Evolution of the Tribosphenic Molar Pattern in Early Mammals, with Comments on the “Dual-Origin” Hypothesis

  • Brian M. DavisEmail author
Original Paper


Development of the tribosphenic molar was a fundamental event that likely influenced the rise of modern mammals. This multi-functional complex combined shearing and grinding in a single chewing stroke, and provided the base morphology for the later evolution of the myriad dental morphologies employed by mammals today. Here a series of morphotypes are presented that represent stepwise acquisition of characters of the molar crown, in an effort to clarify homologies and functional analogies among molars of tribosphenic and tribosphenic-like mammals, as well as their putative sister groups. This is accomplished by evaluation of wear features, which provide direct evidence of occlusal function, and mapping these features on molars of the various morphotypes demonstrates their utility in determining homology. The original singular lower molar talonid cusp is homologous with the hypoconid, and upper molar cusp C in early mammals is homologous with the metacone (cusp “C” is a neomorph with variable occurrence). The lingual translation of the metacone to a position more directly distal to the paracone (as in Peramus) creates an embrasure for the lower molar hypoconid, and is accompanied by the development of the hypoconulid and a new shearing surface. Lastly, the Gondwanan radiation of tribosphenic-like mammals, the Australosphenida (including monotremes), is determined to be functionally non-tribosphenic. The Tribosphenida are restricted to Laurasian taxa, with an origin at or just prior to the Jurassic-Cretaceous boundary.


Mammalia Tribosphenida Australosphenida Mesozoic Molar occlusion Homology 



I would like to thank my dissertation committee, Rich Cifelli, Nick Czaplewski, Cindy Gordon, Rick Lupia, Laurie Vitt, and Steve Westrop (all University of Oklahoma, Norman, USA). Access to specimens was provided by Jerry Hooker, Andy Currant, and Pip Brewer (Natural History Museum, London, UK), Guillermo Rougier (University of Louisville, Louisville, USA), Bill Simpson (Field Museum, Chicago, USA), and John Flynn (American Museum of Natural History, New York, USA). I benefited from very useful discussions with Rich Cifelli and Guillermo Rougier. Thoughtful reviews of the manuscript were provided by Guillermo Rougier and an anonymous reviewer. This project was possible through funding by a Stephen J. Gould Grant from the Geological Society of America, as well as funding from the College of Arts and Sciences, Department of Zoology, Graduate Student Senate, and a Robberson Research Grant from the Graduate College, University of Oklahoma.


  1. Archer M, Flannery TF, Ritchie A, Molnar R (1985) First Mesozoic mammal from Australia–an Early Cretaceous monotreme. Nature 318: 363–366CrossRefGoogle Scholar
  2. Averianov AO, Lopatin AV, Krasnnolutskii SA, Ivantsov SV (2010) New docodontans from the Middle Jurassic of Siberia and reanalysis of Docodonta interrelationships. Proc Zool Inst Rus Acad Sci 314: 121–148Google Scholar
  3. Bown TM, Kraus MJ (1979) Origin of the tribosphenic molar and metatherian and eutherian dental formulae. In: JA Lillegraven, Z Kielan-Jaworowska, WA Clemens (eds) Mesozoic Mammals: The First Two-thirds of Mammalian History. University of California Press, Berkeley, pp 172–181Google Scholar
  4. Broderip WJ (1828) Observations on the jaw of a fossil mammiferous animal found in the Stonesfield Slate. Zool J Lond 3: 408–412Google Scholar
  5. Butler PM (1939) The teeth of the Jurassic mammals. Proc Zool Soc Lond 109: 329–356Google Scholar
