Journal of Mammalian Evolution

, Volume 18, Issue 2, pp 77–100 | Cite as

The More the Merrier? A Large Cladistic Analysis of Mysticetes, and Comments on the Transition from Teeth to Baleen

  • Felix G. Marx
Original Paper


The origin of baleen whales, and their specialized mode of filter-feeding, marks an important event in the evolutionary history of mammals that gave rise to one of the most distinctive groups of animals alive today. Recent years have seen the description of a number of important new specimens, as well as the publication of a large number of phylogenetic analyses. Yet, despite this great effort, a broad consensus on even the most fundamental relationships within this group has so far remained elusive, a fact perhaps most strikingly reflected in the ongoing debate regarding the taxonomic placement of the extant gray and pygmy right whales, as well as the question of the relative closeness of relationship of all the extant members of the mysticete crown group. Here, I present the taxonomically most comprehensive phylogenetic analysis of extinct and extant baleen whales carried out to date, based on morphological data and utilizing both maximum parsimony and Bayesian methodologies. The results of this study were well resolved and consistent across methodologies. Apart from recovering a clade comprising the pygmy right whale, gray whales, and rorquals, a grouping new to morphological analyses but supported by a number of molecular studies, this investigation also revealed the former clade to be more closely related to a large number of extinct species than to right whales, thus contradicting previous notions of a closely related mysticete crown group. In addition, this analysis also identified a novel clade comprising nearly all the described archaic toothed mysticetes from the late Oligocene (about 23–28 Ma) to the exclusion of all toothless mysticetes. This finding is consistent with a basic assessment of the functional morphology of toothed mysticete vision, and may have implications for the evolution of mysticete filter-feeding and the recently proposed interpretation of some of these archaic taxa as transitional forms possessing both teeth and baleen at the same time.


Cetacea Mysticeti Baleen whale Evolution Phylogeny Cladistic Bayesian 



This work was supported by The Scottish Association for Marine Science (Research Bursary Z2092/5905/A100), the Nuffield Foundation (Undergraduate Research Bursary URB/35800), and the Bob Savage Memorial Fund of the Department of Earth Sciences, University of Bristol. General support during the later stages of the project was provided by a University of Otago Postgraduate Scholarship. I thank Mike Benton and Ewan Fordyce for their advice and helpful comments on an earlier version of this manuscript, as well as Jonathan Geisler, James Tarver, Graeme Lloyd, Peter Wagner, and Mark Bell for valuable advice and help. Erich Fitzgerald, Eberhard “Dino” Frey, Mette Steeman, Oliver Hampe, Toshiyuki Kimura, and James Westgate generously provided photographs of a number of specimens. David Bohaska and Charles Potter (United States National Museum), Björn Berning (State Museum of Upper Austria), Liliana Póvoas and Álvaro Pinto (Museum of Mineralogy and Geology, Lisbon), Lawrence Barnes, Sam McLeod, Howell Thomas, and Gary Takeuchi (Natural History Museum of Los Angeles County), Oliver Hampe (Natural History Museum of the Humboldt University, Berlin), Eberhard “Dino” Frey (State Museum of Natural History, Karlsruhe), Reinhard Ziegler and Doris Mörike (State Museum of Natural History, Karlsruhe), Mathew Lowe and Ray Symonds (University of Cambridge Zoological Museum), Mihály Gasparik (Hungarian Natural History Museum), Richard Sabin and Jerry Hooker (Natural History Museum, London), Ursula Göhlich (Natural History Museum, Vienna), Peter Howlett (National Museum of Wales), and Rhian Rowson and Andy King (City Museum and Art Gallery, Bristol) kindly provided access to specimens in their care. Most of all, I thank Björn Berning for a warm welcome and his generosity in letting me stay at his house during my visit to Linz, as well as Carl Buell for providing illustrations of various mysticete species.

