Journal of Mammalian Evolution

, Volume 17, Issue 4, pp 227–243 | Cite as

A New Small-Bodied Species of Palaeonictis (Creodonta, Oxyaenidae) from the Paleocene-Eocene Thermal Maximum

  • Stephen G. B. Chester
  • Jonathan I. Bloch
  • Ross Secord
  • Doug M. Boyer
Original Article


Oxyaenid creodonts are extinct carnivorous mammals known from the Paleogene of North America, Europe, and Asia. The genus Palaeonictis is represented by three species that together span the late Paleocene to early Eocene of North America, and at least one species from the early Eocene of Europe. Previously, only a single trigonid of Palaeonictis was known from the interval encompassing the Paleocene-Eocene Thermal Maximum (PETM) in North America. We describe Palaeonictis wingi sp. nov. from the PETM in the Cabin Fork drainage, southeastern Bighorn Basin, Wyoming, based on associated right and left dentaries with P2-M2. Palaeonictis wingi sp. nov. is substantially smaller than the other North American congeners, making it similar in size to P. gigantea from the earliest Eocene of Europe and the previously described PETM specimen. We suggest that a form similar to the large-bodied late Paleocene P. peloria from North America gave rise to two smaller species in the earliest Eocene of North America (P. wingi) and Europe (P. gigantea). Palaeonictis wingi may have given rise to P. occidentalis following the PETM in North America. Dispersal of Palaeonictis to Europe coincided with rapid global warming of 5–10°C and related geographic range shifts in plants and other animals during the PETM. It has been suggested that certain mammalian lineages decreased in body size during the PETM, possibly in response to elevated temperature and/or higher CO2 levels. Results from a dietary analysis of Palaeonictis indicate that it was an omnivore that primarily consumed meat. This suggests that the decreased nutritious quality of vegetation caused by increased CO2 levels was not the direct contributing factor that caused body size reduction of this lineage during the PETM. Other selective pressures such as temperature, aridity, and prey size may have also contributed to the smaller body size of carnivorous mammals during this interval, although the presence of smaller species could also be explained by latitudinal range shifts of mammals during the PETM.


Palaeonictis Oxyaenidae Climate change PETM Dwarfing Orientation patch count 



For access to specimens, we thank Walter Joyce and Daniel Brinkman, Division of Vertebrate Paleontology, Peabody Museum of Natural History, New Haven; John Flynn and Judith Galkin, Department of Vertebrate Paleontology, American Museum of Natural History, New York; Richard Hulbert, Division of Vertebrate Paleontology, Florida Museum of Natural History, Gainesville; Philip Gingerich and Gregg Gunnell, Museum of Paleontology, University of Michigan; and Jerry Hooker, Natural History Museum, London. We thank John Wible and two anonymous reviewers for comments that improved the manuscript. We thank Gregg Gunnell, Scott Wing, Jerry Hooker, Richard Hulbert, John Krigbaum, Mary Kraus, Francesca McInerney, Paul Koch, David Fox, and Eric Sargis for helpful discussions. We also thank Jason Bourque and Alex Hastings for preparation of specimens. Research was funded by grants from NSF EAR-0640076 (J.I.B., R.S., and J.S. Krigbaum) and NSF EAR-0719941 (J.I.B., F. McInerney, S.L. Wing, and M.J. Kraus), and the Yale Institute for Biospheric Studies Center for Field Ecology to S.G.B.C. This support is gratefully acknowledged.


