Journal of Mammalian Evolution

, Volume 16, Issue 3, pp 151–173 | Cite as

Global Completeness of the Bat Fossil Record

Original Paper

Abstract

Bats are unique among mammals in their use of powered flight and their widespread capacity for laryngeal echolocation. Understanding how and when these and other abilities evolved could be improved by examining the bat fossil record. However, the fossil record of bats is commonly believed to be very poor. Quantitative analyses of this record have rarely been attempted, so it has been difficult to gauge just how depauperate the bat fossil record really is. A crucial step in analyzing the quality of the fossil record is to be able to accurately estimate completeness. Measures of completeness of the fossil record have important consequences for our understanding of evolutionary rates and patterns among bats. In this study, we applied previously developed statistical methods of analyzing completeness to the bat fossil record. The main utility of these methods over others used to study completeness is their independence from phylogeny. This phylogenetic-independence is desirable, given the recent state of flux in the higher-level phylogenetic relationships of bats. All known fossil bat genera were tabulated at the geologic stage or sub-epoch level. This binning strategy allowed an estimate of the extinction rate for each bat genus per bin. Extinction rate—together with per-genus estimates of preservation probability and original temporal distributions—was used to calculate completeness. At the genus level, the bat fossil record is estimated to be 12% complete. Within the order, Pteropodidae is missing most of its fossil history, while Rhinolophoidea and Vespertilionoidea are missing the least. These results suggest that 88% of bats that existed never left a fossil record, and that the fossil record of bats is indeed poor. Much of the taxonomic and evolutionary history of bats has yet to be uncovered.

Keywords

Chiroptera Completeness Fossil record Phylogeny-independent 

References

  1. Aguilar J-P, Brandy LD, Thaler L (1984) Les rongeurs de Salobreña (sud de l’Espagne) et le probleme de la migration Messinienne. Paléobiol Cont 14:3–17Google Scholar
  2. Agustí J, Cabrera L, Garcés M, Krijgsman W, Oms O, Parés JM (2001) A calibrated mammal scale for the Neogene of Western Europe. State of the Art. Earth-Sci Rev 52:247–260Google Scholar
  3. Alba DM, Agustí J, Moyà-Solà S (2001) Completeness of the mammalian fossil record in the Iberian Neogene. Paleobiology 27:79–83Google Scholar
  4. Alroy J (2000) New methods for quantifying macroevolutionary patterns and processes. Paleobiology 26:707–733Google Scholar
  5. Archer M (1978) Australia’s oldest bat, a possible rhinolophid. Proc Roy Soc Queensl 89:23–24Google Scholar
  6. Arroyo-Cabrales J, Gregorin R, Schlitter DA, Walker A (2002) The oldest African molossid bat cranium (Chiroptera: Molossidae). J Vertebr Paleontol 22:380–387Google Scholar
  7. Avery DM (1998) An assessment of the lower Pleistocene micromammalian fauna from Swartkrans Members 1–3, Gauteng, South Africa. Géobios 31:393–414Google Scholar
  8. Avery DM (2003) Early and middle Pleistocene environments and hominid biogeography; micromammalian evidence from Kabwe, Twin Rivers and Mumbwa Caves in central Zambia. Palaeogeogr Palaeoclimatol Palaeoecol 189:55–69Google Scholar
