Journal of Mammalian Evolution

, Volume 20, Issue 3, pp 191–198 | Cite as

The Bony Labyrinth in Diprotodontian Marsupial Mammals: Diversity in Extant and Extinct Forms and Relationships with Size and Phylogeny

  • Léanie Alloing-Séguier
  • Marcelo R. Sánchez-Villagra
  • Michael S. Y. Lee
  • Renaud Lebrun
Original Paper


The shape of the bony labyrinth of the inner ear was quantified using geometric morphometrics in a sample of 16 species of living marsupial diprotodontians, the extinct Diprotodon and Thylacoleo, and four outgroups. X-ray micro-computed tomography (μCT) and conventional computed tomography (CT) were used to acquire 3D data. The analyses of 22 landmarks revealed a strong body-mass related allometric pattern. A discriminant analysis on allometry-free labyrinthine shape served to evaluate the phylogenetic signal portion of the labyrinth for Macropodiformes, Phalangeroidea, Petauroidea, and Vombatiformes. The inner shape of Thylacoleo is consistent with its phylogenetic placement as a vombatiform.


Inner ear Diprotodontia Diprotodon Thylacoleo Geometric morphometrics Allometry 



The Swiss National Science Foundation supported M. R. Sánchez-Villagra (grant No. 31003A-133032/1). We thank I. Horovitz (Los Angeles) for comments and language corrections. We thank the ANR Palasiafrica (ANR-08-JCJC-0017) and Laurent Marivaux for financial support. We express our gratitude to M. Ponce de León and C. Zollikofer (Anthropological Institute and Museum Zürich) and to the Montpellier RIO Imaging (MRI) platform, and R. Harper (Lyell McEwin Hospital, Adelaide) for giving access to scanning facilities. We thank C. Bens from the Muséum National d’Histoire Naturelle (Paris), L. Costeur from the Naturhistorisches Museum Basel, S. Jiquel from the ISE-M, M.-A. Binnie (South Australian Museum), and A. Camens (Flinders University, Adelaide), who kindly permitted access to the scanned specimens.