  1. Ashton KG, Tracy MC, de Queirox A (2000) Is Bergmann’s rule valid in mammals? Am Nat 156:390–415CrossRefGoogle Scholar
  2. Beard KC (2008) The oldest North American primate and mammalian biogeography during the Paleocene-Eocene Thermal Maximum. Proc Natl Acad Sci USA 105:3815–3818CrossRefPubMedGoogle Scholar
  3. Beard KC, Dawson MR (2009) Early Wasatchian mammals of the Red Hot Local Fauna, uppermost Tuscahoma Formation, Lauderdale County, Mississippi. Ann Carnegie Mus 78:193–243CrossRefGoogle Scholar
  4. Bergmann C (1847) Uber die Verhaltnisse der Warmeokonomie der Thiere zu ihrer Grosse. Gottinger Stud 31:595–708Google Scholar
  5. Bowen GJ, Beerling DJ, Koch PL, Zachos JC, Quattlebaum T (2004) A humid climate state during the Palaeocene/Eocene thermal maximum. Nature 432:495–499CrossRefPubMedGoogle Scholar
  6. Bowen GJ, Clyde WC, Koch PL, Ting S, Alroy J, Tsubamoto T, Wang Y, Wang Y (2002) Mammalian dispersal at the Paleocene/Eocene boundary. Science 295:2062–2065CrossRefPubMedGoogle Scholar
  7. Bowen GJ, Koch PL, Gingerich PD, Norris RD, Bains S, Corfield RM (2001) Refined isotope stratigraphy across the continental Paleocene-Eocene boundary on Polecat Bench in the northern Bighorn Basin. In: PD Gingerich (ed) Paleocene-Eocene Stratigraphy and Biotic Change in the Bighorn and Clarks Fork basins, Wyoming. Univ Mich Pap Paleontol 33:73-88Google Scholar
  8. Boyer DM (2008) Relief index of second mandibular molars is a correlate of diet among prosimian primates and other euarchontan mammals. J Hum Evol 46:605–622Google Scholar
  9. Chester SGB, Bloch JI, Boyer DM, Wing SL (2005) Anachronistic occurrences of phenacodontid species in the Clarkforkian of the southern Bighorn Basin: possible evidence against transient dwarfing in Ectocion and Copecion during the CIE-PETM interval. J Vertebr Paleontol 25:44AGoogle Scholar
  10. Clyde WC, Gingerich PD (1998) Mammalian community response to the latest Paleocene thermal maximum: an isotaphonomic study in the northern Bighorn Basin, Wyoming. Geology 26:1011–1014CrossRefGoogle Scholar
  11. Cope ED (1877) Report upon the extinct Vertebrata obtained in New Mexico by parties of the expedition of 1874. Geogr Surv West 100th Mer 4:1–370Google Scholar
  12. Cope ED (1878) Excursion de Meudon. Bull Soc Geol France, ser 3, 6:661–663Google Scholar
  13. de Blaineville HMD (1842) Ostéographie ou description iconographique comparée du squelette et du système dentaire des mammifères récents et fossiles pour servir de base à la zoologie et à la géologie. Livraison 10: Des Viverras. J.B. Baillière et Fils, Paris: 1–100Google Scholar
  14. Denison RH (1938) The broad-skulled Pseudocreodi. Ann NY Acad Sci 37:163–256Google Scholar
  15. Eberle JJ, McKenna MC (2002) Early Eocene Leptictida, Pantolesta, Creodonta, Carnivora, and Mesonychidae (Mammalia) from the Eureka Sound Group, Ellesmere Island, Nunavut. Can J Earth Sci 39:899–910CrossRefGoogle Scholar
  16. Evans AR, Wilson GP, Fortelius M, Jernvall J (2007) High-level similarity of dentitions in carnivorans and rodents. Nature 445:78–81CrossRefPubMedGoogle Scholar
  17. Fricke HC, Clyde WC, O’Neil JR, Gingerich PD (1998) Evidence for rapid climate change in North America during the latest Paleocene thermal maximum: oxygen isotope compositions of biogenic phosphate from the Bighorn Basin (Wyoming). Earth Planet Sci Lett 160:193–208CrossRefGoogle Scholar