  9. Bailey BE (2004) Biostratigraphy and biochronology of early Arikareean through late Hemingfordian small mammal faunas from the Nebraska panhandle and adjacent areas. Paludicola 4:81–113Google Scholar
  10. Barghoorn SF (1977) New material of Vespertiliavus Schlosser (Mammalia, Chiroptera) and suggested relationships of emballonurid bats based on cranial morphology. Am Mus Novitates 2618:1–29Google Scholar
  11. Beard KC, Sigé B, Krishtalka L (1992) A primitive vespertilionoid bat from the early Eocene of central Wyoming. C R Acad Sci Paris, sér. 2a 314:735–741Google Scholar
  12. Benton MJ (1998) The quality of the fossil record of the vertebrates. In: Donovan SK, Paul CRC (eds) The Adequacy of the Fossil Record. John Wiley & Sons, Chichester, pp 269–303Google Scholar
  13. BiochroM’97 (1997) Biochronologie mammalienne du Cénozoïque en Europe at domaines reliés. Synthèses et tableaux de corrélations. In: Aguilar JP, Legendre S, and Michaux J (eds) Actes du Congrès BiochroM’97. Mém Trav E P H E Inst, Montpellier, France, vol. 21:769–805Google Scholar
  14. Black CC, Krishtalka L (1986) Rodents, bats, and insectivores from the Plio-Pleistocene sediment to the East of Lake Turkana, Kenya. Nat Hist Mus LA Co, Contrib Sci 372:1–15Google Scholar
  15. Butler PM (1978) Insectivora and Chiroptera. In: Maglio VJ, Cooke HBS (eds) Evolution of African Mammals. Harvard University Press, Cambridge, pp 56–68Google Scholar
  16. Butler PM (1984) Macroscelidea, Insectivora and Chiroptera from the Miocene of East Africa. Palaeovertebrata 14:117–200Google Scholar
  17. Butler PM, Greenwood M (1965) Insectivora and Chiroptera. In: Leakey LSB (ed) Olduvai Gorge 1951–1961. Vol. 1. Fauna and Background. Cambridge University Press, Cambridge, pp 13–15Google Scholar
  18. Butler PM, Hopwood AT (1957) Insectivora and Chiroptera from the Miocene rocks of Kenya colony. Fossil Mammals Afr 13:1–35Google Scholar
  19. Cahn AR (1939) Pleistocene fossils from a cave in Anderson County, Tennessee. J Mammal 20:248–250Google Scholar
  20. Cassiliano ML (1999) Biostratigraphy of Blancan and Irvingtonian mammals in the Fish Creek-Vallecito Creek section, southern California, and a review of the Blancan-Irvingtonian boundary. J Vertebr Paleontol 19:169–186Google Scholar
  21. Čermák S, Wagner J, Fejfar O, Horáček I (2007) New Pliocene localities with micromammals from the Czech Republic: a preliminary report. Fossil Rec 10:60–68Google Scholar
  22. Cheetham AJ, Jackson JBC (1998) The fossil record of cheilostome Bryozoa in the Neogene and Quaternary of tropical America: adequacy for phylogenetic and evolutionary studies. In: Donovan SK, Paul CRC (eds) The Adequacy of the Fossil Record. John Wiley & Sons, Chichester, pp 227–242Google Scholar
  23. Choate JR, Hall ER (1967) Two new species of bats, genus Myotis, from a Pleistocene deposit in Texas. Am Mid Nat 78:531–534Google Scholar
  24. Clyde WC, Gingerich PD (1994) Rates of evolution in the dentition of early Eocene Cantius: comparison of size and shape. Paleobiology 20:506–522Google Scholar
  25. Cozzuol MA (2006) The Acre vertebrate fauna: age, diversity, and geography. J So Amer Earth Sci 21:185–203Google Scholar
  26. Czaplewski NJ (1987) Middle Blancan vertebrate assemblage from the Verde Formation, Arizona. Contrib Geol, Univ Wyoming 25:133–155Google Scholar
