Journal of Mammalian Evolution

, Volume 19, Issue 4, pp 235–248 | Cite as

First Amphilestid from South America: A Molariform from the Jurassic Cañadón Asfalto Formation, Patagonia, Argentina

Original Paper

Abstract

We report here the first amphilestid triconodont from the Jurassic of South America. The specimen, a single isolated molariform, was found at the Queso Rallado locality from where a growing mammalian fauna is known (including a triconodontid, two australosphenidans, and an as yet undescribed allotherian). The specimen, interpreted as a left lower tooth, presents five mesiodistally aligned, fairly symmetrical cusps, and is recognized as the type of a new taxon, Condorodon spanios. The phylogenetic analysis recovers Condorodon as a member of the clade Amphilestheria, closely related to Tendagurodon janenschi, an amphilestid triconodont from the Late Jurassic of Tanzania. Condorodon spanios is only distantly related to Argentoconodon fariasorum, the other triconodont known from Queso Rallado quarry. The phylogenetic position of Condorodon spanios points to the origin and diversification of amphilestherians during the Early Jurassic in a paleogeographical setting that allowed wide dispersion of these forms and argues, at least from the mammalian evidence, against a highly provincialized Pangaea. Some differences are however established between the filial western/eastern Gondwanan masses and their respective faunas.

Keywords

Amphilestid Triconodont Jurassic South America 

Notes

Acknowledgments

This project has been funded by NSF DEB 0946430, DEB 1068089 (to G.W.R.), Agencia de Promoción Científica y Tecnológica (PICT 2006–01756), CONICET (Beca de Postgrado de Tipo I and II to L.C.G.), and a DFG travel grant to L.C.G.

The Secretaría de Cultura del Chubut, the Museo Paleontológico “Egidio Feruglio”, the Escuela Rural No. 31, and the Farias family as well as many researchers, students, and technicians have been crucial for the success of our field work.

Leandro Canessa is deeply thanked for the quick and superb preparation of the specimen presented here and almost life-long field support.

Dr. Mancuso, Dr. F. Abdala, and Dr. D. Pol are thanked for valuable suggestions in early stages of this manuscript. The editor and the reviewers are thanked for their valuable comments and help.

Access to comparative material was allowed by Dr. D. Brinkman, Dr. M. Carrano, Dr. J. Cundiff, Dr. J. Hooker, Dr. P. Jeffery, Dr. F. Jenkins Jr., Dr. A. Kramarz, Dr. P. Makovicky, Dr. J. Meng, Dr. C. Norris, Dr. M. Richter, Dr. E. Ruigomez, and Dr. W. Simpson.

Version 1.1 of TNT was freely granted through the sponsorship of the Willi Henning Society.

This is LCG’s contribution R-55 of the Instituto de Estudios Andinos Don Pablo Groeber.

Supplementary material

10914_2012_9194_MOESM1_ESM.doc (5.3 mb)
ESM 1 (DOC 5416 kb)

