Marsupialia, Mammalia). J Vertebr Paleontol 24:689–708

    Article  Google Scholar 

  • Argot C (2004b) Evolution of South American mammalian predators (Borhyaenoidea): anatomical and palaeobiological implications. Zool J Linn Soc 140:487–521

    Article  Google Scholar 

  • Bargo MS, Toledo N, Vizcaíno SF (2012) Paleobiology of the Santacrucian sloths and anteaters (Xenarthra, Cingulata). In: Vizcaíno SF, Kay RF, Bargo MS (eds) Early Miocene Paleobiology in Patagonia. Cambridge University Press, Cambridge, pp 216–242

    Chapter  Google Scholar 

  • Barreda V, Palazzesi L (2007) Patagonian vegetation turnovers during the Paleogene-early Neogene: origin of arid-adapted floras. Bot Rev 73:31–50

    Google Scholar 

  • Blanco E, Jones WW, Grinspan GA (2011) Fossil marsupial predators of South America (Marsupialia, Borhyaenoidea): bite mechanics and palaeobiological implications. Alcheringa 31:377–387

    Article  Google Scholar 

  • Blisniuk PM, Stern LA, Chamberlain CP, Idleman B, Zeitler KP (2005) Climatic and ecologic changes during Miocene surface uplift in the southern Patagonian Andes. Earth Planet Sci Lett 230:125–142

    Article  CAS  Google Scholar 

  • Bond M, Pascual R (1983) Nuevos y elocuentes restos craneanos de Proborhyaena gigantea Ameghino, 1897 (Marsupialia, Borhyanidae, Proborhyaeninae) de la edad Deseadense. Un ejemplo de coevolución. Ameghiniana 20:47–60

    Google Scholar 

  • Brea M, Zucol AF, Iglesias A (2012) Fossil plant studies from late early Miocene of the Santa Cruz Formation: paleoecology and paleoclimatology at the passive margin of Patagonia, Argentina. In: Vizcaíno SF, Kay RF, Bargo MS (eds) Early Miocene Paleobiology in Patagonia. Cambridge University Press, Cambridge, pp 104–128

    Chapter  Google Scholar 

  • Candela AM, Rasia LL, Pérez ME (2012) Paleobiology of Santacrucian caviomorph rodents: a morphofunctional approach. In: Vizcaíno SF, Kay RF, Bargo MS (eds) Early Miocene Paleobiology in Patagonia. Cambridge University Press, Cambridge, pp 287–305

    Chapter  Google Scholar 

  • Carbone C, Mace GM, Roberts SC, Macdonald DW (1999) Energetic constraints on the diet of terrestrial carnivores. Nature 402:286–288

    Article  CAS  PubMed  Google Scholar 

  • Carbone C, Teacher A, Rowcliffe JM (2007) The costs of carnivory. PLoS Biology 5:909–914

    Article  Google Scholar 

  • Cassini GH (2013) Skull geometric morphometrics and paleoecology of Santacrucian (late early Miocene; patagonia) native ungulates (Astrapotheria, Litopterna, and Notoungulata). Ameghiniana 50:193–216

    Article  Google Scholar 

  • Cassini GH, Cerdeño E, Villafañe AL, Muñoz NA (2012) Paleobiology of Santacrucian native ungulates (Meridiungulata: Astrapotheria, Litopterna and Notoungulata). In: Vizcaíno SF, Kay RF, Bargo MS (eds) Early Miocene Paleobiology in Patagonia. Cambridge University Press, Cambridge, pp 243–286

    Chapter  Google Scholar 

  • Clark PJ, Evans FC (1954) Distance to Nearest Neighbor as a measure of spatial relationships in populations. Ecology 35:445–453

    Article  Google Scholar 

  • Clark PJ, Evans FC (1979) Generalization of a Nearest Neighbor measure of dispersion for use in K dimensions. Ecology 60:316–317

    Article  Google Scholar 

  • Croft DA (2001) Cenozoic environmental change in South America as indicated by mammalian body size distributions (cenograms). Divers Distrib 7:271–287

    Article  Google Scholar 

  • Croft DA (2006) Do marsupials make good predators? Insights from predator–prey diversity ratios. Evol Ecol Res 8:1192–1214

    Google Scholar 

  • Croft DA (2013) What constitutes a fossil mammal community in the early Miocene Santa Cruz Formation? J Vertebr Paleontol 33:401–409

    Article  Google Scholar 

  • Davis BW, Li G, Murphy WJ (2010) Supermatrix and species tree methods resolve phylogenetic relationships within the big cats, Panthera (Carnivora: Felidae). Mol Phylogen Evol 56:64–76

