Advertisement

Journal of Mammalian Evolution

, Volume 19, Issue 3, pp 217–224 | Cite as

Life on the Half-Shell: Consequences of a Carapace in the Evolution of Armadillos (Xenarthra: Cingulata)

  • Mariella Superina
  • W. J. Loughry
Review

Abstract

Without doubt, the possession of an armored carapace represents one of the most conspicuous morphological features of all cingulates. Here, we review some of the many ways in which the carapace may have influenced the evolution of other features of extant armadillos (Xenarthra: Cingulata). Effects range from physiological impacts on respiration and thermoregulation, to mechanical and other constraints on reproduction. Additionally, in mammals, armor has been linked with relatively slow plantigrade locomotion, which in turn may have promoted the low metabolic rate and exploitation of a low quality diet typically observed in armadillos. Finally, this network of relationships may help to explain the lack of any obvious kin-selected altruism in the polyembryonic armadillos, such as the nine-banded armadillo (Dasypus novemcinctus), because of time and energy constraints associated with a short active period devoted almost exclusively to feeding. In mammals, there has been growing interest in describing an ecological “lifestyle” as the particular way in which each species makes its living, and how this lifestyle constrains the evolution of other phenotypic traits. Based on our review, it appears the carapace has been a major determinant of the lifestyle of armadillos and has played a central role in shaping the evolution of many other features of these animals.

Keywords

Cingulata Hypoxia Kin selection Reproduction Thermoregulation 

Notes

Acknowledgments

The ideas in this paper were first developed and presented during the symposium “Form and function in the Xenarthra” as part of the 9th International Congress of Vertebrate Morphology, held at Punta del Este, Uruguay in 2010. We thank François Pujos and Tim Gaudin for inviting us to participate in the symposium and for encouraging us to write this paper. We also thank them and all the symposium participants for very constructive feedback. This manuscript further benefited from comments provided by Colleen McDonough, Bruce Patterson, and Agustín Abba.

