The Phylogeny of Living and Extinct Pangolins (Mammalia, Pholidota) and Associated Taxa: A Morphology Based Analysis

  • Timothy J. Gaudin
  • Robert J. Emry
  • John R. Wible
Original Paper

Abstract

The present study was undertaken in order to effect a comprehensive phylogenetic analysis of the order Pholidota, examining seven of the eight currently recognized extant species (absent is Manis culionensis, formerly recognized as a subspecies of Manis javanica) and nearly all the well-known fossil taxa, and employing a wide range of osteological characters from the entire skeleton. In addition, the relationship of pangolins to several putative early Tertiary relatives, including palaeanodonts and the enigmatic “edentate” Eurotamandua joresi, were investigated. The goal of the study was to improve understanding of the systematics and the biogeographic and evolutionary history of the pangolins. A computer-based cladistic analysis of phylogenetic relationships among seven extant species of pangolins, five extinct pangolin species (including all but one of the well-preserved taxa), as well as Eurotamandua and two genera of metacheiromyid palaeanodonts, Palaeanodon and Metacheiromys, was performed based upon 395 osteological characteristics of the skull and postcranial skeleton. Characters were polarized via comparison to the following successive outgroups: the basal feliform carnivoran Nandinia binotata and the hedgehog Erinaceus sp., a eulipotyphlan laursiatherian placental. A revised classification is presented based on the results of the analysis. The results support the monophyly of Pholidota and Palaeanodonta by providing new anatomical characters that can serve to diagnose a pangolin/palaeanodont clade, termed here Pholidotamorpha. Pholidota is defined so as to include all living and fossil pangolins, including all three taxa of middle Eocene “edentates” from the Messel fauna of Germany, among them Eurotamandua joresi. The results do not support the monophyly of the remaining two Messel “edentates” originally placed in the same genus Eomanis, which is restricted to the type species Eomanis waldi. Euromanis, new genus, is named with Eomanis krebsi Storch and Martin, 1994, as the type species, to form a new combination Euromanis krebsi (Storch and Martin, 1994). The analysis strongly supports the monophyly of a crown clade of pangolins diagnosed by many anatomical synapomorphies, the family Manidae. This crown clade is sister to the family Patriomanidae, which includes two Tertiary taxa, Patriomanis americana and Cryptomanis gobiensis, within the superfamily Manoidea. The relationship of the Tertiary European pangolin Necromanis to these two families is unresolved. Within Manidae, the extant species are divided into three well-supported, monophyletic genera, Manis for the Asian pangolins, Smutsia for the African ground pangolins, and Phataginus for the African tree pangolins. The latter two form a monophyletic African assemblage, the subfamily Smutsiinae. The biogeographic implications of this phylogeny are examined. A European origin for Pholidota is strongly indicated. The fossil record of pangolins would seem to support a European origin for the modern forms, with subsequent dispersal into sub-Saharan African and then to southern Asia, and the phylogeny produced in this analysis is consistent with such a scenario.

Keywords

Morphology Pholidota Palaeanodonta Pangolins Phylogeny Eurotamandua Euromanis krebsi 