  27. Czaplewksi NJ (1991) Miocene bats from the lower Valentine Formation of northeastern Nebraska. J Mammal 72:715–722Google Scholar
  28. Czaplewski NJ (1993) Late Tertiary bats (Mammalia, Chiroptera) from the southwestern United States. Southwest Nat 38:111–118Google Scholar
  29. Czaplewski NJ (1996) Opossums (Didelphidae) and bats (Noctilionidae and Molossidae) from the late Miocene of the Amazon basin. J Mammal 77:84–94Google Scholar
  30. Czaplewski NJ (1997) Chiroptera. In: Kay RF, Madden RH, Cifelli RL, Flynn JJ (eds) Vertebrate Paleontology in the Neotropics: The Miocene fauna of La Venta, Colombia. Smithsonian Institution Press, Washington, pp 410–431Google Scholar
  31. Czaplewski NJ, Bailey BE, Corner RG (1999) Tertiary bats (Mammalia: Chiroptera) from northern Nebraska. Trans Nebr Acad Sci 25:83–93Google Scholar
  32. Czaplewksi NJ, Cartelle C (1998) Pleistocene bats from cave deposits in Bahia, Brazil. J Mammal 79:784–803Google Scholar
  33. Czaplewski NJ, Morgan GS (2000) A new vespertilionid bat (Mammalia: Chiroptera) from the early Miocene (Hemingfordian) of Florida, USA. J Vertebr Paleontol 20:736–742Google Scholar
  34. Czaplewski NJ, Morgan GS, McLeod SA (2008) Chiroptera. In: Janis CM, Gunnell GF, Uhen MD (eds) Evolution of Tertiary mammals of North America. Volume 2. Small mammals, xenarthrans, and marine mammals. Cambridge University Press, Cambridge, pp 174–197Google Scholar
  35. Czaplewski NJ, Morgan GS, Naeher T (2003a) Molossid bats from the late Tertiary of Florida with a review of the Tertiary Molossidae of North America. Acta Chiropterolog 5:61–74Google Scholar
  36. Czaplewski NJ, Takai M, Naeher TM, Shigehara N, Setoguchi T (2003b) Additional bats from the Middle Miocene La Venta Fauna of Colombia. Rev Acad Colomb Cienc 27:263–282Google Scholar
  37. Czaplewski NJ, Peachey WD (2003) Late Pleistocene bats from Arkenstone Cave, Arizona. Southwest Nat 48:597–609Google Scholar
  38. Czaplewski NJ, Rincón AD, Morgan GS (2005) Fossil bat (Mammalia: Chiroptera) remains from Inciarte Tar Pit, Sierra de Perijá, Venezuela. Caribb J Sci 41:768–781Google Scholar
  39. Dalquest WW (1978) Early Blancan mammals of the Beck Ranch Local Fauna of Texas. J Mammal 59:269–298Google Scholar
  40. Dalquest WW (1983) Mammals of the Coffee Ranch Local Fauna Hemphillian of Texas. Tex Mem Mus, Pearce-Sellards Ser 38:1–41Google Scholar
  41. Dalquest WW, Roth E (1970) Late Pleistocene mammals from a cave in Tamaulipas, Mexico. Southwest Nat 15:217–230Google Scholar
  42. de Bonis L, Crochet J-Y, Rage J-C, Sigé B, Sudre J, Vianey-Liaud M (1973) Nouvelles faunes de vertébrés oligocènes des phosphorites du Quercy Bull Mus Natn Hist Nat, Paris, 3e série 174:105–113Google Scholar
  43. Ducrocq S, Jaeger J-J, Sigé B (1993) Un mégachiroptère dans l’eocène supérieur de Thaïlande—incidence dans la discussion phylogénique du groupe. N Jb Geol Paläont Mh 9:561–575Google Scholar
  44. Eick GN, Jacobs DS, Matthee CA (2005) A nuclear DNA phylogenetic perspective on the evolution of echolocation and historical biogeography of extant bats (Chiroptera). Mol Biol Evol 22:1869–1886PubMedGoogle Scholar
  45. Engesser B (1972) Die obermiozäne Säugetier Fauna von Anwil (Baselland). Tätigkeitsberichte Naturforsch Gesellsch, Baselland 28:37–363Google Scholar