    Article  CAS  Google Scholar 

  • Dayan T, Simberloff D (2005) Ecological and community-wide character displacement: the next generation. Eco Let 8:875–894

    Article  Google Scholar 

  • Degrange FJ (2012) Morfología del cráneo y complejo apendicular posterior de aves fororracoideas: implicancias en la dieta y modo de vida. PhD Thesis, Universidad Nacional de La Plata, La Plata

  • Degrange FJ, Noriega JI, Areta JI (2012) Diversity and paleobiology of the Santacrucian birds. In: Vizcaíno SF, Kay RF, Bargo MS (eds) Early Miocene Paleobiology in Patagonia. Cambridge University Press, Cambridge, pp 138–155

    Chapter  Google Scholar 

  • Diniz–Filho JAF, Sant’Ana CER, Bini LM (1998) An eigenvector method for estimating phylogenetic inertia. Evolution 52:1247–1262

    Article  Google Scholar 

  • Donadio E, Buskirk SW (2006) Diet, morphology, and interspecific killing in Carnivora. Am Naturalist 167: 524–36

    Article  Google Scholar 

  • Ercoli MD, Prevosti FJ (2011) Estimación de masa de las especies de Sparassodonta (Metatheria, Mammalia) de la Edad Santacrucense (Mioceno Temprano) a partir de tamaños de centroide de elementos apendiculares: inferencias paleoecológicas. Ameghiniana 48:462–479

    Article  Google Scholar 

  • Ercoli MD, Prevosti FJ, Álvarez A (2012) Form and function within a phylogenetic framework: locomotory habits of extant predators and some Miocene Sparassodonta (Metatheria). Zool J Linn Soc 165:224–251

    Article  Google Scholar 

  • Fernicola JC, Albino A (2012) Amphibians and squamate reptiles from the Santa Cruz Formation (late early Miocene), Santa Cruz Province, Argentina: paleoenvironmental and paleobiological considerations. In: Vizcaíno SF, Kay RF, Bargo MS (eds) Early Miocene Paleobiology in Patagonia. Cambridge University Press, Cambridge, pp 129–137

    Chapter  Google Scholar 

  • Flessa K (2001) Time averaging. In: Briggs DE, Crowther PR (eds) Paleobiology II. Blackwell, Oxford, pp 292–296

    Chapter  Google Scholar 

  • Forasiepi AM (2009) Osteology of Arctodictis sinclairi (Mammalia, Metatheria, Sparassodonta) and phylogeny of Cenozoic metatherian carnivores from South América. Monogr Mus Arg Cienc Nat 6:1–174

    Google Scholar 

  • Forasiepi AM, Goin FJ, Tauber AA (2004) Las especies de Arctodictis Mercerat 1891 (Metatheria, Borhyaenidae), grandes carnívoros del Mioceno de América del Sur. Rev Esp Paleontol 19:1–22

    Google Scholar 

  • Hunter J, Caro T (2008) Interspecific competition and predation in American carnivore families. Ethol Ecol Evol 20:295–324

    Article  Google Scholar 

  • Hutchins M (2003) Grzimek’s Animal Life Encyclopedia. Gale Group, New York

    Google Scholar 

  • Jenkins FA Jr (1974) Tree shrew locomotion and the origins of primate arborealism. In: Jenkins FA Jr (ed) Primate Locomotion. Academic Press, New York, pp 85–115

    Google Scholar 

  • Johnson WE, Eizirik E, Pecon-Slattery J, Murphy WJ, Antunes A, Teeling E, O’Brien SJ (2006) The late Miocene radiation of modern Felidae: a genetic assessment. Science 311:73–77

    Article  CAS  PubMed  Google Scholar 

  • Jones ME, Barmuta LA (2000) Niche differentiation among sympatric Australian dasyurid carnivores J Mammal 81: 434–447

    Article  Google Scholar 

  • Kay RF, Perry JMG, Malinzak M, Allen KL, Kirk EC, Plavcan JM, Fleagle JG (2012a) Paleobiology of Santacrucian primates. In: Vizcaíno SF, Kay RF, Bargo MS (eds) Early Miocene Paleobiology in Patagonia. Cambridge University Press, Cambridge, pp 306–330

    Chapter  Google Scholar 

  • Kay RF, Vizcaíno SF, Bargo MS (2012b) A review of the paleoenvironment and paleoecology of the Miocene Santa Cruz Formation In: Vizcaíno SF, Kay RF, Bargo MS (eds) Early Miocene Paleobiology in Patagonia, Cambridge University Press, Cambridge