  6. Butler PM (1990) Early trends in the evolution of tribosphenic molars. Biol Rev 65: 529–552CrossRefGoogle Scholar
  7. Butler PM, Clemens WA Jr (2001) Dental morphology of the Jurassic holotherian mammal Amphitherium, with a discussion of the evolution of mammalian post-canine dental formulae. Palaeontology 44: 1–20CrossRefGoogle Scholar
  8. Chow M, Rich TH (1982) Shuotherium dongi, n. gen. and sp., a therian with pseudo-tribosphenic molars from the Jurassic of Sichuan, China. Aust Mammal 5: 127–142Google Scholar
  9. Cifelli RL (1999) Tribosphenic mammal from the North American Early Cretaceous. Nature 401: 363–366PubMedGoogle Scholar
  10. Clemens WA, Mills JRE (1971) Review of Peramus tenuirostris. Bull Br Mus (Nat Hist) Geol 20: 89–113Google Scholar
  11. Cope ED (1884) The Tertiary Marsupialia. Am Nat 18: 686–697CrossRefGoogle Scholar
  12. Crompton AW (1971) The origin of the tribosphenic molar. In: DM Kermack, KA Kermack (eds) Early Mammals. Zool J Linn Soc 50, Suppl 1: 65–87Google Scholar
  13. Crompton AW, Hiiemae KM (1970) Molar occlusion and mandibular movements during occlusion in the American opossum, Didelphis marsupialis. Zool J Linn Soc 49: 21–47CrossRefGoogle Scholar
  14. Crompton AW, Jenkins FA, Jr (1968) Molar occlusion in Late Triassic mammals. Biol Rev 43: 427–458PubMedCrossRefGoogle Scholar
  15. Dashzeveg D (1975) New primitive therian from the Early Cretaceous of Mongolia. Nature 256: 402–403CrossRefGoogle Scholar
  16. Dashzeveg D (1979) Arguimus khosbajari gen. n., sp. n. (Peramuridae, Eupantotheria) from the Lower Cretaceous of Mongolia. Acta Palaeontol Pol 24: 199–204Google Scholar
  17. Dashzeveg D, Kielan-Jaworowska Z (1984) The lower jaw of an aegialodontid mammal from the Early Cretaceous of Mongolia. Zool J Linn Soc 82: 217–227CrossRefGoogle Scholar
  18. Davis BM (2011) A novel interpretation of the tribosphenidan mammal Slaughteria eruptens from the Early Cretaceous Trinity Group, and implications for dental formula in early mammals. J Vertebr Paleontol 31: 676–683CrossRefGoogle Scholar
  19. Davis BM, Cifelli RL (in press) Reappraisal of the tribosphenidan mammals from the Trinity Group (Aptian-Albian) of Texas and Oklahoma. Acta Palaeontol Pol 56Google Scholar
  20. Davis BM, Cifelli RL, Kielan-Jaworowska Z (2008) Earliest evidence of Deltatheroida (Mammalia: Metatheria) from the Early Cretaceous of North America. In: EJ Sargis, M Dagosto (eds) Mammalian Evolutionary Morphology: A Tribute to Frederick S. Szalay. Springer, Dordrecht, pp 3–24CrossRefGoogle Scholar
  21. Flannery TF, Archer M, Rich TH, Jones R (1995) A new family of monotremes from the Cretaceous of Australia. Nature 377: 418–420CrossRefGoogle Scholar
  22. Flynn JJ, Parrish JM, Rakotosamimanana B, Simpson WF, Wyss AE (1999) A Middle Jurassic mammal from Madagascar. Nature 401: 57–60CrossRefGoogle Scholar
  23. Fox RC (1976) Additions to the mammalian local fauna from the upper Milk River Formation (Upper Cretaceous), Alberta. Can J Earth Sci 13: 1105–1118CrossRefGoogle Scholar
  24. Fraser NC, Walkden GM, Stewart V (1985) The first pre-Rhaetic therian mammal. Nature 314: 161–162CrossRefGoogle Scholar
  25. Freeman EF (1976) Mammal teeth from the Forest Marble (Middle Jurassic) of Oxfordshire, England. Science 194: 1053–1055PubMedCrossRefGoogle Scholar
  26. Freeman EF (1979) A Middle Jurassic mammal bed from Oxfordshire. Palaeontology: 135–166Google Scholar
  27. Granger W (1915) New evidence of the affinities of the Multituberculata. Bull Geol Soc Am (Abstracts) 26: 152Google Scholar
  28. Gregory WK (1910) The orders of mammals. Bull Am Mus Nat Hist 27: 1–524Google Scholar