  18. Gaulin, SJC (1979) A Jarman/Bell model of primate feeding niches. Hum Ecol 7:1–20Google Scholar
  19. Gingerich PD (1980) Tytthaena parrisi, oldest known oxyaenid (Mammalia, Creodonta) from the late Paleocene of western North America. J Paleontol 54:570–576Google Scholar
  20. Gingerich PD (1983) Systematics of early Eocene Miacidae (Mammalia, Carnivora) in the Clark’s Fork Basin, Wyoming. Contrib Mus Paleontol Univ Mich 26:197–225Google Scholar
  21. Gingerich PD (1987) Early Eocene bats (Mammalia, Chiroptera) and other vertebrates in freshwater limestones of the Willwood Formation, Clarks Fork Basin, Wyoming. Contrib Mus Paleontol Univ Mich 27:275–320Google Scholar
  22. Gingerich PD (1989) New earliest Wasatchian mammalian fauna from the Eocene of northwestern Wyoming: composition and diversity in a rarely sampled high-floodplain assemblage. Univ Mich Pap Paleontol 28:1–97Google Scholar
  23. Gingerich PD (2003) Mammalian responses to climate change at the Paleocene-Eocene boundary: Polecat Bench record in the northern Bighorn Basin, Wyoming. In: Wing SL, Gingerich PD, Schmitz B, Thomas E (eds) Causes and Consequences of Globally Warm Climates in the Early Paleogene. Geol Soc Am Spec Pap 369:463–478Google Scholar
  24. Gingerich PD (2006) Environment and evolution through the Paleocene-Eocene thermal maximum. Trends Ecol Evol 21:246–253CrossRefPubMedGoogle Scholar
  25. Gingerich PD, Deutsch HA (1989) Systematics and evolution of early Eocene Hyaenodontidae (Mammalia, Creodonta) in the Clarks Fork Basin, Wyoming. Contrib Mus Paleontol Univ Mich 27:327–391Google Scholar
  26. Gingerich PD, Smith BH (1984) Allometric scaling in the dentition of primates and insectivores. In: Jungers WL (ed) Size and Scaling in Primate Biology. Plenum Publishing Corp, New York, pp 257–272Google Scholar
  27. Gingerich PD, Smith TS (2006) Paleocene-Eocene land mammals from three new latest Clarkforkian and earliest Wasatchian wash sites at Polecat Bench in the northern Bighorn Basin, Wyoming. Contrib Mus Paleontol Univ Mich 31:245–303Google Scholar
  28. Gittleman JL (1985) Carnivore body size: ecological and taxonomic correlates. Oecologia 67:540–554CrossRefGoogle Scholar
  29. Gunnell GF (1998) Creodonta. In: CM Janis, KM Scott, and LL Jacobs (eds) Evolution of Tertiary Mammals of North America. Volume 1: Terrestrial Carnivores, Ungulates, and Ungulatelike Mammals. Cambridge University Press, Cambridge, pp 91–109Google Scholar
  30. Gunnell GF, Gingerich PD (1991) Systematics and evolution of late Paleocene and early Eocene Oxyaenidae (Mammalia, Creodonta) in the Clarks Fork Basin, Wyoming. Contrib Mus Paleontol Univ Mich 28:141–180Google Scholar
  31. Heinrich RE, Strait SG, Houde P (2008) Earliest Eocene Miacidae (Mammalia: Carnivora) from northwestern Wyoming. J Paleontol 82:154–162CrossRefGoogle Scholar
  32. Hooker JJ (1998) Mammalian faunal change across the Paleocene-Eocene transition in Europe. In: M Aubry, SG Lucas, and WA Berggren (eds) Late Paleocene-Early Eocene Climatic and Biotic Events in the Marine and Terrestrial Records. Columbia University Press, New York, pp 428–450Google Scholar
  33. Kihm AJ (1984) Early Eocene mammalian faunas of the Piceance Creek Basin Northwestern Colorado. Ph.D. Thesis, University of Colorado, Boulder, pp 1–381Google Scholar
