Journal of Mammalian Evolution

, Volume 19, Issue 1, pp 1–8 | Cite as

Evolutionary Implications of Dental Eruption in Dasypus (Xenarthra)

  • Martin R. CiancioEmail author
  • Mariela C. Castro
  • Fernando C. Galliari
  • Alfredo A. Carlini
  • Robert J. AsherEmail author
Original Paper


Late eruption of the permanent dentition was recently proposed as a shared anatomical feature of endemic African mammals (Afrotheria), with anecdotal reports indicating that it is also present in dasypodids (armadillos). In order to clarify this question, and address the possiblity that late eruption is shared by afrotherians and dasypodids, we quantified the eruption of permanent teeth in Dasypus, focusing on growth series of D. hybridus and D. novemcinctus. This genus is the only known xenarthran that retains two functional generations of teeth. Its adult dentition typically consists of eight upper and eight lower ever-growing (or euhypsodont) molariforms, with no premaxillary teeth. All but the posterior-most tooth are replaced, consistent with the identification of a single molar locus in each series. Comparison of dental replacement and skull metrics reveals that most specimens reach adult size with none or few erupted permanent teeth. This pattern of growth occurring prior to the full eruption of the dentition is similar to that observed in most afrotherians. The condition observed in Dasypus and many afrotherians differs from that of most other mammals, in which the permanent dentition erupts during (not after) growth, and is complete at or near the attainment of sexual maturity and adult body size. The suture closure sequence of basicranial and postcranial epiphyses does not correlate well with dental eruption. The basal phylogenetic position of the taxon within dasypodids suggests that diphyodonty and late dental replacement represent the condition of early xenarthrans. Additionally, the inferred reduction in the number of molars to a single locus and the multiplication of premolars represent rare features for any living mammal, but may represent apomorphic characters for Dasypus.


Dasypus Teeth Dentition Replacement Atlantogenata Eruption 



We thank the following persons for access to collections under their care: Drs. Diego Verzi and Itati Olivares (MLP, La Plata, Buenos Aires); Drs. Francisco Prevosti and Sergio Flores (MACN, Buenos Aires). We wish to express our gratitude to two anonymous reviewers and to the editor, Dr. John Wible, for their thorough reviews and helpful suggestions.

This work was funded by grant FCNYM N-593 (to AAC) and the Leverhulme Trust (to RJA).


