Journal of Mammalian Evolution

, Volume 20, Issue 3, pp 239–248 | Cite as

Evolutionary Divergence and Convergence in Shape and Size Within African Antelope Proximal Phalanges

  • Julien Louys
  • Shaena Montanari
  • Thomas Plummer
  • Fritz Hertel
  • Laura C. Bishop
Original Paper

Abstract

Morphological convergence amongst species inhabiting similar environments but having different evolutionary histories is a concept central to evolutionary biology. Cases of divergent evolution, where there is morphological divergence between closely related species exploiting different environments, are less well studied. Here we show divergent evolution in the morphology of the proximal phalanges of several closely related African antelope species inhabiting different environments. This morphological divergence was consistently observed in both a neutral morphospace and an externally ordinated morphospace. Divergence, but not convergence, was also observed when size and shape were considered independently. Finally, convergent evolution of the morphology of the proximal phalanges was observed, but only in the externally ordinated morphospace. Size shows less correlation with phylogeny than does shape. Therefore, we suggest that divergence in size will occur more readily when a species encounters new environmental conditions than divergence in shape. These findings are compatible with observations of rapid dwarfing on islands (Foster’s rule).

Keywords

Ecomorphology Phalanges Convergent evolution Divergent evolution 

Notes

Acknowledgments

We thank E. Westwig (AMNH), L. Gordon (NMNH), and the NHML for their curatorial assistance; JL and LCB acknowledge the support of The Leverhulme Trust (FC00754C); TP acknowledges support from the Professional Staff Congress-City University of New York Research Award Program; FH acknowledges the CSUN Office of Research and Sponsored Projects.

Supplementary material

10914_2012_9211_MOESM1_ESM.xlsx (25 kb)
Supplementary information (XLSX 24 kb)