Supplementary material

10914_2010_9148_MOESM1_ESM.doc (152 kb)
ESM 1 (DOC 152 kb)
10914_2010_9148_MOESM3_ESM.txt (15 kb)
Data matrix (TXT 15 kb)
10914_2010_9148_Fig6_ESM.gif (99 kb)
Supplementary Fig S1

State frequency distributions of six characters relying on assessments of size of one structure relative to another in the absence of any clear points of reference. Because of the often fragmentary and distorted nature of cetacean fossil material, many of the measurements may be approximations and not entirely accurate, which is why it was decided to use discrete character states, rather than the actual measurements. Measurements were binned into 5% intervals and the final discrete character states delimited by visual inspection. (GIF 98 kb)

10914_2010_9148_MOESM2_ESM.eps (1.4 mb)
High Resolution Image (EPS 1386 kb)


  1. Agnarsson I, May-Collado LJ (2008) The phylogeny of Cetartiodactyla: the importance of dense taxon sampling, missing data and the remarkable promise of cytochrome b to provide reliable species-level phylogenies. Mol Phylogenet Evol 48:964–985PubMedCrossRefGoogle Scholar
  2. Andrews RC (1914) Monographs of the Pacific Cetacea – the California gray whale (Rhachianectes glaucus Cope). Mem Am Mus Nat Hist 1:229–287Google Scholar
  3. Arnold PW, Birtles RA, Dunstan A, Lukoschek V, Matthews M (2005) Colour patterns of the dwarf minke whale Balaenoptera acutorostrata sensu lato: description, phylogenetic analysis and taxonomic implications. Mem Queensl Mus 51:277–307Google Scholar
  4. Barnes LG, Kimura M, Furusawa H, Sawamura H (1995) Classification and distribution of Oligocene Aetiocetidae (Mammalia; Cetacea; Mysticeti) from western North America and Japan. Isl Arc 3:392–431CrossRefGoogle Scholar
  5. Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I (2001) Controlling the false discovery rate in behaviour genetics research. Behav Brain Res 125:279–284PubMedCrossRefGoogle Scholar
  6. Bisconti M (2000) New description, character analysis and preliminary phylogenetic assessment of two Balaenidae skulls from the Italian Pliocene. Palaeontol Ital 87:37–66Google Scholar
  7. Bisconti M (2003) Evolutionary history of Balaenidae. Cranium 20:9–50Google Scholar
  8. Bisconti M (2005) Skull morphology and phylogenetic relationships of a new diminutive balaenid from the lower Pliocene of Belgium. Palaeontology 48:793–816CrossRefGoogle Scholar
  9. Bisconti M (2006) Titanocetus, a new baleen whale from the middle Miocene of northern Italy (Mammalia, Cetacea, Mysticeti). J Vertebr Paleontol 26:344–354CrossRefGoogle Scholar
  10. Bisconti M (2007a) A new basal balaenopterid whale from the Pliocene of northern Italy. Palaeontology 50:1103–1122CrossRefGoogle Scholar
  11. Bisconti M (2007b) Taxonomic revision and phylogenetic relationships of the rorqual-like mysticete from the Pliocene of Mount Pulgnasco, northern Italy (Mammalia, Cetacea, Mysticeti). Palaeontol Ital 91:85–108Google Scholar
  12. Bisconti M (2008) Morphology and phylogenetic relationships of a new eschrichtiid genus (Cetacea: Mysticeti) from the early Pliocene of northern Italy. Zool J Linn Soc 153:161–186CrossRefGoogle Scholar
  13. Bisconti M, Varola A (2006) The oldest eschrichtiid mysticete and a new morphological diagnosis of Eschrichtiidae (gray whales). Riv Ital Paleontol S 112:447–457Google Scholar
  14. Bouetel V, Muizon C de (2006) The anatomy and relationships of Piscobalaena nana (Cetacea, Mysticeti), a Cetotheriidae s.s. from the early Pliocene of Peru. Geodiversitas 28:319–395Google Scholar
  15. Brandt JF (1873) Untersuchungen über die fossilen und subfossilen Cetaceen Europas. Mém Acad Imp Sci St Pétersbourg 20:1–371Google Scholar