  46. Engesser B, Ziegler R (1996) Didelphids, insectivores, and chiropterans from the later Miocene of France, Cental Europe, Greece, and Turkey. In: Bernor RL, Fahlbusch V, Mittman H-W (eds) The Evolution of Western Eurasian Neogene Mammal Faunas. Columbia University Press, New York, pp 157–167Google Scholar
  47. Foote M, Raup DM (1996) Fossil preservation and the stratigraphic ranges of taxa. Paleobiology 22:121–140PubMedGoogle Scholar
  48. Fox DL, Fisher DC, Leighton LR (1999) Reconstructing phylogeny with and without temporal data. Science 284:1816–1819PubMedGoogle Scholar
  49. Galbreath EC (1962) A new myotid bat from the middle Oligocene of northeastern Colorado. Trans Kansas Acad Sci 65:448–451Google Scholar
  50. Gauthier JA, Kluge AG, Rowe T (1988) Amniote phylogeny and the importance of fossils. Cladistics 4:105–209Google Scholar
  51. Ginsburg L (1963) Les mammifères fossiles récoltés à Sansan au cours du XIXe siècle. Bull Soc Geol France, 7e série 5:3–15Google Scholar
  52. Godawa J (1993) Pliocene bats of the genus Myotis (Mammalia: Chiroptera) from Podlesice (Poland) and Osztramos 9 and 13 (Hungary). Acta Zool Cracov 36:241–250Google Scholar
  53. Gradstein FM, Ogg JG, Smith AG (eds) (2004) A Geologic Timescale 2004. Cambridge University Press, CambridgeGoogle Scholar
  54. Grady FV, Olson SL (2006) Fossil bats from Quaternary deposits on Bermuda (Chiroptera: Vespertilionidae). J Mammal 87:148–152Google Scholar
  55. Gunnell GF, Jacobs BF, Herendeen PS, Head JJ, Kowalski E, Msuya C, Mizambwa FA, Harrison T, Habersetzer J, Storch G (2003) Oldest placental mammal from sub-Saharan Africa: Eocene microbat from Tanzania—evidence for early evolution of sophisticated echolocation. Palaeontol Electron 5(3):10Google Scholar
  56. Gunnell GF, Simmons NB (2005) Fossil evidence and the origin of bats. J Mammal Evol 12:209–246Google Scholar
  57. Gunnell GF, Simons EL, Seiffert ER (2008) New bats (Mammalia: Chiroptera) from the late Eocene and early Oligocene, Fayum Depression, Egypt. J Vertebr Paleontol 28:1–11Google Scholar
  58. Habersetzer J, Storch G (1987) Klassifikation und funktionelle Flügelmorphologie paläogener Fledermäuse (Mammalia, Chiroptera). Cour Forschung Senckenberg 91:11–150Google Scholar
  59. Hand SJ (1985) New Miocene megadermatids (Chiroptera: Megadermatidae) from Australia with comments on megadermatid phylogenetics. Aust Mammal 8:5–43Google Scholar
  60. Hand SJ (1990) First Tertiary molossid (Microchiroptera: Molossidae) from Australia: its phylogenetic and biogeographic implications. Mem Queensl Mus 28:175–192Google Scholar
  61. Hand SJ (1993) First skull of a species of Hipposideros (Brachipposideros) (Microchiroptera: Hipposideridae), from Australian Miocene sediments. Mem Queensl Mus 33:179–192Google Scholar
  62. Hand SJ (1996) New Miocene and Pliocene megadermatids (Mammalia, Microchiroptera) from Australia, with comments on broader aspects of megadermatid evolution. Géobios 29:365–377Google Scholar
  63. Hand S (1997a) Hipposideros bernardsigei, a new hipposiderid (Mammalia: Microchiroptera) from the Australian Miocene and a reconsideration of the monophyly of related species groups. Münchner Geowiss Abh 34:73–92Google Scholar
  64. Hand SJ (1997b) Miophyllorhina riversleighensis gen. et sp. nov., a Miocene leaf-nosed bat (Microchiroptera: Hipposideridae) from Riversleigh, Queensland. Mem Queensl Mus 41:351–354Google Scholar