References

  1. Botha J, Gaudin TJ (2007) A new pangolin (Mammalia: Pholidota) from the Pliocene of Langebaanweg, South Africa. J Vertebr Paleontol 27:484–491CrossRefGoogle Scholar
  2. Bremer K (1994) Branch support and tree stability. Cladistics 10:295–304CrossRefGoogle Scholar
  3. Carrano MT, Gaudin TJ, Blob RW, Wible JR (2006) Amniote Paleobiology: Perspectives on the Evolution of Mammals, Birds, and Reptiles. University of Chicago Press, ChicagoGoogle Scholar
  4. Chan L-K (1995) Extrinsic lingual musculature of two pangolins (Pholidota: Manidae). J Mammal 76:472–480CrossRefGoogle Scholar
  5. Cifelli RL (1983) Eutherian tarsals from the late Paleocene of Brazil. Am Mus Novitates 2761:1–31Google Scholar
  6. Corbet GB (1978) The Mammals of the Palaearctic Region: A Taxonomic Review. British Museum (Natural History), LondonGoogle Scholar
  7. Corbet GB, Hill JE (1991) A World List of Mammalian Species. Natural History Museum Publ and Oxford Univ Press, LondonGoogle Scholar
  8. Dubois E (1907) Eenige von Nederlandschen kant verkregen uitkomsten met betrekking tot de kennis der Kendeng-Fauna (Fauna van Trinil). Tijdschr K Nederlandsche Aardr Genootsch Ser 2(24):449–458Google Scholar
  9. Dubois E (1908) Das geologische Alter der Kendeng oder Trinil-Fauna. Tijdschr K Nederlandsche Aardr Genootsch Ser 2(25):553–555Google Scholar
  10. Dubois E (1926) Manis palaeojavanica, the giant pangolin of the Kendeng fauna. Proc K Nederlandsche Akad Wetensch Amsterdam 29:1233–1243Google Scholar
  11. Emry RJ (1970) A North American Oligocene pangolin and other additions to the Pholidota. Bull Am Mus Nat Hist 142:459–510Google Scholar
  12. Emry RJ (1973) Stratigraphy and preliminary biostratigraphy of the Flagstaff Rim area, Natrona County, Wyoming. Smithsonian Contrib Paleobiol 18:1–43Google Scholar
  13. Emry RJ (2004) The edentulous skull of the North American pangolin, Patriomanis americanus. Bull Am Mus Nat Hist 285:130–138CrossRefGoogle Scholar
  14. Feiler A (1998) Das Philippinen-Schuppentier, Manis culionensis Elera, 1915, eine fast vergessene Art (Mammalia: Pholidota: Manidae). Zool Abh Staatliches Mus Tierkunde Dresden 50:161–164Google Scholar
  15. Feldhamer GA, Drickamer LC, Vessey SH, Merritt JF, Krajewski C (2007) Mammalogy: Adaptation, Diversity and Ecology, 3rd edn. Johns Hopkins University Press, BaltimoreGoogle Scholar
  16. Flynn JJ, Wesley-Hunt GD (2005) Carnivora. In: Rose KD, Archibald JD (eds) The Rise of Placental Mammals. Origins and Relationships of the Major Extant Clades. Johns Hopkins University Press, Baltimore, pp 175–198Google Scholar
  17. Gaubert P, Antunes A (2005) Assessing the taxonomic status of the Palawan pangolin Manis culionensis (Pholidota) using discrete morphological characters. J Mammal 86:1068–1074CrossRefGoogle Scholar
  18. Gaudin TJ (1995) The ear region of edentates and the phylogeny of the Tardigrada (Mammalia, Xenarthra). J Vertebr Paleontol 15:672–705Google Scholar
  19. Gaudin TJ (1999a) Palaeanodonta. In: Singer RS (ed) Encyclopedia of Paleontology, vol 2. Fitzroy Dearborn Publishers, Chicago, pp 821–823Google Scholar
  20. Gaudin TJ (1999b) Pholidota. In: Singer RS (ed) Encyclopedia of Paleontology, vol 2. Fitzroy Dearborn Publishers, Chicago, pp 855–857Google Scholar
  21. Gaudin TJ (2004) Phylogenetic relationships among sloths (Mammalia, Xenarthra, Tardigrada): the craniodental evidence. Zool J Linn Soc 140:255–305CrossRefGoogle Scholar
  22. Gaudin TJ, Branham DG (1998) The phylogeny of the Myrmecophagidae (Mammalia, Xenarthra, Vermilingua) and relationship of Eurotamandua to the Vermilingua. J Mammal Evol 5:237–265CrossRefGoogle Scholar
  23. Gaudin TJ, Emry RJ, Pogue B (2006) A new genus and species of pangolin (Mammalia, Pholidota) from the late Eocene of Inner Mongolia, China. J Vertebr Paleontol 26:146–159CrossRefGoogle Scholar
  24. Gaudin TJ, Wible JR (1999) The entotympanic of pangolins and the phylogeny of the Pholidota. J Mammal Evol 6:39–65CrossRefGoogle Scholar
  25. Gaudin TJ, Wible JR (2006) Chapter 6. The phylogeny of living and extinct armadillos (Mammalia, Xenarthra, Cingulata): a craniodental analysis. In: Carrano MT, Gaudin TJ, Blob RW, Wible JR (eds) Amniote Paleobiology: Perspectives on the Evolution of Mammals, Birds, and Reptiles. University of Chicago Press, Chicago, pp 153–198Google Scholar