References

  1. Arias JS (2010) VIP: Vicariance Inference Program. Program, code, and documentation available at http://www.zmuc.dk/public/phylogeny/vip. Accessed September 23, 2011
  2. Arias JS, Szumik CA, Goloboff PA (2011) Spatial analysis of vicariance: a method for using direct geographical information in historical biogeography. Cladistics 27: 1–12CrossRefGoogle Scholar
  3. Barrett PM, Hasegawa Y, Manabe M, Isaji S, Matsouka H (2002) Sauropod dinosaurs from the Lower Cretaceous of eastern Asia: taxonomic and biogeographical implications. Palaeontology 45: 1197–1217CrossRefGoogle Scholar
  4. Blainville HMD de (1838) Doutes sur le prétendu Didelphe de Stonesfield. CR Acad Sci 7: 402–418Google Scholar
  5. Cabaleri N, Volkheimer W, Silva Nieto D, Armella C, Cagnoni M, Hauser N, Matteini N, Pimentel MM (2010) U-Pb ages in zircons from Las Chacritas and Puesto Almada members of the Jurassic Cañadón Asfalto Formation, Chubut Province, Argentina. In: VII South American Symposium on Isotope Geology, Extended Abstracts; Brasilia, Brazil, 25–28 July 2010, pp 190–193Google Scholar
  6. Chow M, Rich TH (1984) A new triconodontan (Mammalia) from the Jurassic of China. J Vertebr Paleontol 4: 226–231CrossRefGoogle Scholar
  7. Cifelli RL, Lipka TR, Schaff CR, Rowe TB (1999) First Early Cretaceous mammal from the eastern seaboard of the United States. J Vertebr Paleontol 19: 199–203CrossRefGoogle Scholar
  8. Cifelli RL, Madsen SK (1998) Triconodont mammals from the medial Cretaceous of Utah. J Vertebr Paleontol 18: 403–411CrossRefGoogle Scholar
  9. Cifelli RL, Wible JR, Jenkins FA Jr (1998) Triconodont mammals from the Cloverly Formation (Lower Cretaceous), Montana and Wyoming. J Vertebr Paleontol 18: 237–241CrossRefGoogle Scholar
  10. Crompton AW (1964) A preliminary description of a new mammal from the Upper Triassic of South Africa. Proc R Soc Lond 142: 441–452Google Scholar
  11. Crompton AW, Jenkins FA Jr (1968) Molar occlusion in Late Triassic mammals. Biol Rev 43: 427–458PubMedCrossRefGoogle Scholar
  12. Cuneo R, Bowring S (2010) Dataciones geocronológicas preliminares en la Cuenca Cañadón Asfalto, Jurásico de Chubut, Argentina. Implicancias geológicas y paleontológicas. In: Actas X Congreso Argentino de Paleontología y Bioestratigrafía y VII Congreso Latinoamericano de Paleontología; La Plata, Argentina, 20–24 September 2010, p 153Google Scholar
  13. Doré AG (1991) The structural foundation and evolution of Mesozoic seaways between Europe and the Arctic. Palaeogeogr Palaeoclimatol Palaeoecol 87: 441–492CrossRefGoogle Scholar
  14. Dong Z-M (1992) Dinosaurs of China. China Ocean Press, Beijing, 188 ppGoogle Scholar
  15. DuToit AL (1937) Our Wandering Continents. Oliver and Boyd, EdinburghGoogle Scholar
  16. Engelmann GF, Callison, G (1998) Mammalian faunas of the Morrison Formation. Mod Geol 23: 343–379Google Scholar
  17. Ebach MC (2001) Extrapolating cladistic biogeography: a brief comment on van Veller et al. (1999, 2000, 2001). Cladistics 17: 383–388CrossRefGoogle Scholar
  18. Gaetano LC, Rougier GW (2011) New materials of Argentoconodon fariasorum (Mammaliaformes, Triconodontidae) from the Jurassic of Argentina and its bearing on triconodont phylogeny. J Vertebr Paleontol 31: 829–843CrossRefGoogle Scholar
  19. Gao C-L, Wilson GP, Luo Z-X, Murat Maga A, Meng Q, Wang X (2010) A new mammal skull from the Early Cretaceous of China with implications for the evolution of obtuse-angled molars and ‘amphilestid’ eutriconodonts. Proc R Soc Lond B Bio 276: 237–246CrossRefGoogle Scholar
  20. Godefroit P, Guo D-Y (1999) A new amphilestid mammal from the Early Cretaceous of China. Bull Inst R Sci Nat Belgique 69 (B suppl): 7–16Google Scholar