  65. Hand SJ (1997c) New Miocene leaf-nosed bats (Microchiroptera: Hipposideridae) from Riversleigh, northwestern Queensland. Mem Queensl Mus 41:335–349Google Scholar
  66. Hand SJ (1998a) Riversleigha williamsi gen. et sp. nov., a large Miocene hipposiderid (Microchiroptera) from Riversleigh, Queensland. Alcheringa 22:259–276Google Scholar
  67. Hand SJ (1998b) Xenorhinos, a new genus of Old World leaf-nosed bats (Microchiroptera: Hipposideridae) from the Australian Miocene. J Vertebr Paleontol 18:430–439Google Scholar
  68. Hand SJ, Archer M (2005) A new hipposiderid genus (Microchiroptera) from an early Miocene bat community in Australia. Palaeontology 48:371–383Google Scholar
  69. Hand SJ, Kirsch JAW (2003) Archerops, a new annectent hipposiderid genus (Mammalia: Microchiroptera) from the Australian Miocene. J Paleontol 77:1139–1151Google Scholar
  70. Hand SJ, Murray P, Megirian D, Archer M, Godthelp H (1998) Mystacinid bats (Microchiroptera) from the Australian Tertiary. J Paleontol 72:538–545Google Scholar
  71. Hand S, Novacek M, Godthelp H, Archer M (1994) First Eocene bat from Australia. J Vertebr Paleontol 14:375–381Google Scholar
  72. Handley CO (1959) A Revision of Bats of the Genera Euderma and Plecotus. Smithsonian Institution Press, WashingtonGoogle Scholar
  73. Heller F (1935) Fledermäuse aus der Eozänen Braunkohle des Geisel tales bei Halle a. S. Nov Acta Leopold Neue Folge 2:301–314Google Scholar
  74. Heller F (1936) Eine oberplicäne Wirbeltierfauna aus Rheinhessen. N Jb Mineral, Geol, Paläont B 76:99–160Google Scholar
  75. Hendey QB (1981) Paleoecology of the late Tertiary fossil occurrences in “E” Quarry, Langebaanweg, South Africa, and a reinterpretation of their geological context. Ann S Afr Mus 84:1–104Google Scholar
  76. Hermsen EJ, Hendricks JR (2008) W(h)ither fossils? Studying morphological character evolution in the age of molecular sequences. Ann Mo Bot Gard 95:72–100Google Scholar
  77. Hibbard CW (1950) Mammals from the Rexroad Formation from Fox Canyon, Kansas. Contr Mus Paleont, Univ Mich 8:113–192Google Scholar
  78. Hoofer SR, van den Bussche RA, Horáček I (2006) Generic status of the American pipistrelles (Vespertilionidae) with description of a new genus. J Mammal 87:981–992Google Scholar
  79. Hooker JJ (1996) A primitive emballonurid bat (Chiroptera, Mammalia) from the earliest Eocene of England. Palaeovertebrata 25:287–300Google Scholar
  80. Horáček I (1986) Kerivoula (Mammalia, Chiroptera), fossil in Europe? Acta Univ Carolinae-Geol, Špinar 2:213–222Google Scholar
  81. Horáček I (2001) On the early history of vespertilionid bats in Europe: the lower Miocene record from the Bohemian Massif. Lynx 32:123–154Google Scholar
  82. Horáček I, Fejfar O, Hulva P (2006) A new genus of vespertilionid bat from early Miocene of Jebel Zelten, Libya, with comments on Scotophilus and early history of vespertilionid bats (Chiroptera). Lynx 37:131–150Google Scholar
  83. Hulva P, Horáček I, Benda P (2007) Molecules, morphometrics and new fossils provide an integrated view of the evolutionary history of Rhinopomatidae (Mammalia: Chiroptera). BMC Evol Biol 7:165, 15 ppGoogle Scholar
  84. Jepsen GL (1966) Early Eocene bat from Wyoming. Science 154:1333–1339PubMedGoogle Scholar