  26. Gebo DL, Rasmussen DT (1985) The earliest fossil pangolin (Pholidota: Manidae) from Africa. J Mammal 66:538–540CrossRefGoogle Scholar
  27. Grassé PP (1955) Ordre de Pholidotes. In: Grassé PP (ed) Traité de Zoologie, vol. 17, Mammifères. Masson et Cie, Paris, pp 1267–1282Google Scholar
  28. Guth C (1958) Pholidota. In: Piveteau J (ed) Traité de Paléontologie, Tome VI, vol. 2, Mammifères Évolution. Masson et Cie, Paris, pp 641–647Google Scholar
  29. Heath ME (1992a) Manis pentadactyla. Mammal Species 414:1–6Google Scholar
  30. Heath ME (1992b) Manis temminckii. Mammal Species 415:1–5Google Scholar
  31. Heath ME (1995) Manis crassicaudata. Mammal Species 513:1–4CrossRefGoogle Scholar
  32. Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol 42:182–192Google Scholar
  33. Hooijer DA (1947) A femur of Manis palaeojavanica Dubois from western Java. Proc K Nederlandsche Akad Wetensch 50:413–418Google Scholar
  34. Horovitz I, Storch G, Martin T (2005) Ankle structure in Eocene pholidotan mammal Eomanis krebsi and its taxonomic implications. Acta Palaeontol Pol 50:545–548Google Scholar
  35. Kingdon J (1974) East African Mammals, Volume 1. University of Chicago Press, ChicagoGoogle Scholar
  36. Kingdon J (1997) The Kingdon Field Guide to African Mammals. Princeton University Press, PrincetonGoogle Scholar
  37. Koenigswald W von (1969) Die Maniden (Pholidota, Mamm.) des europäischen Tertiärs. Mitt Bayer Staatssammlg Paläont hist Geol 9:61–71Google Scholar
  38. Koenigswald W von (1999) Order Pholidota. In: Rössner GE, Heissig K (eds) The Miocene Land Mammals of Europe. Verlag Dr. Friedrich Pfeil, Munich, pp 75–80Google Scholar
  39. Koenigswald W von, Martin T (1990) Ein Skelett von Necromanis franconica, einem Schuppentier (Pholidota, Mammalia) aus dem Aquitan von Saulcet im Allier-Becken (Frankreich). Eclogae Geol Helvetiae 83:845–864Google Scholar
  40. Koenigswald W von, Richter G, Storch G (1981) Nachweis von Hornschuppen bei Eomanis waldi aus der “Grube Messel” bei Darmstadt (Mammalia, Pholidota). Senckenberg lethaea 61:291–298Google Scholar
  41. Kormos T (1934) Manis hungarica n. s., das erste Schuppentier aus dem europäischen Oberpliozän. Folia zool hydrobiol 6:87–94Google Scholar
  42. Maddison DR, Maddison WP (2001) MacClade, version 4.03. Sinauer Associates, Inc., Sunderland, MAGoogle Scholar
  43. Maddison WP, Donoghue MJ, Maddison DR (1984) Outgroup analysis and parsimony. Syst Zool 33:83–103CrossRefGoogle Scholar
  44. Martin RE, Pine RH, DeBlase AF (2001) A Manual of Mammalogy, with Keys to the Families of the World, 3rd edn. McGraw-Hill Co, New YorkGoogle Scholar
  45. Matthew WD (1918) Edentata. In: A revision of the Lower Eocene Wasatch and Wind River Faunas. Part V- Insectivora (continued), Glires, Edentata. Bull Am Mus Nat Hist 38:565–657Google Scholar
  46. McKenna MC, Bell SK (1997) Classification of Mammals Above the Species Level. Columbia University Press, New YorkGoogle Scholar
  47. Novacek MJ (1992) Mammalian phylogeny: shaking the tree. Nature 356:121–125PubMedCrossRefGoogle Scholar
  48. Novacek MJ, Wyss AR (1986) Higher-level relationships of the recent eutherian orders: morphological evidence. Cladistics 2:257–287CrossRefGoogle Scholar
  49. Nowak RM (1999) Walker’s Mammals of the World, 6th edn. Johns Hopkins University Press, BaltimoreGoogle Scholar
  50. Patterson B (1978) Pholidota and Tubulidentata. In: Maglio VJ, Cooke HBS (eds) Evolution of African Mammals. Harvard University Press, Cambridge, pp 268–278Google Scholar
  51. Patterson B, Segall W, Turnbull WD, Gaudin TJ (1992) The ear region in xenarthrans (=Edentata, Mammalia). Part II. Sloths, anteaters, palaeanodonts, and a miscellany. Fieldiana Geol new ser 24:1–79Google Scholar
  52. Pocock RI (1924) The external characters of the pangolins (Manidae). Proc Zool Soc London 707–723Google Scholar
  53. Rose KD (1999) Eurotamandua and Palaeanodonta: Convergent or related? Paläontol Zeitschrift 73:395–401Google Scholar
  54. Rose KD, Emry RJ (1983) Extraordinary fossorial adaptations in the Oligocene palaeanodonts Epoicotherium and Xenocranium. J Morph 175:33–56CrossRefGoogle Scholar