References

  1. Almécija S, Alba DM, Moyà-Solà S (2009) Pierolapithecus and the functional morphology of Miocene ape hand phalanges: paleobiological and evolutionary implications. J Hum Evol 57: 284–297CrossRefPubMedGoogle Scholar
  2. Almécija S, Moyà-Solà S, Alba DM (2010) Early origin for human-like precision grasping: a comparative study of pollical distal phalanges in fossil hominins. PLoS ONE 5(7): e11727 (doi: 10.1371/journal.pone.0011727)CrossRefPubMedGoogle Scholar
  3. Almécija S, Alba DM, Moyà-Solà S (2012) The thumb of Miocene apes: new insights from Castell de Barberà (Catalonia, Spain). Am J Phys Anthropol. doi: 10.1002/ajpa.22071
  4. Bishop LC, Plummer TW, Hertel F, Kovarovic K (2011) Paleoenvironments of Laetoli, Tanzania as determined by antelope habitat preferences. In: Harrison T (ed) Paleontology and Geology of Laetoli: Human Evolution in Context. Springer, Dordrecht, pp 355–366CrossRefGoogle Scholar
  5. Brashares JS, Garland T, Arcese P (2000) Phylogenetic analysis of coadaptation in behavior, diet, and body size in the African antelope. Behav Ecol 11:452–463CrossRefGoogle Scholar
  6. Bro-Jørgensen J (2008) Dense habitat selecting for small body size: a comparative study on bovids. Oikos 117: 729–737CrossRefGoogle Scholar
  7. Congdon KA (2012) Interspecific and ontogenetic variation in proximal pedal phalangeal curvature of great apes (Gorilla gorilla, Pan troglodytes and Pongo pygmaeus) Int J Primatol 33:418–427CrossRefGoogle Scholar
  8. Damuth J, MacFadden BJ (1990) Body Size in Mammalian Paleobiology. Cambridge University Press, CambridgeGoogle Scholar
  9. Deane AS, Begun DR (2008) Broken fingers: retesting locomotor hypotheses for fossil hominoids using fragmentary proximal phalanges and high-resolution polynomial curve fitting (HR-PCF). J Hum Evol 55:691–701CrossRefPubMedGoogle Scholar
  10. DeGusta D, Vrba E (2003) A method for inferring paleohabitats from the functional morphology of bovid astragali. J Archaeol Sci 30:1009–1022CrossRefGoogle Scholar
  11. DeGusta D, Vrba E (2005) Methods for inferring paleohabitats from the functional morphology of bovid phalanges. J Archaeol Sci 32:1099–1113. doi: 10.1016/j.jas.2005.02.010 CrossRefGoogle Scholar
  12. Dorst J, Dandelot P (1986) A Field Guide to Larger Mammals of Africa. Collins, LondonGoogle Scholar
  13. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–97. doi: 10.1093/nar/gkh340 CrossRefPubMedGoogle Scholar
  14. Evans AR, Jones D, Boyer AG, Brown JH, Costa DP, Morgan Ernest SK, Fitzgerald EMG, Fortelius M, Gittleman JL, Hamilton MJ, Harding LE, Lintulaakso K, Lyons SK, Okie JG, Saarinen JJ, Sibly RM, Smith FA, Stephens PR, Theodor JM, Uhen MD (2012) The maximum rate of mammal evolution. Proc Nat Acad Sci USA. doi: 10.1073/pnas.1120774109
  15. Foster JB (1964) Evolution of mammals on islands. Nature 202: 234–235. doi: 10.1038/202234a0 CrossRefGoogle Scholar
  16. Gagnon M, Chew AE (2000) Dietary preferences in extant African bovidae. J Mammal 81:490–511CrossRefGoogle Scholar
  17. Gatesy J, Amato G, Vrba E, Schaller G, DeSalle R (1997) A cladistic analysis of mitochondrial ribosomal DNA from the Bovidae. Mol Phylogenet Evol 7:303–319. doi: 10.1006/mpev.1997.0402 CrossRefPubMedGoogle Scholar
  18. Gentry AW (1970) The Bovidae (Mammalia) of the Fort Ternan fossil fauna. In: Leakey LSB, Savage RJG (eds) Fossil Vertebrates of Africa, vol. 2. Academic Press, London, pp 243–323Google Scholar
  19. Goloboff PA, Farris JS, Nixon KN (2008) TNT, a free program for phylogenetic analysis. Cladistics 24:774–786. doi: 10.1111/j.1096-0031.2008.00217.x CrossRefGoogle Scholar
  20. Griffin NL, Richmond BG (2010) Joint orientation and function in great ape and human proximal pedal phalanges. Am J Phys Anthropol 141:116–123PubMedGoogle Scholar
  21. Hamrick MW (2001) Development and evolution of the mammalian limb: adaptive diversification of nails, hooves and claws. Evol Dev 3:355–363CrossRefPubMedGoogle Scholar
  22. Hassanin A, Ropiquet A (2004) Molecular phylogeny of the tribe Bovini (Bovidae, Bovinae) and the taxonomic status of the Kouprey, Bos sauveli Urbain 1937. Mol Phylogenet Evol 33:896–907CrossRefPubMedGoogle Scholar
  23. Hertel F (1994) Diversity in body size and feeding morphology within past and present vulture assemblages. Ecology 75:1074–1084. doi: 10.2307/1939431 CrossRefGoogle Scholar
  24. Hildebrand M, Goslow T (2001) Analysis of Vertebrate Structure, 5th edn. John Wiley and Sons, New YorkGoogle Scholar
  25. Kappelman J (1988) Morphology and locomotor adaptations of the bovid femur in relation to habitat. J Morphol 198: 119–130. doi: 10.1002/jmor.1051980111 CrossRefPubMedGoogle Scholar
  26. Kappelman J (1991) The paleoenvironment of Kenyapithecus at Fort Ternan. J Hum Evol 20:95–129. doi: 10.1016/0047-2484(91)90053-X CrossRefGoogle Scholar
  27. Kappelman J, Plummer TW, Bishop LC, Duncan A, Appleton S (1997) Bovids as indicators of Plio-Pleistocene paleoenvironments of East Africa. J Hum Evol 32: 95–129. doi: 10.1006/jhev.1996.0105 CrossRefGoogle Scholar
  28. Kent GC, Miller L (1997) Comparative Anatomy of the Vertebrates, 8th edn. Wm. C. Brown Publishers, Dubuque, IAGoogle Scholar