  16. Bremer K (1994) Branch support and tree stability. Cladistics 10:295–304CrossRefGoogle Scholar
  17. Cabrera A (1926) Cetáceos fósiles del Museo de La Plata. Rev Mus La Plata 29:363–411Google Scholar
  18. Czyzewska T, Ryziewicz Z (1976) Pinocetus polonicus gen. n., sp. n. (Cetacea) from the Miocene limestones of Pińczów, Poland. Acta Palaeontol Pol 21:259–298Google Scholar
  19. Dathe F (1983) Megaptera hubachi n. sp., ein fossiler Bartenwal aus marinen Sandsteinschichten des tieferen Pliozaens Chiles. Geol Wiss Berlin 11:813–848Google Scholar
  20. Deméré TA, Berta A (2008) Skull anatomy of the Oligocene toothed mysticete Aetiocetus weltoni (Mammalia; Cetacea): implications for mysticete evolution and functional anatomy. Zool J Linn Soc 154:308–352CrossRefGoogle Scholar
  21. Deméré TA, Berta A, McGowen MR (2005) The taxonomic and evolutionary history of fossil and modern balaenopterid mysticetes. J Mammal Evol 12:99–143CrossRefGoogle Scholar
  22. Deméré TA, McGowen MR, Berta A, Gatesy J (2008) Morphological and molecular evidence for a stepwise evolutionary transition from teeth to baleen in mysticete whales. Syst Biol 57:15–37PubMedCrossRefGoogle Scholar
  23. Dooley AC, Fraser NC, Luo Z-X (2004) The earliest known member of the rorqual-gray whale clade (Mammalia, Cetacea). J Vertebr Paleontol 24:453–463CrossRefGoogle Scholar
  24. Dubrovo IA, Sanders AE (2000) A new species of Patriocetus (Mammalia, Cetacea) from the late Oligocene of Kazakhstan. J Vertebr Paleontol 20:577–590CrossRefGoogle Scholar
  25. Emlong DR (1966) A new archaic cetacean from the Oligocene of northwest Oregon. Bull Mus Nat Hist Univ Oregon 3:1–51Google Scholar
  26. Fitzgerald EMG (2006) A bizarre new toothed mysticete (Cetacea) from Australia and the early evolution of baleen whales. Proc R Soc B 273:2955–2963PubMedCrossRefGoogle Scholar
  27. Fitzgerald EMG (2010) The morphology and systematics of Mammalodon colliveri (Cetacea: Mysticeti), a toothed mysticete from the Oligocene of Australia. Zool J Linn Soc 158:367–476CrossRefGoogle Scholar
  28. Fordyce RE (2002) Oligocene origins of skim-feeding right whales: a small archaic balaenid from New Zealand. J Vertebr Paleontol 22(suppl to 3):54AGoogle Scholar
  29. Fordyce RE, Muizon C de (2001) Evolutionary history of cetaceans: a review. In: Mazin J-M, Buffrenil V de (eds) Secondary Adaptation of Tetrapods to Life in Water. Verlag Dr. Friedrich Pfeil, München, pp 169–233Google Scholar
  30. Geisler JH, Sanders AE (2003) Morphological evidence for the phylogeny of Cetacea. J Mammal Evol 10:23–129CrossRefGoogle Scholar
  31. Goloboff PA (1993) Estimating character weights during tree search. Cladistics 9:83–91CrossRefGoogle Scholar
  32. Goloboff PA, Farris JS, Källersjö M, Oxelman B, Ramírez MJ, Szumik CA (2003a) Improvements to resampling measures of group support. Cladistics 19:324–332CrossRefGoogle Scholar
  33. Goloboff PA, Farris JS, Nixon KC (2003b) T.N.T.: tree analysis using new technology. Program and documentation available from the authors, and from
  34. Goloboff PA, Farris JS, Nixon KC (2008) TNT, a free program for phylogenetic analysis. Cladistics 24:774–786CrossRefGoogle Scholar
  35. Gradstein FM, Ogg JG, Smith AG (2004) A Geologic Time Scale 2004. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  36. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological Statistics software package for education and data analysis. Palaeontol Electron 4:9 ppGoogle Scholar
  37. Hatch LT, Dopman EB, Harrison RG (2006) Phylogenetic relationships among the baleen whales based on maternally and paternally inherited characters. Mol Phylogenet Evol 41:12–27PubMedCrossRefGoogle Scholar