  55. Rose KD, Emry RJ (1993) Relationships of Xenarthra, Pholidota, and fossil “edentates”. In: Szalay FS, Novacek MJ, McKenna MC (eds) Mammal Phylogeny: Placentals. Springer-Verlag, New York, pp 81–102Google Scholar
  56. Rose KD, Emry RJ, Gaudin TJ, Storch G (2005) Xenarthra and Pholidota. In: Rose KD, Archibald JD (eds) The Rise of Placental Mammals. Origins and Relationships of the Major Extant Clades. Johns Hopkins University Press, Baltimore, pp 106–126Google Scholar
  57. Rose KD, Lucas SG (2000) An early Paleocene palaeanodont (Mammalia, ?Pholidota) from New Mexico, and the origin of the Palaeanodonta. J Vertebr Paleontol 20:139–156CrossRefGoogle Scholar
  58. Schlitter DA (2005) Order Pholidota. In: Wilson DE, Reeder DM (eds) Mammal Species of the World, 3rd edn. Johns Hopkins University Press, Baltimore, pp 530–531Google Scholar
  59. Schoch RM (1984) Revision of Metacheiromys Wortman, 1903 and a review of the Palaeanodonta. Postilla 192:1–28Google Scholar
  60. Segall W (1973) Characteristics of the ear, especially the middle ear in fossorial mammals, compared with those in the Manidae. Acta Anat 86:96–110PubMedCrossRefGoogle Scholar
  61. Shoshani J, McKenna MC, Rose KD, Emry RJ (1997) Eurotamandua is a pholidotan not a xenarthran. J Vert Paleont 17:76AGoogle Scholar
  62. Simpson GG (1931) Metacheiromys and the relationships of the Edentata. Bull Am Mus Nat Hist 59:295–381Google Scholar
  63. Simpson GG (1945) The principles of classification and a classification of mammals. Bull Am Mus Nat Hist 85:1–350Google Scholar
  64. Springer MS, Murphy WJ, Eizirik E, O’Brien SJ (2005) Molecular evidence for major placental clades. In: Rose KD, Archibald JD (eds) The Rise of Placental Mammals. Origins and Relationships of the Major Extant Clades. Johns Hopkins University Press, Baltimore, pp 37–49Google Scholar
  65. Springer MS, Stanhope MJ, Madsen O, deJong WW (2004) Molecules consolidate the placental mammal tree. Trends Ecol Evol 19:430–438PubMedCrossRefGoogle Scholar
  66. Storch G (1978) Eomanis waldi, ein Schuppentier aus dem Mittel-Eozän der “Grube Messel” bei Darmstadt (Mammalia: Pholidota). Senckenberg lethaea 59:503–529Google Scholar
  67. Storch G (1981) Eurotamandua joresi, ein Myrmecophagide aus dem Eozän der “Grube Messel” bei Darmstadt (Mammalia, Xenarthra). Senckenberg lethaea 61:247–289Google Scholar
  68. Storch G (2003) Fossil Old World “edentates”. In: Fariña RA, Vizcaíno SF, Storch G (eds) Morphological Studies in Fossil and Extant Xenarthra (Mammalia). Senckenberg biol 83:51–60Google Scholar
  69. Storch G, Habersetzer J (1991) Rückverlagerte Choanen und akzessorische Bulla tympanica bei rezenten Vermilingua und Eurotamandua aus dem Eozän von Messel (Mammalia: Xenarthra). Z Säugetierkunde 56:257–271Google Scholar
  70. Storch G, Martin T (1994) Eomanis krebsi, ein neues Schuppentier aus dem Mittel-Eozän der Grube Messel bei Darmstadt (Mammalia: Pholidota). Berliner geowiss Abh E13:83–97Google Scholar
  71. Swart JM, Richardson PRK, Ferguson JWH (1999) Ecological factors affecting the feeding behavior of pangolins (Manis temminckii). J Zool Lond 247:281–292CrossRefGoogle Scholar
  72. Swofford DL (2002) PAUP: Phylogenetic Analysis Using Parsimony, Version 4.0b10. Sinauer Associates, Inc., Sunderland, MAGoogle Scholar
  73. Szalay FS, Schrenk F (1998) The middle Eocene Eurotamandua and a Darwinian phylogenetic analysis of “edentates”. Kaupia Darmstädter Beit Naturgeschich 7:97–186Google Scholar
  74. Vaughan TA, Ryan JM, Czaplewski NJ (2000) Mammalogy, 4th edn. Saunders College Publishing, New YorkGoogle Scholar
  75. Wible JR, Gaudin TJ (2004) On the cranial osteology of the yellow armadillo Euphractus sexcinctus (Dasypodidae, Xenarthra, Placentalia). Ann Carnegie Mus 73:117–196Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Timothy J. Gaudin
    • 1
  • Robert J. Emry
    • 2
  • John R. Wible
    • 3
  1. 1.Department of Biological & Environmental SciencesUniversity of Tennessee at ChattanoogaChattanoogaUSA
  2. 2.Department of Paleobiology, MRC 121, National Museum of Natural HistorySmithsonian InstitutionWashingtonUSA
  3. 3.Section of MammalsCarnegie Museum of Natural HistoryPittsburghUSA

Personalised recommendations