References

  1. Abba AM, Cassini GH, Cassini MH, Vizcaíno SF (2011) Historia natural del piche llorón Chaetophractus vellerosus (Mammalia: Xenarthra: Dasypodidae). Rev Chil Hist Nat 84:51–64CrossRefGoogle Scholar
  2. Ancona KA, Loughry WJ (2009) Time budgets of wild nine-banded armadillos. Southeast Nat 8:587–598CrossRefGoogle Scholar
  3. Ancona KA, Loughry WJ (2010) Sources of variation in the time budgets of wild nine-banded armadillos. Mammalia 74:127–134CrossRefGoogle Scholar
  4. Anderson JM, Benirschke K (1966) The armadillo, Dasypus novemcinctus, in experimental biology. Lab Anim Care 16:202–216PubMedCrossRefGoogle Scholar
  5. Baliña LM, Valdez RP, de Herrera M, Cordova HC, Bellocq J, García N (1985) Experimental reproduction of leprosy in seven-banded armadillos, Dasypus hybridus. Int J Lepr 53:595–599Google Scholar
  6. Barclay RMR (1994) Constraints on reproduction by flying vertebrates: energy and calcium. Am Nat 144:1021–1031CrossRefGoogle Scholar
  7. Beck U (1972) Ueber die künstliche Aufzucht von Borstengürteltieren (Euphractus villosus). Zool Garten 41:215–222Google Scholar
  8. Bennett AF, Ruben JA (1979) Endothermy and activity in vertebrates. Science 206:649–654PubMedCrossRefGoogle Scholar
  9. Binford CH (1956) Comprehensive program for inoculation of human leprosy into laboratory animals. US Public Health Service, Report 71:995–996Google Scholar
  10. Blanco R, Jones W, Rinderknecht A (2009) The sweet spot of a biological hammer: the centre of percussion of glyptodont (Mammalia: Xenarthra) tail clubs. Proc R Soc Lond B Biol Sci 276:3971–3978CrossRefGoogle Scholar
  11. Boggs DF, Frappell PB, Kilgore DL Jr (1998) Ventilatory, cardiovascular and metabolic responses to hypoxia and hypercapnia in the armadillo. Respir Physiol 113:101–109PubMedCrossRefGoogle Scholar
  12. Brand PW (1959) Temperature variation and leprosy deformity. Int J Lepr 27:1–7PubMedGoogle Scholar
  13. Capanna E (2009) South American mammal diversity and Hernandez’s Novae Hispaniae Thesaurus. Rendiconti Lincei 20:39–60CrossRefGoogle Scholar
  14. Charnov E, Berrigan D (1993) Why do female primates have such long lifespans and so few babies? Evol Anthropol 1:191–194CrossRefGoogle Scholar
  15. Convit J, Pinardi ME (1974) Inoculación del M. leprae en dos especies de armadillo: D. sabanicola y D. novemcinctus. Acta Cient Venezol 25:51–54Google Scholar
  16. Dawkins R (1976) The Selfish Gene. Oxford University Press, OxfordGoogle Scholar
  17. Deem SL, Noss AJ, Fiorello CV, Manharth AL, Robbins RG, Karesh WB (2009) Health assessment of free-ranging three-banded (Tolypeutes matacus) and nine-banded (Dasypus novemcinctus) armadillos in the Gran Chaco, Bolivia. J Zoo Wildl Med 40:245–256PubMedCrossRefGoogle Scholar
  18. Dhindsa DS, Hoversland AS, Metcalfe J (1971) Comparative studies of the respiratory functions of mammalian blood VII: armadillo. Respir Physiol 13:198–208PubMedCrossRefGoogle Scholar
  19. Dobson FS (2007) A lifestyle view of life-history evolution. Proc Natl Acad Sci USA 104:17565–17566PubMedCrossRefGoogle Scholar
  20. Dunbar RIM (1992) Time: a hidden constraint on the behavioural ecology of baboons. Behav Ecol Sociobiol 31:35–49CrossRefGoogle Scholar
  21. Fitness J, Floyd S, Warndorff DK, Sichali L, Mwaungulu L, Crampin AC, Fine PE, Hill AV (2004) Large-scale candidate gene study of leprosy susceptibility in the Karonga district of northern Malawi. Am J Trop Med Hyg 71:330–340PubMedGoogle Scholar
  22. Forrester DJ (1992) Parasites and Diseases of Wild Mammals in Florida. University Press of Florida, GainesvilleGoogle Scholar
  23. Frappell PB, Boggs DF, Kilgore DL (1998) How stiff is the armadillo? A comparison with the allometrics of mammalian respiratory mechanics. Respir Physiol 113:111–122PubMedCrossRefGoogle Scholar
  24. Gardner AL (2005) Order Cingulata. In: Wilson DE, Reeder DM (eds) Mammal Species of the World: A Taxonomic and Geographic Reference. The Johns Hopkins University Press, Baltimore, pp 94–99Google Scholar
  25. Gaudin TJ, McDonald HG (2008) Morphology-based investigations of the phylogenetic relationships among extant and fossil xenarthrans. In: Vizcaíno SF, Loughry WJ (eds) The Biology of the Xenarthra. University Press of Florida, Gainesville, pp 24–36Google Scholar
  26. Gause GE (1980) Physiological and morphometric responses of the nine-banded armadillo to environmental factors. PhD Dissertation. Department of Biology, University of Florida, Gainesville, 124 ppGoogle Scholar
  27. Gittleman JL, Thompson SD (1988) Energy allocation in mammalian reproduction. Am Zool 28:863–875Google Scholar
  28. Gould SJ (2002) The Structure of Evolutionary Theory. Belknap Harvard University Press, CambridgeGoogle Scholar