  38. Hedtke SM, Townsend TM, Hillis DM (2006) Resolution of phylogenetic conflict in large data sets by increased taxon sampling. Syst Biol 55:522–529PubMedCrossRefGoogle Scholar
  39. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17:754–755PubMedCrossRefGoogle Scholar
  40. Ichishima H, Sawamura H, Ito H, Otani S, Ishikawa H (2008) Do the so-called nutrient foramina on the palate tell us the presence of baleen plates in toothed mysticetes? In: Abstracts of the Fifth Conference on Secondary Adaptation of Tetrapods to Life in Water, 9–13th June 2008. National Museum of Nature and Science, Tokyo, pp 24–25Google Scholar
  41. Johnston C, Deméré TA, Berta A, Yonas J, St Leger J (2010) Observations on the musculoskeletal anatomy of the head of a neonate gray whale (Eschrichtius robustus). Mar Mammal Sci 26:186–194CrossRefGoogle Scholar
  42. Kass RE, Raftery AE (1995) Bayes factors. J Am Stat Assoc 90:773–795CrossRefGoogle Scholar
  43. Kellogg R (1922) Description of the skull of Megaptera miocaena, a fossil humpback whale from the Miocene diatomaceous earth of Lompoc, California. Proc U S Natl Mus 61:1–18Google Scholar
  44. Kellogg R (1924) Description of a new genus and species of whalebone whale from the Calvert Cliffs, Maryland. Proc U S Natl Mus 83:1–14Google Scholar
  45. Kellogg R (1929) A new cetothere from southern California. Univ Calif Publ Geol Sci 18:449–457Google Scholar
  46. Kellogg R (1934a) The Patagonian fossil whalebone whale, Cetotherium moreni (Lydekker). Publ Carnegie Inst Wash 447:64–81Google Scholar
  47. Kellogg R (1934b) A new cetothere from the Modelo Formation at Los Angeles, California. Publ Carnegie Inst Wash 447:83–104Google Scholar
  48. Kellogg R (1936) A review of the Archaeoceti. Publ Carnegie Inst Wash 482:1–366Google Scholar
  49. Kellogg R (1938–1940) On the cetotheres figured by Vandelli. Bol Mus Min Geol Univ Lisboa 7–8:13–22Google Scholar
  50. Kellogg R (1968a) Fossil marine mammals from the Miocene Calvert Formation of Maryland and Virginia, part 1: a new whalebone whale from the Miocene Calvert Formation. Bull U S Natl Mus 247:1–45Google Scholar
  51. Kellogg R (1968b) Fossil marine mammals from the Miocene Calvert Formation of Maryland and Virginia, part 5: Miocene Calvert mysticetes described by Cope. Bull U S Natl Mus 247:103–132Google Scholar
  52. Kellogg R (1968c) Fossil marine mammals from the Miocene Calvert Formation of Maryland and Virginia, part 6: a hitherto unrecognized Calvert cetothere. Bull U S Natl Mus 247:133–161Google Scholar
  53. Kellogg R (1968d) Fossil marine mammals from the Miocene Calvert Formation of Maryland and Virginia, part 7: a sharp-nosed cetothere from the Miocene Calvert. Bull U S Natl Mus 247:163–173Google Scholar
  54. Kellogg R (1968e) Fossil marine mammals from the Miocene Calvert Formation of Maryland and Virginia, part 8: supplement to the description of Parietobalaena palmeri. Bull U S Natl Mus 247:175–197Google Scholar
  55. Kimura T, Narita K, Fujita T, Hasegawa Y (2007) A new species of Eubalaena (Cetacea: Mysticeti: Balaenidae) from the Gonda Formation (latest Miocene-early Pliocene) of Japan. Bull Gunma Mus Nat Hist 11:15–27Google Scholar
  56. Kimura T, Ozawa T (2002) A new cetothere (Cetacea: Mysticeti) from the early Miocene of Japan. J Vertebr Paleontol 22:684–702CrossRefGoogle Scholar
  57. Lewis PO (2001) A likelihood approach for inferring phylogeny from discrete morphological characters. Syst Biol 50:913–925PubMedCrossRefGoogle Scholar
  58. Lydekker R (1894) Cetacean skulls from Patagonia. Ann Mus La Plata 2:1–13Google Scholar
  59. Marples BJ (1956) Cetotheres (Cetacea) from the Oligocene of New Zealand. Proc Zool Soc Lond 126:565–580Google Scholar