  29. Gregory WK, Simpson GG (1926) Cretaceous mammal skulls from Mongolia. Am Mus Novitates 225: 1–20Google Scholar
  30. Hopson JA (1997) Is cusp C of the upper molars of Kuehneotherium homologous with the metacone of Peramus and tribosphenic mammals? J Vertebr Paleontol 17, suppl to 3: 53AGoogle Scholar
  31. Hu Y, Meng J, Li C, Wang Y (2010) New basal eutherian mammal from the Early Cretaceous Jehol biota, Liaoning, China. Proc R Soc B 277: 229–236PubMedCrossRefGoogle Scholar
  32. Hunter JP (2004) Alternative interpretation of molar morphology and wear in the Early Cretaceous mammal Ausktribosphenos. J Vertebr Paleontol 24, suppl to 3: 73AGoogle Scholar
  33. Ji Q, Luo Z, Wible JR, Zhang J-P, Georgi JA (2002) The earliest known eutherian mammal. Nature 416: 816–822PubMedCrossRefGoogle Scholar
  34. Ji Q, Luo Z-X, Zhang X, Yuan C-X, Xu L (2009) Evolutionary development of the middle ear in Mesozoic therian mammals. Science 326: 278–281PubMedCrossRefGoogle Scholar
  35. Kermack DM, Kermack KA, Mussett F (1968) The Welsh pantothere Kuehneotherium praecursoris. Zool J Linn Soc 47: 407–423CrossRefGoogle Scholar
  36. Kermack KA, Lees PM, Mussett F (1965) Aegialodon dawsoni, a new trituberculosectorial tooth from the lower Wealden. Proc R Soc B 162: 535–554CrossRefGoogle Scholar
  37. Kermack KA, Mussett F (1958) The jaw articulation of the Docodonta and the classification of Mesozoic mammals. Proc R Soc B 149: 204–215CrossRefGoogle Scholar
  38. Kielan-Jaworowska Z, Cifelli RL, Luo Z-X (1998) Alleged Cretaceous placental from down under. Lethaia 31: 267–268CrossRefGoogle Scholar
  39. Kielan-Jaworowska Z, Cifelli RL, Luo Z-X (2004) Mammals from the Age of Dinosaurs: Structure, Relationships, and Paleobiology, Columbia Univeristy Press, New YorkGoogle Scholar
  40. Kielan-Jaworowska Z, Dashzeveg D (1989) Eutherian mammals from the Early Cretaceous of Mongolia. Zool Scr 18: 347–355CrossRefGoogle Scholar
  41. Krusat G (1980) Contribuçao para o conhecimento da fauna do Kimeridgiano da mina de lignito Guimarota (Leiria, Portugal). IV Parte. Haldanodon exspectatus Kuhne & Krusat 1972 (Mammalia, Docodonta). Mem Serv Geol Portugal 27: 1–79Google Scholar
  42. Krusat G (1991) Functional morphology of Haldanodon exspectatus (Mammalia, Docodonta) from the Upper Jurassic of Portugal. In: Z Kielan-Jaworowska, N Heintz, HA Nakrem (eds) Fifth Symposium on Mesozoic Terrestrial Ecosystems and Biota Contributions from the Paleontological Museum, University of Oslo, 363, Oslo, pp 37–38Google Scholar
  43. Lopatin AV, Averianov AO (2006a) Revision of a pretribosphenic mammal Arguimus from the Early Cretaceous of Mongolia. Acta Palaeontol Pol 51: 339–349Google Scholar
  44. Lopatin AV, Averianov AO (2006b) An aegialodontid upper molar and the evolution of mammalian dentition. Science 313: 1092PubMedCrossRefGoogle Scholar
  45. Lopatin AV, Averianov AO (2007) Kielantherium, a basal tribosphenic mammal from the Early Cretaceous of Mongolia, with new data on the aegialodontian dentition. Acta Palaeontol Pol 52: 441–446Google Scholar
  46. Lopatin AV, Maschenko EN, Averianov AO, Reszvyi AS, Skutchas PP, Leshchinskiy SV (2005) Early Cretaceous mammals from western Siberia. 1. Tinodontidae. Paleontol Zurnal 39: 523–534Google Scholar
  47. Luo Z-X, Cifelli RL, Kielan-Jaworowska Z (2001) Dual origin of tribosphenic mammals. Nature 409: 53–57PubMedCrossRefGoogle Scholar
  48. Luo Z-X, Ji Q, Wible JR, Yuan C (2003) An Early Cretaceous tribosphenic mammal and metatherian evolution. Science 302: 1934–40PubMedCrossRefGoogle Scholar