  1. Baird IL (1974) Some aspects of the comparative anatomy and evolution of the inner ear in submammalian vertebrates. Brain Behav Evol 10:11–36CrossRefPubMedGoogle Scholar
  2. Claude J, Paradis E, Tong H, Auffray JC (2003) A geometric morphometric assessment of the effects of environment and cladogenesis on the evolution of the turtle shell. Biol J Linn Soc 79:485–501CrossRefGoogle Scholar
  3. David R, Droulez J, Allain R, Berthoz A, Janvier P, Bennequin D (2010) Motion from the past. A new method to infer vestibular capacities of extinct species. C R Palevol 9:397–410CrossRefGoogle Scholar
  4. Dryden IL, Mardia KV (1998) Statistical Shape Analysis. J. Wiley, ChichesterGoogle Scholar
  5. Ekdale EG (2011) Morphological variation in the ear region of Pleistocene Elephantimorpha (Mammalia, Proboscidea) from central Texas. J Morph 272:452–464CrossRefPubMedGoogle Scholar
  6. Fisher DO, Owens IPF, Johnson CN (2001) The ecological basis of life history variation in marsupials. Ecology 82(12):3531–3540CrossRefGoogle Scholar
  7. Graf W, Klam F (2006) Le système vestibulaire : anatomie fonctionnelle et comparée, évolution et développement. C R Palevol 5:637–655CrossRefGoogle Scholar
  8. Horovitz I, Martin T, Bloch J, Ladevèze S, Kurz C, Sánchez-Villagra MR (2009) Cranial anatomy of the earliest marsupials and the origin of opossums. PloS ONE 4(12):e8278. doi: 10.1371/journal.pone.0008278 CrossRefPubMedGoogle Scholar
  9. Hullar TE (2006) Semicircular canal geometry, afferent sensitivity, and animal behavior. Anat Rec A 288:466–472Google Scholar
  10. Ladevèze S (2004) Metatherian petrosals from the late Paleocene of Itaboraí, Brazil, and their phylogenetic implications. J Vertebr Paleontol 24(1):202–213CrossRefGoogle Scholar
  11. Lawing AM, Polly PD (2010) Geometric morphometrics: recent applications to the study of evolution and development. J Zool 280:1–7Google Scholar
  12. Lebrun R (2008) Evolution and development of the strepsirrhine primate skull. Ph.D. Thesis, Université Montpellier II and University Zürich IrchelGoogle Scholar
  13. Lebrun R, Ponce de León MS, Tafforeau P, Zollikofer CPE (2010) Deep evolutionary roots of strepsirrhine primate labyrinthine morphology. J Anat 216:368–380CrossRefPubMedGoogle Scholar
  14. Lindenlaub T, Burda H, Nevo E (1995) Convergent evolution of the vestibular organ in the subterranean mole-rats, Cryptomys and Spalax, as compared with the aboveground rat, Rattus. J Morph 224:303–311CrossRefPubMedGoogle Scholar
  15. Manoussaki D, Chadwick RS, Ketten DR, Arruda J, Dimitriadis EK, O’Malle JT (2008) The influence of cochlear shape on low-frequency hearing. Proc Natl Acad Sci USA 105(16):6162–6166CrossRefPubMedGoogle Scholar
  16. McVean A (1999) Are the semicircular canals of the European mole, Talpa europaea, adapted to a subterranean habitat? Comp Biochem Physiol A 123:173–178CrossRefGoogle Scholar
  17. Meredith RW, Westerman M, Springer MS (2009) A phylogeny of Diprotodontia (Marsupialia) based on sequences for five nuclear genes. Mol Phylogenet Evol 51:554–571CrossRefPubMedGoogle Scholar
  18. Muller M (2000) Biomechanical aspects of the evolution of semicircular duct systems. Netherlands J Zool 50(2):279–288Google Scholar
  19. Munson CJ (1992) Postcranial descriptions of Ilaria and Ngapakaldia (Vombatiformes, Marsupialia) and the phylogeny of the vombatiforms based on postcranial morphology. Univ Calif Publ Zool 125:1–99Google Scholar
  20. Murray P, Wells RT, Plane M (1897) The cranium of the Miocene thylacoleonid, Wakaleo vanderleuri: click go the shears–a fresh bite at thylacoleonid systematics. In: Archer M (ed) Possums and Opossums: Studies in Evolution. Surrey Beatty and Sons and the Royal Zoological Society of New South Wales, Sydney, pp 433–466Google Scholar
  21. Price GJ (2008) Taxonomy and palaeobiology of the largest-ever marsupial, Diprotodon Owen, 1838 (Diprotodontidae, Marsupiala). Zool J Linn Soc 153:369–397CrossRefGoogle Scholar
  22. Price GJ, Piper KJ (2009) Gigantism of the Australian Diprotodon Owen 1838 (Marsupiala, Diprotodontoidea) through the Pleistocene. J Quaternary Sci 24(8):1029–1038CrossRefGoogle Scholar
  23. Rohlf FJ (1990) Rotational fit (Procrustes) method. In: Rohlf FJ, Bookstein FL (eds) Proceedings of the Michigan Morphometrics Workshop. The University of Michigan Museum of Zoology, Ann Arbor, pp 227–236Google Scholar
  24. Rook L, Bondioli L, Casali F, Rossi M, Köhler M, Moyà-Solà S, Macchiarelli R (2004) The bony labyrinth of Oreopithecus bambolii. J Hum Evol 46:349–356CrossRefPubMedGoogle Scholar
  25. Ryan TM, Silcox MT, Walker A, Mao X, Begun DR, Benefit BR, Gingerich PD, Köhler M, Kordos M, Kordos L, Mc Crossin ML, Moyà-Solà S, Sanders WJ, Seiffert ER, Simons EL, Zalmout IS, Spoor F (2012) Evolution of locomotion in Anthropoidea: the semicircular canal evidence. Proc R Soc Lond B 279(1742):3467–3475CrossRefGoogle Scholar
  26. Sánchez-Villagra MR, Aguilera O, Horovitz I (2003) The anatomy of the world’s largest extinct rodent. Science 301:1708–1710Google Scholar