  21. Goloboff P, Farris J, Nixon K (2003) T.N.T.: Tree Analysis Using New Technology. Program and documentation available at www.zmuc.dk/public/phylogeny. Accessed August 26, 2009
  22. Goloboff P, Farris J, Nixon K (2008) TNT, a free program for phylogenetic analysis. Cladistics 24: 774–786CrossRefGoogle Scholar
  23. Golonka J, Bocharova NY (2000) Hot spot activity and the break-up of Pangea. Palaeogeogr Palaeoclimatol Palaeoecol 161: 49–69CrossRefGoogle Scholar
  24. Golonka J, Ross MI, Scotese CR (1994) Phanerozoic paleogeographic and paleoclimatic modeling maps. In: Embry AF, Beauchamp B, Glass DJ (eds) Pangea: Global Environments and Resources. Mem Can Soc Petrol Geol 17: 1–48Google Scholar
  25. Hawkesworth CJ, Gallagher K, Kelley S, Mantovani M, Peate DW, Regelous M, Rogers NW (1992) Paraná magmatism and the opening of the South Atlantic. In: Storey BC, Alabaster T, Pankhurst RJ (eds.) Magmatism and the Causes of Continental Break-up. Geol Soc Lond Spec Publ 68: 221–240Google Scholar
  26. Heinrich W-D (1998) Late Jurassic mammals from Tendaguru, Tanzania, East Africa. J Mammal Evol 5: 269–290CrossRefGoogle Scholar
  27. Hooker JJ, Lawson AG (2011) An ‘eutriconodontan’ mammal from the UK Cenomanian (Late Cretaceous). Spec Pap Palaeontol 86: 255–261Google Scholar
  28. Hovenkamp P (1997) Vicariance events, not areas, should be used in biogeographical analysis. Cladistics 13: 67–79CrossRefGoogle Scholar
  29. Hovenkamp P (2001) A direct method for the analysis of vicariance patterns. Cladistics 17: 260–265CrossRefGoogle Scholar
  30. Hu Y, Meng J, Wang Y-Q, Li C (2005) Large Mesozoic mammals fed on young dinosaurs. Nature 433: 149–152PubMedCrossRefGoogle Scholar
  31. Hu Y-M, Wang Y-Q, Luo Z-X, Li C-K (1997) A new symmetrodont mammal from China and its implications for mammalian evolution. Nature 390: 137–142PubMedCrossRefGoogle Scholar
  32. Hunn CA, Upchurch P (2001) The importance of time/space in diagnosing the causality of phylogenetic events: towards a ‘chronobiogeographical’ paradigm? Syst Biol 50: 1–17Google Scholar
  33. Jenkins FA Jr, Schaff CR (1988) The Early Cretaceous mammal Gobiconodon (Mammalia, Triconodonta) from the Cloverly Formation in Montana. J Vertebr Paleontol 8: 1–24CrossRefGoogle Scholar
  34. Ji Q, Luo Z-X, Ji S-A (1999) A Chinese triconodont mammal and mosaic evolution of mammalian skeleton. Nature 398: 326–330PubMedCrossRefGoogle Scholar
  35. Kermack DM, Kermack KA, Mussett F (1968) The Welsh pantothere Kuehneotherium praecursoris. J Linn Soc Zool 47: 407–423CrossRefGoogle Scholar
  36. Kermack KA, Mussett F, Rigney HW (1973) The lower jaw of Morganucodon. Zool J Linn Soc 53: 87–175CrossRefGoogle Scholar
  37. Kent RW (1991) Lithospheric uplift in eastern Gondwana: evidence for a long-lived mantle plume system? Geology 19: 19–23CrossRefGoogle Scholar
  38. Kielan-Jaworowska Z, Cifelli RL, Luo Z-X (2004) Mammals from the Age of Dinosaurs. Origins, Evolution, and Structure. Columbia University Press, New YorkGoogle Scholar
  39. Kielan-Jaworowska Z, Dashzeveg D (1998) Early Cretaceous amphilestid (“triconodont”) mammals from Mongolia. Acta Palaeontol Pol 43: 413–438Google Scholar
  40. Kretzoi M, Kretzoi M (2000) Fossilium Catalogus 1: Animalia Pars 137—Index Generum et Subgenerum Mammalium. Backhuys Publishers, LeidenGoogle Scholar
  41. Kühne WG (1949) On a triconodont tooth of a new pattern from a fissure-filling in South Glamorgan. Proc R Soc Lond 119: 345–350Google Scholar
  42. Kusuhashi N, Hu Y, Wang Y, Hirasawa S, Matsuoka H (2009) New triconodontids (Mammalia) from the Lower Cretaceous Shahai and Fuxin formations, northeastern China. Geobios 42: 765–781CrossRefGoogle Scholar