    Google Scholar 

  • Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, Kamal M, Clamp M, Chang JL, Kulbokas EJ 3rd, Zody MC, Mauceli E, Xie X, Breen M, Wayne RK, Ostrander EA, Ponting CP, Galibert F, Smith DR, DeJong PJ, Kirkness E, Alvarez P, Biagi T, Brockman W, Butler J, Chin CW, Cook A, Cuff J, Daly MJ, DeCaprio D, Gnerre S, Grabherr M, Kellis M, Kleber M, Bardeleben C, Goodstadt L, Heger A, Hitte C, Kim L, Koepfli KP, Parker HG, Pollinger JP, Searle SM, Sutter NB, Thomas R, Webber C, Baldwin J, Abebe A, Abouelleil A, Aftuck L, Ait-Zahra M, Aldredge T, Allen N, An P, Anderson S, Antoine C, Arachchi H, Aslam A, Ayotte L, Bachantsang P, Barry A, Bayul T, Benamara M, Berlin A, Bessette D, Blitshteyn B, Bloom T, Blye J, Boguslavskiy L, Bonnet C, Boukhgalter B, Brown A, Cahill P, Calixte N, Camarata J, Cheshatsang Y, Chu J, Citroen M, Collymore A, Cooke P, Dawoe T, Daza R, Decktor K, DeGray S, Dhargay N, Dooley K, Dooley K, Dorje P, Dorjee K, Dorris L, Duffey N, Dupes A, Egbiremolen O, Elong R, Falk J, Farina A, Faro S, Ferguson D, Ferreira P, Fisher S, FitzGerald M, Foley K, Foley C, Franke A, Friedrich D, Gage D, Garber M, Gearin G, Giannoukos G, Goode T, Goyette A, Graham J, Grandbois E, Gyaltsen K, Hafez N, Hagopian D, Hagos B, Hall J, Healy C, Hegarty R, Honan T, Horn A, Houde N, Hughes L, Hunnicutt L, Husby M, Jester B, Jones C, Kamat A, Kanga B, Kells C, Khazanovich D, Kieu AC, Kisner P, Kumar M, Lance K, Landers T, Lara M, Lee W, Leger JP, Lennon N, Leuper L, LeVine S, Liu J, Liu X, Lokyitsang Y, Lokyitsang T, Lui A, Macdonald J, Major J, Marabella R, Maru K, Matthews C, McDonough S, Mehta T, Meldrim J, Melnikov A, Meneus L, Mihalev A, Mihova T, Miller K, Mittelman R, Mlenga V, Mulrain L, Munson G, Navidi A, Naylor J, Nguyen T, Nguyen N, Nguyen C, Nguyen T, Nicol R, Norbu N, Norbu C, Novod N, Nyima T, Olandt P, O’Neill B, O’Neill K, Osman S, Oyono L, Patti C, Perrin D, Phunkhang P, Pierre F, Priest M, Rachupka A, Raghuraman S, Rameau R, Ray V, Raymond C, Rege F, Rise C, Rogers J, Rogov P, Sahalie J, Settipalli S, Sharpe T, Shea T, Sheehan M, Sherpa N, Shi J, Shih D, Sloan J, Smith C, Sparrow T, Stalker J, Stange-Thomann N, Stavropoulos S, Stone C, Stone S, Sykes S, Tchuinga P, Tenzing P, Tesfaye S, Thoulutsang D, Thoulutsang Y, Topham K, Topping I, Tsamla T, Vassiliev H, Venkataraman V, Vo A, Wangchuk T, Wangdi T, Weiand M, Wilkinson J, Wilson A, Yadav S, Yang S, Yang X, Young G, Yu Q, Zainoun J, Zembek L, Zimmer A, Lander ES (2005) Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438:803–19

    Article  CAS  PubMed  Google Scholar 

  • Marshall LG (1977a) Evolution of the carnivorous adaptative zone in South America. In: Hecht MK, Goody PC, Hecht BM (eds) Major Patters in Vertebrate Evolution. Plenum Press, New York, pp 709–721

    Chapter  Google Scholar 

  • Marshall LG (1977b) A new species of Lycopsis (Borhyaenidae, Marsupialia) from the La Venta Fauna (Miocene) of Colombia, South America. J Paleontol 51:633–642

    Google Scholar 

  • Marshall LG (1978) Evolution of the Borhyaenidae, extinct South American predaceous marsupials. Univ Calif Publ Geol Sci 117:1–89

    Google Scholar 

  • Muizon C de (1998) Mayulestes ferox, a borhyaenoid (Metatheria, Mammalia) from the early Palaeocene of Bolivia. Phylogenetic and palaeobiologic implications. Geodiversitas 20:19–142