  49. Luo Z-X, Ji Q, Yuan C-X (2007) Convergent dental adaptations in pseudo-tribosphenic and tribosphenic mammals. Nature 450: 93–97PubMedCrossRefGoogle Scholar
  50. Luo Z-X, Kielan-Jaworowska Z, Cifelli RL (2002) In quest for a phylogeny of Mesozoic mammals. Acta Palaeontol Pol 47: 1–78Google Scholar
  51. Luo Z-X, Martin T (2007) Analysis of molar structure and phylogeny of docodont genera. Bull Carnegie Mus Nat Hist 39: 27–47CrossRefGoogle Scholar
  52. Marsh OC (1880) Notice on Jurassic mammals representing two new orders. Am J Sci 20: 235–239Google Scholar
  53. Marshall LG, Kielan-Jaworowska Z (1992) Relationships of the dog-like marsupials, deltatheroidans and early tribosphenic mammals. Lethaia 25: 361–374CrossRefGoogle Scholar
  54. Martin T (2002) New stem-line representatives of Zatheria (Mammalia) from the Late Jurassic of Portugal. J Vertebr Paleontol 22: 332–348CrossRefGoogle Scholar
  55. Martin T (2005) Postcranial anatomy of Haldanodon exspectatus (Mammalia, Docodonta) from the Late Jurassic (Kimmeridgian) of Portugal and its bearing for mammalian evolution. Zool J Linn Soc 145: 219–245CrossRefGoogle Scholar
  56. Martin T, Rauhut OWM (2005) Mandible and dentition of Asfaltomylos patagonicus (Australosphenida, Mammalia) and the evolution of tribosphenic teeth. J Vertebr Paleontol 25: 414–425CrossRefGoogle Scholar
  57. McKenna MC (1975) Toward a phylogenetic classification of the Mammalia. In: WP Luckett, FS Szalay (eds) Phylogeny of the Primates. Plenum, New York, pp 21–46Google Scholar
  58. McKenna MC, Bell SK (1997) Classification of Mammals Above the Species Level. Columbia University Press, New YorkGoogle Scholar
  59. Mills JRE (1964) The dentitions of Peramus and Amphitherium. Proc Linn Soc Lond 175: 117–133CrossRefGoogle Scholar
  60. Mills JRE (1966) The functional occlusion of the teeth of Insectivora. Zool J Linn Soc 47: 1–25Google Scholar
  61. Osborn HF (1888a) On the structure and classification of the Mesozoic Mammalia. J Nat Acad Sci 9: 186–265Google Scholar
  62. Osborn HF (1888b) The evolution of mammalian molars to and from the tritubercular type. Am Nat 22: 1067–1079CrossRefGoogle Scholar
  63. Osborn HF (1907a) Evolution of Mammalian Molar Teeth. The MacMillan Company, New YorkGoogle Scholar
  64. Osborn HF (1907b) Evolution of mammalian molar teeth to and from the triangular type including collected and revised research on trituberculity and new sections on the forms and homologies of the molar teeth in different orders of mammals. Biol Stud Addresses 1: 1–245Google Scholar
  65. Owen R (1871) Monograph of the fossil Mammalia of the Mesozoic formations. Monogr Palaeontol Soc 33: 1–115Google Scholar
  66. Pascual R, Archer M, Ortiz-Jaureguizar E, Prado JL, Godthelp H, Hand SJ (1992) First discovery of monotremes in South America. Nature 356: 704–705CrossRefGoogle Scholar
  67. Patterson B (1956) Early Cretaceous mammals and the evolution of mammalian molar teeth. Fieldiana: Geol 13: 1–105Google Scholar
  68. Prothero DR (1981) New Jurassic mammals from Como Bluff, Wyoming, and the interrelationships of non-tribosphenic Theria. Bull Am Mus Nat Hist 167: 277–326Google Scholar
  69. Rauhut OWM, Martin T, Ortiz-Jaureguizar EO, Puerta P (2002) A Jurassic mammal from South America. Nature 416: 165–168PubMedCrossRefGoogle Scholar
  70. Rich TH, Flannery TF, Vickers-Rich P (1998) Alleged Cretaceous placental from down under: reply. Lethaia 31: 346–348CrossRefGoogle Scholar
  71. Rich TH, Flannery TF, Trusler P, Kool L, van Klaveren N, Vickers-Rich P (2001) A second tribosphenic mammal from the Mesozoic of Australia. Records Queen Victoria Mus 110: 1–9Google Scholar