  34. Kiltie RA (1984) Size ratios among sympatric neotropical cats. Oecologia 61:411–416CrossRefGoogle Scholar
  35. Koch PL (1986) Clinal geographic variation in mammals: Implications for the study of chronoclines. Paleobiology 12:261–281Google Scholar
  36. Koch PL, Clyde WC, Hepple RP, Fogel ML, Wing SL, Zachos JC (2003) Carbon and oxygen isotope records from paleosols spanning the Paleocene-Eocene boundary, Bighorn Basin, Wyoming. In: SL Wing, PD Gingerich, B Schmitz, E Thomas (eds) Causes and Consequences of Globally Warm Climates in the Early Paleogene. Geol Soc Am Spec Pap 369: 49–64Google Scholar
  37. Koch PL, Zachos JC, Gingerich PD (1992) Correlation between isotope records in marine and continental carbon reservoirs near the Palaeocene-Eocene boundary. Nature 358:319–322CrossRefGoogle Scholar
  38. Kraus MJ, Riggins S (2007) Transient drying during the Paleocene-Eocene Thermal Maximum (PETM): analysis of paleosols in the bighorn basin, Wyoming. Palaeogeogr Palaeoclimatol Palaeoecol 245:444–461CrossRefGoogle Scholar
  39. Legendre S (1986) Analysis of mammalian communities from the late Eocene and Oligocene of southern France. Palaeovertebrata 16:191–212Google Scholar
  40. Mayr E (1956) Geographical character gradients and climatic adaptation. Evolution 10:105–108CrossRefGoogle Scholar
  41. Meiri S, Dayan T, Simberloff D (2004) Carnivores, biases, and Bergmann’s rule. Biol J Linn Soc 81:579–588CrossRefGoogle Scholar
  42. O’Leary MA, Rose KD (1995) Postcranial skeleton of the early Eocene mesonychid Pachyaena (Mammalia: Mesonychia). J Vertebr Paleontol 15:410–430Google Scholar
  43. Ogg JG, Smith AG (2004) The geomagnetic polarity time scale. In: Gradstein FM, Ogg JG, Smith AG (eds) A Geologic Time Scale. Cambridge University Press, Cambridge, pp 63–86Google Scholar
  44. Polly PD (1997) Ancestry and species definition in paleontology: a stratocladistic analysis of Paleocene-Eocene Viverravidae (Mammalia, Carnivora) from Wyoming. Contrib Mus Paleontol Univ Mich 30:1–53Google Scholar
  45. Quinet GE (1966) Les mammifères du Landénien continental belge, second tome. Etude de la morphologie dentaire comparée des carnivores de Dormaal. Mém Inst R Sci Nat Belg 158:1–64Google Scholar
  46. Radloff FGT, Du Toit JT (2004) Large predators and their prey in a southern African savanna: a predator’s size determines its prey size range. J Anim Ecol 73:410–423CrossRefGoogle Scholar
  47. Rensch B (1938) Some problems of geographical variation and species-formation. Proc Linn Soc Lond 150:275–285Google Scholar
  48. Rose KD (1981) The Clarkforkian Land-Mammal Age and mammalian faunal composition across the Paleocene-Eocene boundary. Univ Mich Pap Paleontol 26:1–197Google Scholar
  49. Rose KD (2006) The Beginning of the Age of Mammals. The Johns Hopkins University Press, BaltimoreGoogle Scholar
  50. Rosenzweig ML (1966) Community structure in sympatric Carnivora. J Mammal 47:602–612CrossRefGoogle Scholar
  51. Rosenzweig ML (1968a) The strategy of body size in mammalian carnivores. Am Midl Nat 80:299–315CrossRefGoogle Scholar
  52. Rosenzweig ML (1968b) Net primary productivity of terrestrial communities: prediction from climatological data. Am Nat 102:67–74CrossRefGoogle Scholar