  29. Grigg GC, Beard LA, Augee ML (2004) The evolution of endothermy and its diversity in mammals and birds. Physiol Biochem Zool 77:982–997PubMedCrossRefGoogle Scholar
  30. Herrick JR, Campbell MK, Swanson WF (2002) Electroejaculation and semen analysis in the La Plata three-banded armadillo (Tolypeutes matacus). Zoo Biol 21:481–487CrossRefGoogle Scholar
  31. Hill RV (2006) Comparative anatomy and histology of xenarthran osteoderms. J Morphol 267:1441–1460PubMedCrossRefGoogle Scholar
  32. Humphrey SR (1974) Zoogeography of the nine-banded armadillo (Dasypus novemcinctus) in the United States. BioScience 24:457–462CrossRefGoogle Scholar
  33. Jones KE, Bielby J, Cardillo M, Fritz SA, O’Dell J, Orme DL, Safi K, Sechrest W, Boakes EH, Carbone C, Connolly C, Cutts MJ, Foster JK, Grenyer R, Habib M, Plaster CA, Price SA, Rigby EA, Rist J, Teacher A, Bininda-Emonds ORP, Gittleman JL, Mace GM, Purvis A (2009) PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90:2648CrossRefGoogle Scholar
  34. Kelly DA (1997) Axial orthogonal fiber reinforcement in the penis of the nine-banded armadillo (Dasypus novemcinctus). J Morphol 233:249–255PubMedCrossRefGoogle Scholar
  35. Kelly DA (1999) Expansion of the tunica albuginea during penile inflation in the nine-banded armadillo (Dasypus novemcinctus). J Exp Biol:253–265Google Scholar
  36. Kühn E (1953) Zum Wachstum männlicher Borstengürteltiere (Chaetophractus villosus). Zool Garten 20:82–85Google Scholar
  37. Loughry WJ, McDonough CM (2012) The Nine-Banded Armadillo. University of Oklahoma Press, NormanGoogle Scholar
  38. Loughry WJ, Prodöhl PA, McDonough CM (2005) The inadequacy of observation: understanding armadillo biology with molecular markers. In: Pandalai SG (ed) Recent Research Developments in Ecology. Transworld Research Network, Kerala, India, pp 55–73Google Scholar
  39. Loughry WJ, Robertson EG, McDonough CM (2002) Patterns of anatomical damage in a population of nine-banded armadillos Dasypus novemcinctus (Xenarthra, Dasypodidae). Mammalia 66:111–122CrossRefGoogle Scholar
  40. Lovegrove B (2000) The zoogeography of mammalian basal metabolic rate. Am Nat 156:201–219PubMedCrossRefGoogle Scholar
  41. Lovegrove B (2001) The evolution of body armor in mammals: plantigrade constraints of large body size. Evolution 55:1464–1473PubMedGoogle Scholar
  42. McDonough CM (1994) Determinants of aggression in nine-banded armadillos. J Mammal 75:189–198CrossRefGoogle Scholar
  43. McDonough CM, Loughry WJ (1997) Patterns of mortality in a population of nine-banded armadillos, Dasypus novemcinctus. Am Midl Nat 138:299–305CrossRefGoogle Scholar
  44. McDonough CM, Loughry WJ (2008) Behavioral ecology of armadillos. In: Vizcaíno SF, Loughry WJ (eds) The Biology of the Xenarthra. University Press of Florida, Gainesville, pp 281–293Google Scholar
  45. McNab BK (1980) Energetics and the limits to a temperate distribution in armadillos. J Mammal 61: 606–627CrossRefGoogle Scholar
  46. McNab BK (1984) Physiological convergence among ant-eating and termite-eating mammals. J Zool 203:485–510CrossRefGoogle Scholar
  47. McNab BK (1985) Energetics, population biology, and distribution of Xenarthrans, living and extinct. In: Montgomery GG (ed) The Evolution and Ecology of Armadillos, Sloths, and Vermilinguas. Smithsonian Institution Press, Washington and London, pp 219–232Google Scholar
  48. Medri IM (2008) Ecologia e história natural do tatu-peba, Euphractus sexcinctus (Linnaeus, 1758), no Pantanal da Nhecolândia, Mato Grosso do Sul. Master’s thesis. Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, pp 167Google Scholar
  49. Meritt DA Jr (1971) The development of the La Plata three banded armadillo, Tolypeutes matacus at Lincoln Park Zoo, Chicago. Int Zoo Yb 11:195–196CrossRefGoogle Scholar
  50. Meritt DA Jr (2008) Xenarthrans of the Paraguayan Chaco. In: Vizcaíno SF, Loughry WJ (eds) The Biology of the Xenarthra. University Press of Florida, Gainesville, pp 294–299Google Scholar
  51. Millar JS (1977) Adaptive features of mammalian reproduction. Evolution 31:370–386CrossRefGoogle Scholar
  52. Mira MT (2006) Genetic host resistance and susceptibility to leprosy. Microbes Infect 8:1124–1131PubMedCrossRefGoogle Scholar
  53. Molecular Ecology Resources Primer Development Consortium (MERPDC) et al. (2010) Permanent genetic resources added to Molecular Ecology Resources database 1 April 2010–31 May 2010. Mol Ecol Res 10:1098–1105CrossRefGoogle Scholar
  54. Prodöhl P, Loughry WJ, McDonough CM, Nelson WS, Avise J (1996) Molecular documentation of polyembryony and the micro-spatial dispersion of clonal sibships in the nine-banded armadillo, Dasypus novemcinctus. Proc R Soc Lond B Biol Sci 263:1643–1649CrossRefGoogle Scholar
  55. Prudom AE, Klemm WR (1973) Electrographic correlates of sleep behavior in a primitive mammal, the armadillo, Dasypus novemcinctus. Physiol Behav 10:275–282PubMedCrossRefGoogle Scholar