  85. Jin C-Z, Dong W, Liu J-Y, Wei G-B, Xu Q-Q, Zheng J-J, Zheng L-T, Han L-G, Wang F-Z (2000) A preliminary study on the early Pleistocene deposits and the mammalian fauna from the Renzi Cave, Fanchang, Anhui, China. Acta Anthropol Sinica 19(supp):235–245Google Scholar
  86. Jones KE, Bininda-Emonds ORP, Gittleman JL (2005) Bats, clocks, and rocks: diversification patterns in Chiroptera. Evolution 59:2243–2255PubMedGoogle Scholar
  87. Jones KE, Purvis A, MacLarnon A, Bininda-Emonds ORP, Simmons NB (2002) A phylogenetic supertree of the bats (Mammalia: Chiroptera). Biol Rev 77:223–259PubMedGoogle Scholar
  88. Kormos T (1930) Diagnosen neuer Säugetiere aus der oberpliozänen Fauna des Somlyóberges bei Püspökkfürdő. Ann Mus National Hungarici 27:237–246Google Scholar
  89. Kowalski K (1956) Insectivores, bats and rodents from the early Pleistocene bone breccia of Podlesice near Kroczyce (Poland). Acta Palaeontol Pol 1:331–393Google Scholar
  90. Kowalski K (1962a) Bats of the early Pleistocene from Koneprusy (Czechoslovakia). Acta Zool Cracov 7:145–156Google Scholar
  91. Kowalski K (1962b) Fauna of bats from the Pliocene of Węże in Poland. Acta Zool Cracov 7:39–51Google Scholar
  92. Kowalski K (1995) Taphonomy of bats (Chiroptera). Géobios 18:251–256Google Scholar
  93. Lavocat R (1961) Le gisement de vertébrés Miocènes de Beni Mellal (Maroc): étude systematique de la faune de mammiféres. Notes Mém Serv Mines Carte Géol Maroc 155:29–144Google Scholar
  94. Lawrence B (1943) Miocene bat remains from Florida, with notes on the generic characters of the humerus of bats. J Mammal 24:356–369Google Scholar
  95. Legendre S (1980) Un chiroptère emballonuridé dans le néogène d’Europe occidentale; considerations paléobiogéographiques. Géobios 13:839–847Google Scholar
  96. Legendre S (1982) Hipposideridae (Mammalia: Chiroptera) from the Mediterranean middle and late Neogene, and evolution of the genera Hipposideros and Asellia. J Vertebr Paleontol 2:372–385Google Scholar
  97. Legendre S (1985) Molossidés (Mammalia, Chiroptera) cénozoïques de l’Ancien et du Nouveau Monde; statut systématique; integration phylogénique des données. N Jb Geol Paläont Abh 170:205–227Google Scholar
  98. Lemon RRH, Churcher CS (1961) Pleistocene geology and paleontology of the Talara Region, northwest Peru. Am J Sci 259:410–429Google Scholar
  99. Lindsay EH, Jacobs LL (1985) Pliocene small mammals from Chihuahua. Paleontol Mex 51:1–45Google Scholar
  100. MacFadden BJ (1985) Patterns of phylogeny and rates of evolution in fossil horses: hipparions from the Miocene and Pliocene of North America. Paleobiology 11:245–257Google Scholar
  101. Maitre E, Sigé B, Escarguel G (2008) A new family of bats in the Paleogene of Europe: systematics and implications for the origin of emballonurids and rhinolophoids. N Jb Geol Paläont Abh 250:199–216Google Scholar
  102. Marandat B, Crochet J-Y, Godinot M, Hartenberger J-L, Legendre S, Rémy JA, Sigé B, Sudre J, Vianey-Liaud M (1993) Une nouvelle faune à mammifères d’âge éocène (Lutétien supérieur) dans les phosphorites du Quercy. Géobios 26:617–623Google Scholar
  103. Meschinelli L (1903) Un nuovo chirottero fossile (Archaeopteropus transiens Mesch.) delle Ligniti di Monteviale. Atti Reale Ist Veneto Sci, Lett, Arti 62:1329–1344Google Scholar