  72. Rich TH, Vickers-Rich P, Constantine A, Flannery TF, Kool L, van Klaveren N (1997) A tribosphenic mammal from the Mesozoic of Australia. Science 278: 1438–1442PubMedCrossRefGoogle Scholar
  73. Rich TH, Vickers-Rich P, Constantine A, Flannery TF, Kool L, van Klaveren N (1999) Early Cretaceous mammals from Flat Rocks, Victoria, Australia. Records Queen Victoria Mus 106: 1–35Google Scholar
  74. Rougier GW, Martinelli AG, Forasiepi AM, Novacek MJ (2007) New Jurassic mammals from Patagonia, Argentina: a reappraisal of australosphenidan morphology and interrelationships. Am Mus Novitates 3566: 1–54CrossRefGoogle Scholar
  75. Rougier GW, Qiang J, Novacek MJ (2003a) A new symmetrodont mammal with fur impressions from the Mesozoic of China. Acta Geo Sin 77: 7–14CrossRefGoogle Scholar
  76. Rougier GW, Spurlin BK, Kik PK (2003b) A new specimen of Eurylambda aequicrurius and considerations on “symmetrodont” dentition and relationships. Am Mus Novitates 3394: 1–15CrossRefGoogle Scholar
  77. Rougier GW, Wible JR, Novacek MJ (2004) New specimen of Deltatheroides cretacicus (Metatheria, Deltatheroida) from the Late Cretaceous of Mongolia. Bull Carnegie Mus Nat Hist 36: 245–266CrossRefGoogle Scholar
  78. Rowe TB (1988) Definition, diagnosis, and origin of Mammalia. J Vertebr Paleontol 8: 241–264CrossRefGoogle Scholar
  79. Rowe TB, Rich TH, Vickers-Rich P, Springer MS, Woodburne MO (2008) The oldest platypus and its bearing on divergence timing of the platypus and echidna clades. Proc Natl Acad Sci USA 105: 1238–1242PubMedCrossRefGoogle Scholar
  80. Sigogneau-Russell D (1998) Discovery of a Late Jurassic Chinese mammal in the upper Bathonian of England. CR Acad Sci III-Vie 327: 571–576Google Scholar
  81. Sigogneau-Russell D (1999) Réévaluation des Peramura (Mammalia, Theria) sur la base de nouveaux spécimens du Crétacé inférieur d’Angleterre et du Maroc. Geodiversitas 21: 93–127Google Scholar
  82. Sigogneau-Russell D (2003) Holotherian mammals from the Forest Marble (Middle Jurassic of England). Geodiversitas 25: 501–537Google Scholar
  83. Sigogneau-Russell D, Hooker JJ, Ensom PC (2001) The oldest tribosphenic mammal from Laurasia (Purbeck Limestone Group, Berriasian, Cretaceous, UK) and its bearing on the “dual origin” of Tribosphenida. CR Acad Sci III-Vie 333: 141–147Google Scholar
  84. Simpson GG (1928) A Catalogue of the Mesozoic Mammalia in the Geological Department of the British Museum. Trustees of the British Museum, LondonGoogle Scholar
  85. Simpson GG (1929) American Mesozoic Mammalia. Mem Peabody Mus 3: 1–235Google Scholar
  86. Simpson GG (1936) Studies of the earliest mammalian dentitions. Dental Cosmos 78: 791–800, 940–953Google Scholar
  87. Slaughter BH (1971) Mid-Cretaceous (Albian) therians of the Butler Farm local fauna, Texas. In: DM Kermack, KA Kermack (eds) Early Mammals. Zool J Linn Soc 50, Suppl 1: 131–143Google Scholar
  88. Wang Y-Q, Clemens WA, Hu Y-M, Li C-K (1998) A probable pseudo-tribosphenic upper molar from the Late Jurassic of China and the early radiation of the Holotheria. J Vertebr Paleontol 18: 777–787CrossRefGoogle Scholar
  89. Wible JR, Rougier GW, Novacek MJ, Asher RJ (2009) The eutherian mammal Maelestes gobiensis from the Late Cretaceous of Mongolia and the phylogeny of Cretaceous Eutheria. Bull Am Mus Nat Hist 327: 1–123CrossRefGoogle Scholar
  90. Woodburne MO, Tedford RH (1975) The first Tertiary monotreme from Australia. Am Mus Novit 2588: 1–11Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Sam Noble Oklahoma Museum of Natural History and Department of ZoologyUniversity of OklahomaNormanUSA

Personalised recommendations