    Google Scholar 

  • Myers TJ (2001) Marsupial body mass prediction. Austral J Zool 49:99–118

    Article  Google Scholar 

  • Owen Smith N, Mills MGL (2008) Predator – prey size relationships in an African large-mammal food web. J Anim Ecol 77:173–183

    Article  PubMed  Google Scholar 

  • Palomares F, Caro TM (1999) Interspecific killing among mammalian carnivores. Am Naturalist 153:492–508

    Article  Google Scholar 

  • Perkins ME, Fleagle JG, Heizler MT, Nash B, Bown TM, Tauber AA, Dozo MT (2012) Tephrochronology of the Miocene Santa Cruz and Pinturas formations, Argentina. In: Vizcaíno SF, Kay RF, Bargo MS (eds) Early Miocene Paleobiology in Patagonia. Cambridge University Press, Cambridge, pp 23–40

    Chapter  Google Scholar 

  • Poole RW, Rathcke BJ (1979) Regularity, randomness, and aggregation in flowering phenologies. Science 203:470–471

    Article  CAS  PubMed  Google Scholar 

  • Prevosti FJ (2010) Phylogeny of the large extinct South American canids (Mammalia, Carnivora, Canidae) using a “total evidence” approach. Cladistics 26:456–481.

    Article  Google Scholar 

  • Prevosti FJ, Forasiepi AM, Ercoli MD, Turazzini GF (2012). Paleoecology of the mammalian carnivores (Metatheria, Sparassodonta) of the Santa Cruz Formation (late early Miocene). In: Vizcaíno SF, Kay RF, Bargo MS (eds) Early Miocene Paleobiology in Patagonia. Cambridge University Press, Cambridge, pp 173–193

    Chapter  Google Scholar 

  • Prevosti FJ, Forasiepi A, Zimicz N (2013) The evolution of the Cenozoic terrestrial mammalian predator guild in South America: competition or replacement? J Mammal Evol 20:3–21

    Article  Google Scholar 

  • R Development Core Team (2011) R: A language and environment for statistical computing. Foundation for Statistical Computing, Vienna. Available at: http://www.R-project.org

  • Raia P, Carotenuto F, Passaro F, Fulgione D, Fortelius M (2012) Ecological specialization in fossil mammals explains Cope’s rule. Am Naturalist 179:328–337

    Article  CAS  Google Scholar 

  • Rougier GW, Wible JR, Beck RMD, Apesteguía S (2012) The Miocene mammal Necrolestes demonstrates the survival of a Mesozoic nontherian lineage into the late Cenozoic of South America. Proc Natl Acad Sci USA 109:20053–20058

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sánchez-Villagra MR (2013) Why are there fewer marsupials than placentals? On the relevance of geography and physiology in mammalian diversity and disparity evolutionary patterns. J Mammal Evol, in press

  • Sinclair WJ (1906) Mammalia of the Santa Cruz beds: Marsupialia. Rep Princeton Univ Exped Patagonia 4:333–460

    Google Scholar 

  • Smith RJ (1993) Logarithmic transformation bias in allometry. Am J Phys Anthropol 90:215–228

    Article  Google Scholar 

  • Tauber AA (1997a) Bioestratigrafía de la formación Santa Cruz (Mioceno inferior) en el extremo sudeste de la Patagonia. Ameghiniana 34:413–426

    Google Scholar 

  • Tauber AA (1997b) Paleoecología de la Formación Santa Cruz (Mioceno inferior) en el extremo sudeste de la Patagonia. Ameghiniana, 34:517–529

    Google Scholar 

  • Tonni EP (1977) El rol ecológico de algunas aves fororracoideas. Ameghiniana 14:316

    Google Scholar 

  • Van Valkenburgh B (1989) Carnivore dental adaptations and diet: a study of trophic diversity within guilds. In: Gittleman JL (ed) Carnivore Behaviour, Ecology and Evolution. Chapman and Hall, London, pp 410–436

    Chapter  Google Scholar 

  • Van Valkenburgh B (1991). Iterative evolution of hypercarnivory in canids (Mammalia: Carnivora): evolutionary interactions among sympatric predators. Paleobiology 17:340–362

    Google Scholar 

  • Van Valkenburgh B, Hertel F (1998) The decline of North American predators during the late Pleistocene. In: Saunders JJ, Styles BW, Baryshnikov GF (eds) Quaternary Paleozoology in the Northern Hemisphere. Illinois State Mus Springfield Sci Pap 27:357–374