  53. Schmitz OJ, Lavinge DM (1987) Factors affecting body size in sympatric Ontario Canis. J Mammal 68:92–99CrossRefGoogle Scholar
  54. Schoener TW (1969) Models of optimal size for solitary predators. Am Nat 103:277–313CrossRefGoogle Scholar
  55. Secord R (2008) The Tiffanian land-mammal age (middle and late Paleocene) in the northern Bighorn Basin, Wyoming. Univ Mich Pap Paleontol 35:1–192Google Scholar
  56. Secord R, Bloch JI, Boyer DM, Chester SGB, Krigbaum J (2009) A new high-resolution continental record of the Paleocene-Eocene boundary carbon isotope excursion from mammalian tooth enamel. Geol Soc Am Abstracts w Programs 41:567Google Scholar
  57. Secord R, Chester SGB, Bloch JI, Boyer DM, Krigbaum J (2008) The first North American equids: a high-resolution stratigraphic study in the Paleocene-Eocene thermal maximum. J Vertebr Paleontol 28:140AGoogle Scholar
  58. Secord R, Gingerich PD, Smith ME, Clyde WC, Wilf P, Singer BS (2006) Geochronology and mammalian biostratigraphy of middle and upper Paleocene continental strata, Bighorn Basin, Wyoming. Am J Sci 306:211–245CrossRefGoogle Scholar
  59. Shellito CJ, Sloan LC, Huber M (2003) Climate model sensitivity to atmospheric CO2 levels in the early–middle Paleogene. Palaeogeogr Palaeoclimatol Palaeoecol 193:113–123CrossRefGoogle Scholar
  60. Sluijs A, Schouten S, Pagani M, Woltering M, Brinkhuis H, Damsté JSS, Dickens GR, Huber M, Reichart G-J, Stein R, Matthiessen J, Lourens LJ, Pedentchouk N, Backman J, Moran K, Clemens S, Cronin T, Eynaud F, Gattacceca J, Jakobsson M, Jordan R, Kaminski M, King J, Koc N, Martinez NC, McInroy D, Moore TC Jr, O’Regan M, Onodera J, Palike H, Rea B, Rio D, Sakamoto T, Smith DC, St John KEK, Suto I, Suzuki N, Takahashi K, Watanabe M, Yamamoto M (2006) Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum. Nature 441:610–613CrossRefPubMedGoogle Scholar
  61. Smith FA, Wing SL, Freeman KH (2007) Magnitude of the carbon isotope excursion at the Paleocene-Eocene thermal maximum: the role of plant community change. Earth Planet Sci Lett 262:50–65CrossRefGoogle Scholar
  62. Smith JJ, Hasiotis ST, Kraus MJ, Woody DT (2009) Transient dwarfism of soil fauna during the Paleocene-Eocene thermal maximum. Proc Natl Acad Sci USA 106:17655–17660CrossRefPubMedGoogle Scholar
  63. Smith R, Hooker JJ (1996) Sur la présence de dents de mammifères (Creodonta, Perissodactyla) près de la limite Paléocène-Eocène à Hoegaarden, Belgique. Palaeovertebrata 25:115–124Google Scholar
  64. Smith T (2000) Mammals from the Paleocene-Eocene transition in Belgium (Tienen Formation, MP7): palaeobiogeographical and biostratigraphical implications. Geol Foren Stock For 122:148–149Google Scholar
  65. Smith T, Smith R (2001) The creodonts (Mammalia, Ferae) from the Paleocene-Eocene transition in Belgium (Tienen Formation MP7). Belg J Zool 131:117–135Google Scholar
  66. Smith T, Bloch JI, Strait SG, Gingerich PD (2002) New species of Macrocranion (Mammalia, Lipotyphla) from the earliest Eocene of North America and its biogeographic implications. Contrib Mus Paleontol Univ Mich 30:373–384Google Scholar
  67. Smith T, Rose KD, Gingerich PD (2006) Rapid Asia-Europe-North America geographic dispersal of earliest Eocene primate Teilhardina during the Paleocene-Eocene Thermal Maximum. Proc Natl Acad Sci USA 103:11223–11227CrossRefPubMedGoogle Scholar