  104. Miller-Butterworth CM, Murphy WJ, O’Brien SJ, Jacobs DS, Springer MS, Teeling EC (2007) A family matter: conclusive resolution of the taxonomic position of the long-fingered bats, Miniopterus. Mol Biol Evol 24:1553–1561PubMedGoogle Scholar
  105. Morgan GS (1989) Fossil Chiroptera and Rodentia from the Bahamas, and the historical biogeography of the Bahamian mammal fauna. In: Woods CA (ed) Biogeography of the West Indies. Sandhill Crane, Gainesville, pp 685–740Google Scholar
  106. Morgan GS (1991) Neotropical Chiroptera from the Pliocene and Pleistocene of Florida. Bull Am Mus Nat Hist 206:176–213Google Scholar
  107. Morgan GS, Czaplewski NJ (1999) First fossil record of Amorphochilus schnablii (Chiroptera: Furipteridae), from the late Quaternary of Peru. Acta Chiropterolog 1:75–79Google Scholar
  108. Morgan GS, Czaplewski NJ (2003) A new bat (Chiroptera: Natalidae) from the early Miocene of Florida, with comments on natalid phylogeny. J Mammal 84:729–752Google Scholar
  109. Morgan GS, Linares OJ, Ray CE (1988) New species of fossil vampire bats (Mammalia: Chiroptera: Desmodontidae) from Florida and Venezuela. Proc Biol Soc Wash 101:912–928Google Scholar
  110. Morgan GS, Ridgeway RB (1987) Late Pliocene (late Blancan) vertebrates from the St. Petersburg Times site, Pinellas County, Florida, with a brief review of Florida Blancan faunas. Papers Florida Paleontol 1:1–22Google Scholar
  111. Myers T, Crosby K, Archer M, Tyler M (2001) The Encore Local Fauna, a late Miocene assemblage from Riversleigh, northwestern Queensland. Mem Assoc Austr Palaeontol 25:147–154Google Scholar
  112. Norell MA, Novacek MJ (1992) The fossil record and evolution: comparing cladistic and paleontologic evidence for vertebrate history. Science 255:1690–1693PubMedGoogle Scholar
  113. Ostrander GE (1983) New early Oligocene (Chadronian) mammals from the Raben Ranch Local Fauna, northwest Nebraska. J Paleontol 57:128–139Google Scholar
  114. Paul CRC (1998) Adequacy, completeness and the fossil record. In: Donovan SK, Paul CRC (eds) The Adequacy of the Fossil Record. John Wiley & Sons, Chichester, pp 1–22Google Scholar
  115. Pocock TN (1987) Plio-Pleistocene fossil mammalian microfauna of southern Africa—a preliminary report including description of two new fossil muroid genera (Mammalia: Rodentia). Paleontol Afr 26:69–91Google Scholar
  116. Popov VV (2004) Pliocene small mammals (Mammalia, Lipotyphla, Chiroptera, Lagomorpha, Rodentia) from Muselievo (north Bulgaria). Geodiversitas 26:403–491Google Scholar
  117. Qiu Z, Storch G (2000) The early Pliocene micromammalian fauna of Bilike, Inner Mongolia, China (Mammalia: Lipotyphla, Chiroptera, Rodentia, Lagomorpha). Senckenberg Leth 80:173–229Google Scholar
  118. Qiu Z, Han D, Qi G, Yufen L (1985) A preliminary report on a micromammalian assemblage from the hominoid locality of Lufeng Co. Yunnan Province. Acta Anthropol Sinica 4:13–32Google Scholar
  119. Quinet G (1965) Myotis misonnei n. sp. chiroptere de l’Oligocene de Hoogbutsel. Bull Inst R Sci Nat Belg 41:1–11Google Scholar
  120. Rana RS, Singh H, Sahni A, Rose KD, Saraswati PK (2005) Early Eocene chiropterans from a new mammalian assemblage (Vastan Lignite Mine, Gujarat, Western Peninsular Margin): oldest known bats from Asia. J Palaeontol Soc India 50:93–100Google Scholar
  121. Ray CE (1967) Pleistocene mammals from Ladds, Bartow County, Georgia. Bull Georgia Acad Sci 25:120–150Google Scholar