  43. Lawver LA, Coffin MF, Gahagan LM (1992) The Mesozoic break-up of Gondwana. In: Plummer PS (ed) First Indian Ocean petroleum seminar, Proceedings of the Indian Ocean—First regional seminar on Petroleum Exploration, Seychelles, United Nations Department of Technical Co-operation for Development; 10–15 December 1990, pp 345–356Google Scholar
  44. Lawver LA, Gahagan LM (1993) Subduction zones, magmatism, and the break-up of Pangea. In: Stone D, Runcorn SK (eds) Flow and Creep in the Solar System, NATO meeting/NATO ASI series, vol 139. Kluwer Academic, pp 225–247Google Scholar
  45. Li J-L, Wang Y, Wang Y-Q, Li C-K (2000) A new family of primitive mammals from the Mesozoic of western Liaoning, China. Chinese Sci Bull 45: 2545–2549 [in Chinese]Google Scholar
  46. Lopatin AV, Maschenko EN, Averianov AO (2010) A new genus of triconodont mammals from the Early Cretaceous of western Siberia. Dokl Biol Sci 433: 282–285PubMedCrossRefGoogle Scholar
  47. Luo Z-X, Chen P, Li G, Chen M (2007) A new eutriconodont mammal and evolutionary development in early mammals. Nature 446: 288–293PubMedCrossRefGoogle Scholar
  48. Luo Z-X, Kielan-Jaworowska Z, Cifelli RL (2002) In quest for a phylogeny of Mesozoic mammals. Acta Palaeontol Pol 47: 1–78Google Scholar
  49. Marsh OC (1879) Additional remains of Jurassic mammals. Am J Sci 18: 215–216Google Scholar
  50. Marsh OC (1887) American Jurassic mammals. Am J Sci 33: 326–348Google Scholar
  51. Martin T, Averianov AO (2007) A previously unrecognized group of Middle Jurassic triconodontan mammals from Central Asia. Naturwissenschaften 94: 43–48PubMedCrossRefGoogle Scholar
  52. Martin T, Averianov AO (2010) Mammals from the Middle Jurassic Balabansai Formation of the Fergana Depression, Kyrgyzstan. J Vertebr Paleontol 30: 855–871CrossRefGoogle Scholar
  53. McKenna MC (1975) Toward a phylogenetic classification of the Mammalia. In: Luckett WP, Szalay FS (eds) Phylogeny of the Primates. Plenum Press, New York, pp 21–46CrossRefGoogle Scholar
  54. Meng J, Hu YM, Wang Y-Q, Li C-K (2005) A new triconodont (Mammalia) from the Early Cretaceous Yixian Formation of Liaoning, China. Vertebr PalAsia 43: 1–10. [in Chinese]Google Scholar
  55. Meng J, Hu Y-M, Wang Y, Wang X, Li, C (2006) A Mesozoic gliding mammal from northeastern China. Nature 444: 889–893PubMedCrossRefGoogle Scholar
  56. Meng J, Wang Y, Li C (2011) Transitional mammalian middle ear from a new Cretaceous Jehol eutriconodont. Nature 472: 181–185PubMedCrossRefGoogle Scholar
  57. Mills JRE (1971) The dentition of Morganucodon. In: Kermack DM, Kermack KA (eds) Early Mammals. Zool J Linn Soc 50 suppl 1: 29–63Google Scholar
  58. Milner AR, Norman DB (1984) The biogeography of advanced ornithopod dinosaurs (Archosauria: Ornithischia)—a cladistic-vicariance model. In: Reif W-E, Westphal F (eds) Third Symposium on Mesozoic Terrestrial; Ecosystems, Short Papers. Attempto Verlag, Tubingen, pp 145–150Google Scholar
  59. Montellano M, Hopson JA, Clark, JM (2008) Late Early Jurassic mammaliaforms from Huizachal Canyon, Tamaulipas, Mexico. J Vertebr Paleontol 28: 1130–1143CrossRefGoogle Scholar
  60. Nürnberger D, Müller RD (1991) The tectonic evolution of the South Atlantic from Late Jurassic to present. Tectonophysics 191: 27–53CrossRefGoogle Scholar
  61. Owen R (1838) On the jaws of the Thylacotherium prevostii (Valenciennes) from Stonesfield. Proc Geol Soc Lond 3: 5–9Google Scholar
  62. Owen R (1854) On some fossil reptilian and mammalian remains from the Purbecks. Q J Geol Soc Lond 10: 420–433.CrossRefGoogle Scholar
  63. Owen R (1859) Palaeontology. Encyclopaedia Britannica 8th Edition, vol 17. Adam and Black, Edinburgh, pp 91–176Google Scholar