  60. McGowen MR, Spaulding M, Gatesy J (2009) Divergence date estimation and a comprehensive molecular tree of extant cetaceans. Mol Phylogenet Evol 53:891–906PubMedCrossRefGoogle Scholar
  61. McLeod SA, Whitmore FC, Barnes LG (1993) Evolutionary relationships and classification. In: Burns JJ, Montague JJ, Cowles CJ (eds) The Bowhead Whale. Society for Marine Mammalogy, Lawrence, pp 45–70Google Scholar
  62. Mead JG, Fordyce RE (2009) The therian skull – a lexicon with emphasis on the odontocetes. Smithsonian Contrib Zool 627:1–248Google Scholar
  63. Nylander JAA, Ronquist F, Huelsenbeck JP, Nieves-Aldrey JL (2004) Bayesian phylogenetic analysis of combined data. Syst Biol 53:47–67PubMedCrossRefGoogle Scholar
  64. Nylander JAA, Wilgenbusch JC, Warren DL, Swofford DL (2008) AWTY (Are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics 24:581–583PubMedCrossRefGoogle Scholar
  65. O’Leary MA, Kaufman SG (2007) MorphoBank 2.5: web application for morphological systematics and taxonomy;
  66. Omura H (1975) Osteological study of the minke whale from the Antarctic. Sci Rep Whales Res Inst 27:1–36Google Scholar
  67. Omura H, Kasuya T (1976) Additional information on skeleton of the minke whale from the Antarctic. Sci Rep Whales Res Inst 28:57–68Google Scholar
  68. Omura H, Nishiwaki M, Ichihara T, Kasuya T (1962) Osteological note of a sperm whale. Sci Rep Whales Res Inst 16:35–45Google Scholar
  69. Otsuka H, Ota Y (2008) Cetotheres from the early Middle Miocene Bihoku Group in Shobara District, Hiroshima Prefecture, West Japan. Misc Rep Hiwa Mus Nat Hist 49:1–66Google Scholar
  70. Packard EL, Kellogg R (1934) A new cetothere from the Miocene Astoria Formation of Newport, Oregon. Publ Carnegie Inst Wash 447:1–62Google Scholar
  71. Pilleri G (1986) Beobachtungen an den Fossilen Cetaceen des Kaukasus. Hirnananatomisches Institut Ostermundingen, BernGoogle Scholar
  72. Pilleri G (1989) Balaenoptera siberi, ein neuer spätmiozäner Bartenwal aus der Pisco-Formation Perus. In: Pilleri G (ed) Beiträge zur Paläontologie der Cetaceen Perus. Hirnanatomisches Institut Ostermundingen, Bern, pp 63–84Google Scholar
  73. Pollock DD, Zwickl DJ, McGuire JA, Hillis DM (2002) Increased taxon sampling is advantageous for phylogenetic inference. Syst Biol 51:664–671PubMedCrossRefGoogle Scholar
  74. Reeves RR, Leatherwood S (1985) Bowhead whale Balaena mysticetus Linnaeus, 1758. In: Ridgway SH, Harrison R (eds) Handbook of Marine Mammals, vol 3, The Sirenians and Baleen Whales. Academic, London, pp 305–344Google Scholar
  75. Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  76. Rychel AL, Reeder TW, Berta A (2004) Phylogeny of mysticete whales based on mitochondrial and nuclear data. Mol Phylogenet Evol 32:892–901PubMedCrossRefGoogle Scholar
  77. Sanders AE, Barnes LG (2002) Paleontology of the late Oligocene Ashley and Chandler Bridge formations of South Carolina, 3: Eomysticetidae, a new family of primitive mysticetes (Mammalia, Cetacea). In: Emry RJ (ed) Cenozoic Mammals of Land and Sea: Tributes to the Career of Clayton E. Ray. Smithsonian Contrib Paleobiol 93:313–356Google Scholar
  78. Sasaki T, Nikaido M, Hamilton H, Goto M, Kato H, Kanda N, Pastene LA, Cao Y, Fordyce RE, Hasegawa M, Okada N (2005) Mitochondrial phylogenetics and evolution of mysticete whales. Syst Biol 54:77–99PubMedCrossRefGoogle Scholar
  79. Sasaki T, Nikaido M, Wada S, Yamada TK, Cao Y, Hasegawa M, Okada N (2006) Balaenoptera omurai is a newly discovered baleen whale that represents an ancient evolutionary lineage. Mol Phylogenet Evol 41:40–52PubMedCrossRefGoogle Scholar
  80. Steeman ME (2007) Cladistic analysis and a revised classification of fossil and recent mysticetes. Zool J Linn Soc 150:875–894CrossRefGoogle Scholar