  1. Agnolin FL, Chimento NR (2011) Afrotherian affinities for endemic South American “ungulates.” Mammal Biol 76:101–108 doi: 10.1016/j.mambio.2010.12.001 Google Scholar
  2. Asher RJ, Bennett N, Lehmann T (2009) The new framework for understanding placental mammal evolution. BioEssays 31:853–864PubMedCrossRefGoogle Scholar
  3. Asher RJ, Lehmann T (2008) Dental eruption in afrotherian mammals. BMC Biol 6:14PubMedCrossRefGoogle Scholar
  4. Asher RJ, Olbricht G (2009) Dental ontogeny in Macroscelides proboscideus (Afrotheria) and Erinaceus europaeus (Lipotyphla). J Mammal Evol 16:99–115CrossRefGoogle Scholar
  5. Ballowitz E (1892) Das Schmelzorgan der Edentaten, seine Ausbildung im Embryo und die Persistenz seines Keimrandes bei dem erwachsenen Thier. Archiv mikr Anat 40:133–156CrossRefGoogle Scholar
  6. Billet G, Martin T (2011) No evidence for an afrotherian-like delayed dental eruption in South American notoungulates. Naturwissenschaften 98:509–517PubMedCrossRefGoogle Scholar
  7. Castro MC (2009) Redescrição de um Dasypodini (Xenarthra, Cingulata) do Quaternário do Estado de São Paulo e considerações sobre o gênero Propraopus Ameghino, 1881. Masters Thesis, Universidade de São PauloGoogle Scholar
  8. Castro MC (2010) First occurence of deciduous teeth in Dasypus kappleri Krauss, 1862 and notes on the dentition of the genus. 9th Int Congr Vert Morphol, Punta del EsteGoogle Scholar
  9. Castro MC, Ciancio MR, Carlini AA (2010) Sobre la dentición de Dasypus (Dasypodidae, Cingulata, Xenarthra): morfología y posibles homologías. XXIII Jorn Argent Mastozool, Bahía BlancaGoogle Scholar
  10. Ciancio MR, Vieytes EC, Castro MC, Carlini AA (2010) Estructura del esmalte en Dasypus (Xenarthra, Dasypodidae), consideraciones filogenéticas preliminares. XXIII Jorn Argent Mastozool, Bahía BlancaGoogle Scholar
  11. Delsuc F, Vizcaíno SF, Douzery EJP (2004) Influence of Tertiary paleoenvironmental changes on the diversification of South American mammals: a relaxed molecular clock study within xenarthrans. BMC Evol Biol 4:1–13CrossRefGoogle Scholar
  12. Engelmann GF (1978) The logic of phylogenetic analysis and the phylogeny of the Xenarthra. PhD dissertation, Columbia University, New YorkGoogle Scholar
  13. Gaudin TJ, Wible JR (2006) The phylogeny of living and extinct armadillos (Mammalia, Xenarthra, Cingulata): a craniodental analysis. In: Carrano MT, Gaudin TJ, Blob RW, Wible JR (eds) Amniote Paleobiology: Perspectives on the Evolution of Mammals, Birds and Reptiles. University of Chicago Press, Chicago, pp 153–198Google Scholar
  14. Hallström BM, Kullberg M, Nilsson MA, Janke A (2007) Phylogenomic data analyses provide evidence that Xenarthra and Afrotheria are sister groups. Mol Biol Evol 24:2059–2068PubMedCrossRefGoogle Scholar
  15. Hensel R (1872) Beiträge zur Kenntnis der Säugethiere Süd-Brasiliens. Abh Königl Akad Wiss Berlin:1–130Google Scholar
  16. Hoffstetter R (1958) Xenarthra. In: Piveteau J (ed) Traité de Paléontologie. Masson, Paris, pp 535–636Google Scholar
  17. Koenigswald W v (2011) Diversity of hypsodont teeth in mammalian dentitions - Construction and classification. Palaeontographica Abteilung A 294 (1–3): 63–94Google Scholar
  18. Koenigswald W v, Goin F, Pascual R (1999) Hypsodonty and enamel microstructure in the Paleocene gondwanatherian mammal Sudamerica ameghinoi. Acta Palaeontol Pol 44:263–300Google Scholar
  19. Leche W (1907) Zur Entwicklungsgeschichte des Zahnsystems der Saugetiere, zugleich ein Beitrag zur Stammengeschichte dieser Tiergruppe. Zoologica (Stuttg) 49:1–157Google Scholar
  20. Martin BE (1916) Tooth development in Dasypus novemcinctus. J Morphol 27:647–691CrossRefGoogle Scholar
  21. McDonald HG (2003) Xenarthran skeletan anatomy: primitive or derived? (Mammalia, Xenarthra). In: Fariña RA, Vizcaíno SF, Storch G (eds) Morphological Studies in Fossil and Exant Xenarthra (Mammalia). Senckenberg Biol 83:5–17Google Scholar
  22. Möller-Krull M, Delsuc F, Churakov G, Marker C, Superina M, Brosius J, Douzery EJ, Schmitz J (2007) Retroposed elements and their flanking regions resolve the evolutionary history of xenarthran mammals (armadillos, anteaters, and sloths). Mol Biol Evol 24(11):2573–82PubMedCrossRefGoogle Scholar
  23. Murphy WJ, Pringle TH, Crider TA, Springer MS, Miller W (2007) Using genomic data to unravel the root of the placental mammal phylogeny. Genome Res 17: 413–421PubMedCrossRefGoogle Scholar
  24. Prasad AB, Allard MW, Program NCS, Green ED (2008) Confirming the phylogeny of mammals by use of large comparative sequence data sets. Mol Biol Evol 25:1795–1808PubMedCrossRefGoogle Scholar
  25. Röse C (1892) Beiträge zur Zahnentwickling der Edentaten. Anat Anz 7:495–512Google Scholar
  26. Simpson GG (1932) Enamel on the teeth of an Eocene edentate. Am Mus Novitates 567:1–4Google Scholar
  27. Simpson GG (1967) The beginning of the age of mammals in South America. Part II. Bull Am Mus Nat Hist 137:1–259Google Scholar
  28. Spurgin AM (1904) Enamel in the teeth of an embryo edentate (Dasypus novemcinctus). Am J Anat 3:75–84CrossRefGoogle Scholar
  29. Stangl FB Jr, Beauchamp SL, Konermann NG (1995) Cranial and dental variation in the nine-banded armadillo, Dasypus novemcinctus, from Texas and Oklahoma. Tex J Sci 47:89–100Google Scholar
  30. Tomes CS (1874) On the existence of an enamel organ in an armadillo (Tatusia peba). Quart J Microsc Sci 53:44–48Google Scholar
  31. van Nievelt A, Smith KK (2005) To replace or not to replace: the significance of reduced tooth replacement in marsupial and placental mammals. Paleobiology 31:324–346CrossRefGoogle Scholar
  32. Wetzel RM (1985) Taxonomy and distribution of armadillos. In: Montgomery GG (ed) The Evolution and Ecology of Armadillos, Sloths, and Vermilinguas. Smithsonian Institution, Washington, DC, pp 23–46Google Scholar
  33. Wetzel RM, Mondolfi E (1979) The subgenera and species of long-nosed armadillos, genus Dasypus. In: Eisenberg JF (ed) Vertebrate Ecology in the Northern Neotropic. Smithsonian Institution Press, Washington, DC, pp 43–63Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Martin R. Ciancio
    • 1
    • 2
    • 3
    Email author
  • Mariela C. Castro
    • 1
    • 4
  • Fernando C. Galliari
    • 1
    • 2
  • Alfredo A. Carlini
    • 1
    • 2
    • 3
  • Robert J. Asher
    • 5
    Email author
  1. 1.División Paleontología de Vertebrados, Museo de La PlataUniversidad Nacional de La Plata (UNLP)Buenos AiresArgentina
  2. 2.CONICETBuenos AiresArgentina
  3. 3.Cátedra de Anatomía Comparada, Facultad de Ciencias Naturales y MuseoUNLPBuenos AiresArgentina
  4. 4.The Capes FoundationMinistry of Education of BrazilBrasiliaBrazil
  5. 5.Department of ZoologyUniversity of CambridgeCambridgeUK

Personalised recommendations