  68. Teilhard de Chardin P (1922) Les mammifères de l’éocène inférieur français et leurs gisements. Ann Paléontol 10:1–114Google Scholar
  69. Thomas DJ, Zachos JC, Bralower TJ, Thomas E, Bohaty S (2002) Warming the fuel for the fire: evidence for the thermal dissociation of methane hydrate during the Paleocene-Eocene thermal maximum. Geology 30:1067–1070CrossRefGoogle Scholar
  70. Tuchman NC, Wetzel RG, Rier ST, Wahtera KA, Teeri JA (2002) Elevated atmospheric CO2 lowers leaf litter nutritional quality for stream ecosystem food webs. Glob Change Biol 8:163–170CrossRefGoogle Scholar
  71. Van Valkenburgh B (1990) Skeletal and dental predictors of body mass in carnivores. In: Damuth J, MacFadden BJ (eds) Body Size in Mammalian Paleobiology. Cambridge University Press, Cambridge, pp 181–205Google Scholar
  72. Westerhold T, Rohl U, McCarren HK, Zachos JC (2009) Latest on the absolute age of the Paleocene-Eocene Thermal Maximum (PETM): new insights from exact stratigraphic position of key ash layers +19 and −17. Earth Planet Sci Lett 287:412–419CrossRefGoogle Scholar
  73. Wing SL, Bloch JI, Bowen GJ, Boyer DM, Chester SGB, Diefendorf AF, Harrington GJ, Kraus MJ, Secord R, McInerney FA (2009). Coordinated sedimentary & biotic change during the Paleocene Eocene Thermal Maximum in the Bighorn Basin, Wyoming, USA. In: EM Crouch, CP Strong, and CP Hollis (eds) Climatic and Biotic Events of the Paleogene (CBEP 2009), extended abstracts from an international conference in Wellington, New Zealand, 12-15 January 2009. GNS Sci Misc Ser 18:157–163Google Scholar
  74. Wing SL, Harrington GJ, Smith FA, Bloch JI, Boyer DM, Freeman KH (2005) Transient floral change and rapid global warming at the Paleocene-Eocene boundary. Science 310:993–996CrossRefPubMedGoogle Scholar
  75. Wood AR, Krause MJ, Gingerich PD (2008) Downslope fossil contamination: mammal-bearing fluvial conglomerates and the Paleocene-Eocene transition (Willwood Formation, Bighorn Basin, Wyoming). Palaios 23:380–390CrossRefGoogle Scholar
  76. Yans J, Strait SG, Smith T, Dupuis C, Steurbaut E, Gingerich PD (2006) High-resolution carbon isotope stratigraphy and mammalian faunal change at the Paleocene-Eocene boundary in the Honeycombs area of the southern Bighorn Basin, Wyoming. Am J Sci 306:712–735CrossRefGoogle Scholar
  77. Zachos JC, Wara MW, Bohaty S, Delaney ML, Rose Petrizzo M, Brill A, Bralower TJ, Premoli-Silva I (2003) A transient rise in tropical sea surface temperature during the Paleocene-Eocene Thermal Maximum. Science 302:1551–1554CrossRefPubMedGoogle Scholar
  78. Zhou X, Sanders WJ, Gingerich PD (1992) Functional and behavioral implications of vertebral structure in Pachyaena ossifraga (Mammalia, Mesonychia). Contrib Mus Paleontol Univ Mich 28:289–319Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Stephen G. B. Chester
    • 1
  • Jonathan I. Bloch
    • 2
  • Ross Secord
    • 2
    • 3
  • Doug M. Boyer
    • 4
  1. 1.Department of AnthropologyYale UniversityNew HavenUSA
  2. 2.Florida Museum of Natural HistoryUniversity of FloridaGainesvilleUSA
  3. 3.Department of GeosciencesUniversity of NebraskaLincolnUSA
  4. 4.Department of Anthropology and Archaeology, Brooklyn CollegeCity University of New YorkNew YorkUSA

Personalised recommendations