  27. Sánchez-Villagra MR, Ladevèze S, Horovitz I, Argot C, Hooker JJ, Macrini TE, Martin T, Moore-Fay S, Muizon C de, Schmelzle T, Asher RJ (2007) Exceptionally preserved North American Paleogene metatherians: adaptations and discovery of a major gap in the opossum fossil record. Biology Letters. doi: 10.1098/rsbl.2007.0090
  28. Sánchez-Villagra MR, Schmelzle T (2007) Anatomy and development of the bony inner ear in the woolly opossum, Caluromys philander (Didelphimorphia, Marsupialia). Mastozoologia Neotropical 14(1):53–60Google Scholar
  29. Schmelzle T, Sánchez-Villagra MR, Maier W (2007) Vestibular labyrinth diversity in diprotodontian marsupial mammals. Mammal Study 32:83–97CrossRefGoogle Scholar
  30. Schwarz DWF, Tomlinson RD (1994) Physiology of the vestibular system. In: Jackler RK, Brackmann DE (eds) Neurotology. Mosby, St Louis, pp 59–98Google Scholar
  31. Silcox MT, Bloch JI, Boyer DM, Godinot M, Ryan TM, Spoor F, Walker A (2009) The semicircular canal system in early primates and euprimates. J Hum Evol 56:315–327CrossRefPubMedGoogle Scholar
  32. Specht M (2007) Spherical surface parameterization and its application to geometric morphometric analysis of the braincase. Ph.D. Thesis, University of Zürich Irchel, ZürichGoogle Scholar
  33. Specht M, Lebrun R, Zollikofer CPE (2007) Visualizing shape transformation between chimpanzee and human braincases. Visual Computer 23(9–11):743–751CrossRefGoogle Scholar
  34. Spoor F (2003) The semicircular canal system and locomotor behaviour, with special reference to hominin evolution. Cour Forschungsinst Senckenberg 243:93–104Google Scholar
  35. Spoor F, Bajpai S, Hussain ST, Kumar K, Thewissen JGM (2002) Vestibular evidence for the evolution of aquatic behaviour in early cetaceans. Nature 417:163–166CrossRefPubMedGoogle Scholar
  36. Spoor F, Garland TJR, Krovitz G, Ryan TM, Silcox MT, Walker A (2007) The primate semicircular canal system and locomotion. Proc Natl Acad Sci USA 104(26):10808–10812CrossRefPubMedGoogle Scholar
  37. Spoor F, Jeffery N, Zonneveld F (2000) Using diagnostic radiology in human evolutionary studies. J Anat 197:61–76CrossRefPubMedGoogle Scholar
  38. Spoor F, Wood B, Zonneveld F (1994) Implications of early hominid labyrinthine morphology for evolution of human bipedal locomotion. Nature 369(6482):645–643CrossRefPubMedGoogle Scholar
  39. Spoor F, Zonneveld F (1995) Morphometry of the primate bony labyrinth: a new method based on high-resolution computed tomography. J Anat 186:271–286PubMedGoogle Scholar
  40. Spoor F, Zonneveld F (1998) Comparative review of the human bony labyrinth. Am J Phys Anthropol Suppl 27:211–251CrossRefGoogle Scholar
  41. Szalay FS (1994) Evolutionary History of the Marsupials and an Analysis of Osteological Characters. Cambridge University Press, New YorkGoogle Scholar
  42. Ulfendahl M (1997) Mechanical responses of the mammalian cochlea. Prog Neurobiol 53:331–380CrossRefPubMedGoogle Scholar
  43. Walker A, Ryan TM, Silcox MT, Simons EL, Spoor F (2008) The semicircular canal system and locomotion: the case of extinct lemuroids and lorisoids. Evol Anthropol 17:135–145CrossRefGoogle Scholar
  44. Wroe S, Argot C, Dickman C (2004a) On the rarity of big fierce carnivores and primacy of isolation and area: tracking large mammalian carnivore diversity on two isolated continents. Proc R Soc Lond B 271:1203–1211CrossRefGoogle Scholar
  45. Wroe S, Crowther M, Dortch J, Chong J (2004b) The size of the largest marsupial and why it matters. Proc R Soc Lond B 271:S34-S36CrossRefGoogle Scholar
  46. Wroe S, McHenry C, Thomason J (2005) Bite club: comparative bite force in big biting mammals and the prediction of predatory behaviour in fossil taxa. Proc R Soc Lond B 272:619–625CrossRefGoogle Scholar
  47. Wroe S, Myers TJ, Wells RT, Gillespie A (1999) Estimating the weight of the Pleistocene marsupial lion, Thylacoleo carnifex (Thylacoleonidae: Marsupialia): implications for the ecomorphology of a marsupial super-predator and hypotheses of impoverishment of Australian marsupial carnivore faunas. Aust J Zool 47(5):489–498CrossRefGoogle Scholar
  48. Yang A, Hullart TE (2007) Relationship of semicircular canal size to vestibular-nerve afferent sensitivity in mammals. J Neurophysiol 98:3197–3205CrossRefPubMedGoogle Scholar
  49. Zelditch M, Swiderski D, Sheets D, Fink W (2004) Ordination methods. In: Zelditch M, Swiderski D, Sheets D, Fink W (eds). Geometric Morphometrics For Biologists: A Primer. Elsevier Academic Press, New York and London, pp 178–179Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Léanie Alloing-Séguier
    • 1
  • Marcelo R. Sánchez-Villagra
    • 2
  • Michael S. Y. Lee
    • 3
  • Renaud Lebrun
    • 1
  1. 1.Université Montpellier 2Institut des Sciences de l’Evolution (UMR-CNRS 5554)Montpellier Cedex 05France
  2. 2.Palaeontologisches Institut und MuseumZürichSwitzerland
  3. 3.Earth Sciences Section, South Australian MuseumAdelaideAustralia

Personalised recommendations