  29. Kingdon J (1997) The Kingdon Guide to African Mammals. Academic Press, San DiegoGoogle Scholar
  30. Kivell TL, Kibli JM, Churchill SE, Schmid P, Berger LR (2011) Australopithecus sediba hand demonstrates mosaic evolution of locomotor and manipulative abilities. Science 333:1411–1417CrossRefPubMedGoogle Scholar
  31. Klein RG, Fransiscus RG, Steele TE (2010) Morphometric identification of bovid metapodials to genus and implications for taxon-free habitat reconstruction. J Archaeol Sci 37:389–401. doi: 10.1016/j.jas.2009.10.001 CrossRefGoogle Scholar
  32. Kovarovic KM, Andrews P (2007) Bovid postcranial ecomorphological survey of the Laetoli paleoenvironment. J Hum Evol 52:663–690CrossRefPubMedGoogle Scholar
  33. Kovarovic K, Aiello LC, Cardini A, Lockwood CA (2011) Discriminant functions analyses in archaeology: are classification rates too good to be true? J Archaeol Sci 38:3006–3018CrossRefGoogle Scholar
  34. Macleod N, Rose KD (1993) Inferring locomotor behavior in Paleogene mammals via eignenshape analysis. Am J Sci 293:300–355CrossRefGoogle Scholar
  35. Millien V, Damuth J (2004) Climate change and size evolution in an island rodent species: new perspectives on the island rule. Evolution 58:1353–1360. doi: 10.1111/j.0014-3820.2004.tb01713.x PubMedGoogle Scholar
  36. Nelson E, Rolian C, Cashmore L, Shultz S (2011) Digit ratios predict polygyny in early apes, Ardipithecus, Neanderthals and early modern humans but not in Australopithecus. Proc R Soc B 278:1556–1563.CrossRefPubMedGoogle Scholar
  37. O’Keefe FR (2002) The evolution of plesiosaur and pliosaur morphotypes in the Plesiosauria (Reptilia: Sauropterygia). Paleobiology 28:101–112. doi: 10.1666/0094-8373 CrossRefGoogle Scholar
  38. Peters RH (1983) The Ecological Implications of Body Size. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  39. Plummer TW, Bishop LC (1994) Hominid paleoecology at Olduvai Gorge, Tanzania as indicated by antelope remains. J Hum Evol 29:321–362. doi: 10.1006/jhev.1994.1035 Google Scholar
  40. Plummer TW, Bishop LC, Hertel F (2008) Habitat preference of extant African bovids based on astragalus morphology: operationalizing ecomorphology for palaeoenvironmental reconstruction. J Archaeol Sci 35:3016–3027. doi: 10.1016/j.jas.2008.06.015 CrossRefGoogle Scholar
  41. Pough FH, Janis CM, Heiser JB (2008) Vertebrate Life, 8th edn. Benjamin Cummings, NYGoogle Scholar
  42. Rolian C, Lieberman DE, Hamill J, Scott JW, Werbel W (2009) Walking, running and the evolution of short toes in humans. J Experim Biol 212:713–721CrossRefGoogle Scholar
  43. Schluter D (2000) The Ecology of Adaptive Radiation. Oxford University Press, OxfordGoogle Scholar
  44. Schmidt-Nielson K (1984) Scaling: Why is Animal Size so Important? Cambridge University Press, CambridgeCrossRefGoogle Scholar
  45. Scott KM (1985) Allometric trends and locomotor adaptations in the Bovidae. Bull Am Mus Nat Hist 197:197–288Google Scholar
  46. Smith FA, Brown JH, Haskell JP, Lyons SK, Alroy J, Charnov EL, Dayan T, Enquist BJ, Ernest SKM, Hadly EA, Jones KE, Kaufman DM, Marquet PA, Maurer BA, Niklas KJ, Porter WP, Tiffney B, Willig MR (2004) Similarity of mammalian body size across the taxonomic hierarchy and across space and time. Am Nat 163:672–691. doi: 10.1086/382898 CrossRefPubMedGoogle Scholar
  47. Sondaar PY (1991) Island mammals of the past. Sci Progr 75: 249–264PubMedGoogle Scholar
  48. Stayton CT (2005) Morphological evolution of the lizard skull: a geometric morphometrics survey. J Morphol 263:47–59. doi: 10.1002/jmor.10288 CrossRefPubMedGoogle Scholar
  49. Stayton CT (2006) Testing hypotheses of convergence with multivariate data: morphological and functional convergence among herbivorous lizards. Evolution 60:824–841. doi: 10.1111/j.0014-3820.2006.tb01160.x PubMedGoogle Scholar
  50. van Aspen EN (2010) Ecomorphological adaptations to climate and substrate in late middle Pleistocene caballoid horses. Palaeogeogr Palaeoclimat Palaeoecol 297:584–596CrossRefGoogle Scholar
  51. Vrba ES (1980) The significance of bovid remains as indicators of environment and predation patterns. In: Beherensmeyer AK, Hill AP (eds) Fossils in the Making: Vertebrate Taphonomy and Paleoecology. University of Chicago Press, Chicago, pp 247–271Google Scholar
  52. Yom-Tov Y, Yom-Tov S, Moller H (1999) Competition, coexistence, and adaptation amongst rodent invaders to Pacific and New Zealand islands. J Biogeogr 26: 947–958. doi: 10.1046/j.1365-2699.1999.00338.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Julien Louys
    • 1
    • 2
  • Shaena Montanari
    • 3
  • Thomas Plummer
    • 4
  • Fritz Hertel
    • 5
  • Laura C. Bishop
    • 1
  1. 1.Research Centre in Evolutionary Anthropology and Palaeoecology, School of Natural Sciences and PsychologyLiverpool John Moores UniversityLiverpoolUK
  2. 2.School of Earth SciencesThe University of QueenslandSt. LuciaAustralia
  3. 3.Richard Gilder Graduate School, American Museum of Natural HistoryNew YorkUSA
  4. 4.Department of AnthropologyQueens College, CUNY and NYCEPFlushingUSA
  5. 5.Department of BiologyCalifornia State UniversityNorthridgeUSA

Personalised recommendations