  64. Owen R (1871) Monograph of the fossil Mammalia of the Mesozoic formations. Monogr Palaeontol Soc 33: 1–115Google Scholar
  65. Page RDM (1988) Quantitative cladistic biogeography: constructing and comparing area cladograms. Syst Zool 37: 254–270CrossRefGoogle Scholar
  66. Page RDM (1993) Genes, organisms, and areas: the problem of multiple lineages. Syst Biol 42: 77–84Google Scholar
  67. Page RDM (1994a) Maps between trees and cladistic analysis of historical associations among genes, organisms, and areas. Syst Biol 43: 58–77Google Scholar
  68. Page RDM (1994b) Parallel phylogenies: reconstructing the history of host–parasite assemblages. Cladistics 10: 155–173CrossRefGoogle Scholar
  69. Page RDM (1995) TREEMAP for Windows, v. 1.0a. Program and documentation available at http://taxonomy.zoology.gla.ac.uk/rod/treemap.html. Accessed May 23, 2011
  70. Patterson B (1951) Early Cretaceous mammals from northern Texas. Am J Sci 249: 31–46CrossRefGoogle Scholar
  71. Prasad GVR, Manhas BK (1997) A new symmetrodont mammal from the Lower Jurassic Kota Formation, Pranhita-Godavari Valley, India. Géobios 30: 563–572CrossRefGoogle Scholar
  72. Prasad GVR, Manhas BK (2002) Triconodont mammals from the Jurassic Kota Formation of India. Geodiversitas 24: 445–464Google Scholar
  73. Prothero DR (1981) New Jurassic mammals from Como Bluff, Wyoming, and the interrelationships of non-tribosphenic Theria. Bull Am Mus Nat Hist 167: 277–326Google Scholar
  74. Rauhut OWM, Martin T, Ortiz-Jaureguizar E, Puerta P (2002) A Jurassic mammal from South America. Nature 416: 165–168PubMedCrossRefGoogle Scholar
  75. Ricou L-E (1996) The plate tectonic history of the past Tethys Ocean. In: Nairn AEM, Ricou L-E, Vrielynck B, Dercourt J (eds) The Tethys Ocean. The Oceans Basins and Margins Vol. 8. Plenum Press, New York, pp 3–70Google Scholar
  76. Rougier GW, Garrido A, Gaetano LC, Puerta P, Corbitt C, Novacek MJ (2007c) First Jurassic triconodont from South America. Am Mus Novitates 3580: 1–17CrossRefGoogle Scholar
  77. Rougier GW, Isaji S, Manabe M (2007a) An Early Cretaceous mammal from the Kuwajima Formation (Tetori Group), Japan, and a reassessment of triconodont phylogeny. Ann Carnegie Mus 70: 73–115CrossRefGoogle Scholar
  78. Rougier GW, Martinelli AG, Forasiepi AM, Novacek, MJ (2007b) New Jurassic mammals from Patagonia, Argentina: a reappraisal of australosphenidan morphology and interrelationships. Am Mus Novitates 3566: 1–54CrossRefGoogle Scholar
  79. Rougier GW, Novacek MJ, Dashzeveg D (1997) A new multituberculate from the Late Cretaceous locality Ukhaa Tolgod, Mongolia. Considerations on multituberculate relationships. Am Mus Novitates 3193: 1–26Google Scholar
  80. Rougier, GW, Novacek MJ, McKenna MC, Wible JR (2001) Gobiconodonts from the Early Cretaceous of Oshih (Ashile), Mongolia. Am Mus Novitates 3348: 1–30CrossRefGoogle Scholar
  81. Royer J-Y, Sandwell DT (1989) Evolution of the eastern Indian Ocean since the Late Cretaceous: constraints from GEOSAT altimetry. J Geophys Res 94: 13755–13782CrossRefGoogle Scholar
  82. Rowe TB (1988) Definition, diagnosis, and origin of Mammalia. J Vertebr Paleontol 8: 241–264CrossRefGoogle Scholar
  83. Russell DA (1993) The role of Central Asia in dinosaurian biogeography. Can J Earth Sci 30: 2002–2012CrossRefGoogle Scholar
  84. Russell DA (1995) China and the lost worlds of the dinosaurian era. Hist Biol 10: 3–12CrossRefGoogle Scholar
  85. Russell DA, Zheng Z (1993) A large mamenchisaurid from the Junggar Basin, Xinjiang, People’s Republic of China. Can J Earth Sci 30: 2082–2095CrossRefGoogle Scholar