  81. Steeman ME (2009) A new baleen whale from the late Miocene of Denmark and early mysticete hearing. Palaeontology 52:1169–1190CrossRefGoogle Scholar
  82. Steeman ME, Hebsgaard MB, Fordyce RE, Ho SYW, Rabosky DL, Nielsen R, Rahbek C, Glenner H, Sørensen MV, Willerslev E (2009) Radiation of extant cetacean driven by restructuring of the oceans. Syst Biol 58:573–585PubMedCrossRefGoogle Scholar
  83. Stewart BS, Leatherwood S (1985) Minke whale Balaenoptera acutorostrata Lacépède 1804. In: Ridgway SH, Harrison R (eds) Handbook of Marine Mammals, vol 3, The Sirenians and Baleen Whales. Academic, London, pp 91–135Google Scholar
  84. Trevisan L (1941) Una nuova specie di Balaenula pliocenica. Palaeo Ital 40:1–13Google Scholar
  85. Van Beneden P-J (1875) Le squelette de la baleine fossile du Musée de Milan. Bull Acad Sci Belgique 40:736–758Google Scholar
  86. Van Beneden P-J, Gervais P (1868–1879) Ostéographie des cétacés vivants et fossiles: comprenant la description et l’iconographie du squelette et du système dentaire de ces animaux ainsi que des documents relatifs à leur histoire naturelle. Arthus Bertrand, ParisGoogle Scholar
  87. Wada S, Oishi M, Yamada TK (2003) A newly discovered species of living baleen whale. Nature 426:278–281PubMedCrossRefGoogle Scholar
  88. Westgate JW, Whitmore FC (2002) Balaena ricei, a new species of bowhead whale from the Yorktown Formation (Pliocene) of Hampton, Virginia. In: Emry RJ (ed) Cenozoic Mammals of Land and Sea: Tributes to the Career of Clayton E. Ray. Smithsonian Contrib Paleobiol 93:295–312Google Scholar
  89. Whitmore FC, Barnes LG (2008) The Herpetocetinae, a new subfamily of extinct baleen whales (Mammalia, Cetacea, Cetotheriidae). In: Ray CE, Bohaska DJ, Koretsky IA, Ward LW, Barnes LG (eds) Geology and Paleontology of the Lee Creek Mine, North Carolina, IV: Virginia Museum of Natural History Special Publication 14:141–180Google Scholar
  90. Wiens JJ, Bonett RM, Chippindale PT (2005) Ontogeny discombobulates phylogeny: paedomorphosis and higher-level salamander relationships. Syst Biol 54:91–110PubMedCrossRefGoogle Scholar
  91. Winn HE, Reichley NE (1985) Humpack whale Megaptera novaeangliae (Borowski 1871). In: Ridgway SH, Harrison R (eds) Handbook of Marine Mammals, vol 3, The Sirenians and Baleen Whales. Academic, London, pp 241–273Google Scholar
  92. Yamada TK, Chou L-S, Chantrapornsyl S, Adulyanukosol K, Chakravarti SK, Oishi M, Wada S, Yao C-J, Kakuda T, Tajima Y, Arai K, Umetani A, Kurihara N (2006) Middle-sized balaenopterid whale specimens (Cetacea: Balaenopteridae) preserved at several institutions in Taiwan, Thailand, and India. Mem Natn Sci Mus Tokyo 44:1–10Google Scholar
  93. Yamada TK, Kakuda T, Tajima Y (2008) Middle-sized balaenopterid whale specimens in the Philippines and Indonesia. Mem Natl Mus Nat Sci Tokyo 45:75–83Google Scholar
  94. Yang X-G (2009) Bayesian inference of cetacean phylogeny based on mitochondrial genomes. Biologia 64:811–818CrossRefGoogle Scholar
  95. Yoshida K, Kimura T, Hasegawa Y (2003) New cetothere (Cetacea: Mysticeti) from the Miocene Chichibumachi Group, Japan. Bull Saitama Mus Nat Hist 20–21:1–10Google Scholar
  96. Zeigler CV, Chan GL, Barnes LG (1997) A new late Miocene balaenopterid whale (Cetacea: Mysticeti), Parabalaenoptera baulinensis, (new genus and species) from the Santa Cruz Mudstone, Point Reyes Peninsula, California. Proc Calif Acad Sci 50:115–138Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Earth SciencesUniversity of BristolBristolUK
  2. 2.Department of GeologyUniversity of OtagoDunedinNew Zealand

Personalised recommendations