  • Van Valkenburgh B, Koepfli K-P (1993) Cranial and dental adaptations to predation in canids. Symp Zool Soc 65:15–37

    Google Scholar 

  • Van Valkenburgh B, Wang X, Damuth J (2004) Cope’s rule, hypercarnivory, and extinction in North American canids. Science 306:101–104

    Article  PubMed  Google Scholar 

  • Viranta S (1996) European Miocene Amphicyonidae – taxonomy, systematic and ecology. Acta Zool Fenn 24:1–61

    Google Scholar 

  • Vizcaíno SF, Bargo MS, Kay RF, Fariña RA, Di Giacomo M, Perry JMG, Prevosti FJ, Toledo N, Cassini GH, Fernicola JC (2010) A baseline paleoecological study for the Santa Cruz Formation (late–early Miocene) at the Atlantic coast of Patagonia, Argentina. Palaeogeogr, Palaeoclimatol, Palaeoecol 292:507–519

    Article  Google Scholar 

  • Vizcaíno SF, Fernícola JC, Bargo MS (2012a) Paleobiology of Santacrucian glyptodonts and armadillos (Xenarthra, Cingulata). In: Vizcaíno SF, Kay RF, Bargo MS (eds) Early Miocene Paleobiology in Patagonia. Cambridge University Press, Cambridge, pp 194–215

    Chapter  Google Scholar 

  • Vizcaíno SF, Kay RF, Bargo MS (2012b) Early Miocene Paleobiology in Patagonia. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Werdelin L (1986) Comparison of skull shape in marsupial and placental carnivores. Aust J Zool 34:109–117

    Article  Google Scholar 

  • Werdelin L (1987) Some observations on Sarcophilus laniarius and the evolution of Sarcophilus. Rec Queen Victoria Mus 90:1–27

    Google Scholar 

  • Williams MR (1995) Critical values of a statistic to detect competitive displacement. Ecology 76:646–647

    Article  Google Scholar 

  • Wilson DE, Mittermeier RA (2009) Handbook of the Mammals of the World. Vol. 1. Carnivores. Lynx Edicions, Barcelona

    Google Scholar 

  • Wroe S, Argot C, Dickman C (2004) On the rarity of big fierce carnivores and primacy of isolation and area: tracking large mammalian carnivore diversity on two isolated continents. Proc R Soc Lond 271:1203–1211

    Article  Google Scholar 

  • Zimicz N (2011) Patrones de desgaste y oclusión en el sistema masticatorio de los extintos Argyrolagoidea (Marsupialia, Polydolopimorphia, Bonapartheriiformes). Ameghiniana 48:358–379

    Article  Google Scholar 

Download references

Acknowledgments

We express our gratitude to Sergio Vizcaíno and Susana Bargo who provided information about the SCF and allowed access to the new specimens collected from the unit; the curators Marcelo Reguero, Alejandro Kramarz, Stella Álvarez, and Walter Joyce for assistance during collection visits; Simon D. Kay for reviewing the English on early versions of the manuscript; Guillermo H. Cassini for permission for the map data in Fig. S1; Editor of JME, J.R. Wible and the Guest Editor, J. Pereira for their valued assistance; and Sergio Vizcaíno and an anonymous reviewer for their useful comments. This contribution is partially supported by CONICET (PIP 112-201101-00164), ANPCyT (PICT 2011-309), FCNyM-UNLP (N474), and NSF (0851272, 0824546, both to R.F. Kay).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos D. Ercoli.

Supplementary Information

Below is the link to the electronic supplementary material.

Figure S1

Map showing the principal localities of the Santa Cruz Formation (SCF) at the sea cost of southern Patagonia (modified from Cassini 2013). (GIF 46 kb)

High resolution image (EPS 2855 kb)

Figure S2

Distribution of Santacrucian terrestrial predator birds (four phorusrhacids, the anatid Brontornis burmeisteri, and the cariamid Cariama santacrucensis) and sparassodont species in body mass axis. White circle: sparassodonts; grey circle: birds. (GIF 9 kb)

High resolution image (EPS 1000 kb)

Table S1

Mean values, and inferior and superior values of the 95 % confident interval of maximum (MPM) and typical prey size estimations (TPM) for each Santacrucian sparassodont taxa. 95CI: upper and lower 95 % confidence interval of the estimation. (DOC 41.5 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ercoli, M.D., Prevosti, F.J. & Forasiepi, A.M. The Structure of the Mammalian Predator Guild in the Santa Cruz Formation (Late Early Miocene). J Mammal Evol 21, 369–381 (2014). https://doi.org/10.1007/s10914-013-9243-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-013-9243-4

Keywords

Navigation