  86. Scotese CR (2008) A continental drift flipbook. J Geol 112: 729–741CrossRefGoogle Scholar
  87. Sigogneau-Russell D (1983) A new therian mammal from the Rhaetic locality of Saint-Nicolas-de-Port (France). Zool J Linn Soc- 78: 175–186CrossRefGoogle Scholar
  88. Sigogneau-Russell D (1995) Two possibly aquatic triconodont mammals from the Early Cretaceous of Morocco. Acta Palaeontol Pol 40: 149–162Google Scholar
  89. Sigogneau-Russell D (2003) Diversity of triconodont mammals from the Early Cretaceous of North Africa—affinities of the amphilestids. Palaeovertebrata 32: 27–55Google Scholar
  90. Simpson GG (1925a) Mesozoic Mammalia. I. American triconodonts, part 1. Am J Sci 10: 145–165CrossRefGoogle Scholar
  91. Simpson GG (1925b) Mesozoic Mammalia. I. American triconodonts: part 2. Am J Sci 10: 334–358CrossRefGoogle Scholar
  92. Simpson GG (1925c) Mesozoic Mammalia. II. Tinodon and its allies. Am J Sci 10: 451–470CrossRefGoogle Scholar
  93. Simpson GG (1928) A Catalogue of the Mesozoic Mammalia in the Geological Department of the British Museum. Trustees of the British Museum, London, 215 ppGoogle Scholar
  94. Simpson GG (1929) American Mesozoic Mammalia. Mem Peabody Mus Yale Univ 3: 1–235Google Scholar
  95. Trofimov BA (1978) The first triconodonts (Mammalia, Triconodonta) from Mongolia. Dokl Akad Nauk SSSR 243: 213–216 [in Russian]Google Scholar
  96. Upchurch P (1995) Evolutionary history of sauropod dinosaurs. Philos Trans R Soc B 349: 365–390CrossRefGoogle Scholar
  97. Upchurch P, Hunn CA, Norman DB (2002) An analysis of dinosaurian biogeography: evidence for the existence of vicariance and dispersal patterns caused by geological events. Proc R Soc Lond B 269: 613–621CrossRefGoogle Scholar
  98. Van Veller MGP, Kornet DJ, Zandee M (2002) A posteriori and a priori methodologies for testing hypotheses of causal processes in vicariance biogeography. Cladistics 18: 207–217CrossRefGoogle Scholar
  99. Van Veller MGP, Zandee M, Kornet DJ (1999) Two requirements for obtaining valid common patterns under different assumptions in vicariance biogeography. Cladistics 15: 393–406CrossRefGoogle Scholar
  100. Van Veller MGP, Zandee M, Kornet DJ (2000) Methods in vicariance biogeography: Assessment of the implementations of assumptions 0, 1 and 2. Cladistics 16: 319–345CrossRefGoogle Scholar
  101. Van Veller MGP, Zandee M, Kornet DJ (2001) Measures for obtaining inclusive solution sets under assumptions zero, 1 and 2 with different methods for vicariance biogeography. Cladistics 17: 248–259CrossRefGoogle Scholar
  102. Wilson JA, Upchurch P (2010) Redescription and reassessment of the phylogenetic affinities of Euhelopus zdanskyi (Dinosauria: Sauropoda) from the Early Cretaceous of China. Palaeontology 7: 199–239Google Scholar
  103. Wilson M (1992) Magmatism and continental rifting during the opening of the South Atlantic Ocean: a consequence of Lower Cretaceous super-plume activity? In: Storey BC, Alabaster T, Pankhurst RJ (eds) Magmatism and the Causes of Continental Break-up. Geol Soc Lond Spec Publ 68: 241–155Google Scholar
  104. Zhou M-Z, Cheng Z-W, Wang Y-Q (1991) A mammalian lower jaw from the Jurassic of Lingyuan, Liaoning. Vertebr PalAsia 29: 165–175Google Scholar
  105. Ziegler PA (1988) Evolution of the Arctic-North Atlantic and the western Tethys. Am Assoc Petrol Geol Mem 43: 198 pp, 30 platesGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.IDEAN, Departamento de Ciencias Geológicas, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresCiudad Autónoma de Buenos AiresArgentina
  2. 2.Department of Anatomical Sciences and NeurobiologyUniversity of LouisvilleLouisvilleUSA

Personalised recommendations