  56. Redford KH (1985) Food habits of armadillos (Xenarthra: Dasypodidae). In: Montgomery GG (ed) The Evolution and Ecology of Armadillos, Sloths, and Vermilinguas. Smithsonian Institution Press, Washington and London, pp 429–437Google Scholar
  57. Roberts M, Newman L, Peterson G (1982) The management and reproduction on the large hairy armadillo Chaetophractus villosus at the National Zoological Park. Int Zoo Yb 22:185–194CrossRefGoogle Scholar
  58. Rossetto L (2009) Tatu com obesidade mórbida faz tratamento no Ibama. In: Globo. http://g1.globo.com/Noticias/Brasil/0,,MUL1399246-5598,00-TATU+COM+OBESIDADE+MORBIDA+FAZ+TRATAMENTO+NO+IBAMA.html Accessed: December 1 2009
  59. Scholander PF, Irving L, Grinnell SW (1943) Respiration of the armadillo with possible implications as to its burrowing. J Cell Comp Physiol 21:53–63CrossRefGoogle Scholar
  60. Scillato-Yané GJ (1976) Sobre un Dasypodidae de edad Riochiquense (Paleoceno superior) de Itaboraí (Brasil). An Acad Bras Cienc 48:527–530Google Scholar
  61. Sibly RM, Brown JH (2007) Effects of body size and lifestyle on evolution of mammal life histories. Proc Natl Acad Sci USA 104:17707–17712PubMedCrossRefGoogle Scholar
  62. Sibly RM, Brown JH (2009) Mammal reproductive strategies driven by offspring mortality-size relationships. Am Nat 173:E185–E199PubMedCrossRefGoogle Scholar
  63. Studier EH, Sevick SH (1992) Live mass, water content, nitrogen and mineral levels in some insects from south-central lower Michigan. Comp Biochem Physiol A Comp Physiol 103:579–595CrossRefGoogle Scholar
  64. Superina M (2000) Biologie und Haltung von Gürteltieren (Dasypodidae). Doctoral thesis. Institut für Zoo-, Heim- und Wildtiere, Universität Zürich, Zürich, 250 ppGoogle Scholar
  65. Superina M (2008) The ecology of the pichi Zaedyus pichiy in western Argentina. In: Vizcaíno SF, Loughry WJ (eds) The Biology of the Xenarthra. University Press of Florida, Gainesville, pp 313–318Google Scholar
  66. Superina M, Boily P (2007) Hibernation and daily torpor in an armadillo, the pichi (Zaedyus pichiy). Comp Biochem Physiol A Comp Physiol 148:893–898Google Scholar
  67. Superina M, Carreño N, Jahn G (2009a) Characterization of seasonal reproduction patterns in female pichis, Zaedyus pichiy (Xenarthra: Dasypodidae) estimated by fecal sex steroid metabolites and ovarian histology. Anim Reprod Sci 116:358–369PubMedCrossRefGoogle Scholar
  68. Superina M, Garner MM, Aguilar RF (2009b) Health evaluation of free-ranging and captive pichis, Zaedyus pichiy (Mammalia, Dasypodidae) in Mendoza Province, Argentina. J Wildl Dis 45:174–183PubMedGoogle Scholar
  69. Superina M, Miranda F, Plese T (2008) Maintenance of Xenarthra in captivity. In: Vizcaíno SF, Loughry WJ (eds) The Biology of the Xenarthra. University Press of Florida, Gainesville, pp 232–243Google Scholar
  70. Tattersall GJ, Cadena V (2010) Insights into animal temperature adaptations revealed through thermal imaging. Imaging Sci J 58:261–268CrossRefGoogle Scholar
  71. Taulman JF, Robbins LW (1996) Recent range expansion and distributional limits of the nine-banded armadillo (Dasypus novemcinctus) in the United States. J Biogeogr 23:635–648CrossRefGoogle Scholar
  72. Truman RW (2005) Leprosy in wild armadillos. Lepr Rev 76:198–208PubMedGoogle Scholar
  73. Truman RW (2008) Leprosy. In: Vizcaíno SF, Loughry WJ (eds) The Biology of the Xenarthra. University Press of Florida, Gainesville, pp 111–119Google Scholar
  74. Truman RW, Kumaresan JA, McDonough CM, Job CK, Hastings RC (1991) Seasonal and spatial trends in the detectability of leprosy in wild armadillos. Epidemiol Infect 106:549–560PubMedCrossRefGoogle Scholar
  75. Turner AK (1982) Timing of laying by swallows (Hirundo rustica) and sand martins (Riparia riparia). J Anim Ecol 51:29–46CrossRefGoogle Scholar
  76. Twyver JV, Allison T (1974) Sleep in the armadillo Dasypus novemcinctus at moderate and low ambient temperatures. Brain Behav Evol 9:107–120PubMedCrossRefGoogle Scholar
  77. Velarde-Félix JS, Cázarez Salazar SG, Castro Velázquez R, Rendón Maldonado JG, Rangel Villalobos J (2009) Association between the TaqI polymorphism of vitamin D receptor gene and lepromatous leprosy in a Mexican population sample. Salud Publica Mex 51:59–61PubMedCrossRefGoogle Scholar
  78. Vickaryous MK, Hall BK (2006) Osteoderm morphology and development in the nine-banded armadillo, Dasypus novemcinctus (Mammalia, Xenarthra, Cingulata). J Morphol 267:1273–1283PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Laboratorio de Endocrinología de la Fauna SilvestreIMBECU, CCT-CONICET MendozaMendozaArgentina
  2. 2.Department of BiologyValdosta State UniversityValdostaUSA

Personalised recommendations