  122. Revilliod P (1917) Fledermäuse aus der Braunkohle von Messel bei Darmstadt. Abh Grossherz-hess Geol Landesanst 7:161–201Google Scholar
  123. Revilliod P (1919) L’état actuel de nos connaissances sur les chiroptères fossiles (note préliminaire). C R Soc Sci Phys Nat Genève 36:93–96Google Scholar
  124. Revilliod P (1922) Contribution a l’étude des chiropters des terrains tertiares. Troisième partie et fin. Mém Soc Paléont Suisse 45:133–195Google Scholar
  125. Rossina VV, Kruskop SV, Tesakov AS, Titov VV (2006) The first record of Late Miocene Bat from European Russia. Acta Zool Cracov 49A:125–133Google Scholar
  126. Russell DE, Louis P, Savage DE (1973) Chiroptera and Dermoptera of the French early Eocene. Univ Cal Pub Geol Sci 95:1–57Google Scholar
  127. Samonds KE (2007) Late Pleistocene bat fossils from Anjohibe Cave, northwestern Madagascar. Acta Chiropterolog 9:39–65Google Scholar
  128. Savage DE (1951) A Miocene phyllostomatid bat from Colombia, South America. Univ Cal Bull Dep Geol Sci 28:357–366Google Scholar
  129. Savage DE, Russell DE (1983) Mammalian Paleofaunas of the World. Addison-Wesley, Reading, MassachusettsGoogle Scholar
  130. Sevilla P (1989) Quaternary fauna of bats in Spain: paleoecologic and biogeographic interest. In: Hanák V, Horáček I, Gaisler J (eds) European Bat Research 1987. Charles University Press, Prague, pp 349–355Google Scholar
  131. Sevilla P (1990) Rhinolophoidea (Chiroptera, Mammalia) from the upper Oligocene of Carrascosa del Campo (Central Spain). Géobios 23:173–188Google Scholar
  132. Sevilla P (1991) Murcielagos fosiles de España. In: Benzal J, de Paz O (eds) Los Murciélagos de España y Portugal. Icona, Madrid, pp 21–36Google Scholar
  133. Sigé B (1968) Les chiroptères du miocène inférieur de Bouzigues. I.-Étude Systématique. Palaeovertebrata 1:65–133Google Scholar
  134. Sigé B (1974) Données nouvelles sur le genre Stehlinia (Vespertilionoidea, Chiroptera) du Paléogène d’Europe. Palaeovertebrata 6:253–272Google Scholar
  135. Sigé B (1976) Les Megadermatidae (Chiroptera, Mammalia) Miocènes de Béni Mellal, Maroc. Géol Médit 3:71–86Google Scholar
  136. Sigé B (1985) Les chiroptères oligocènes du Fayum, Egypte. Geol Palaeontol 19:161–189Google Scholar
  137. Sigé B (1990) Nouveaux chiroptères de l’oligocène moyen des phosphorites du Quercy, France. C R Acad Sci Paris 310:1131–1137Google Scholar
  138. Sigé B (1991) Rhinolophoidea et Vespertilionoidea (Chiroptera) du Chambi (eocène inférieur de Tunisie). Aspects biostratigraphique, biogéographique et paléoécologique de l’origine des chiroptères modernes. N Jb Geol Paläont Abh 182:355–376Google Scholar
  139. Sigé B, Hand S, Archer M (1982) An Australian Miocene Brachipposideros (Mammalia, Chiroptera) related to Miocene representatives from France. Palaeovertebrata 12:149–172Google Scholar
  140. Sigé B, Legendre S (1983) L’historie des peuplements de chiroptères du bassin Méditerranéen: l’apport comparé des remplissages karstiques et des dépôts fluvio-lacustres. Mém Biospéol 10:209–225Google Scholar
  141. Sigé B, Russell DE (1980) Compléments sur les chiroptères de l’Eocène moyen d’Europe. Les genres Palaeochiropteryx and Cecilionycteris. Palaeovertebrata, Mém Jubil R Lavocat, pp 91–126Google Scholar
  142. Sigé B, Thomas H, Sen S, Gheerbrant E, Roger J, Al-Sulaimani Z (1994) Les chiropters de Taqah (oligocène inférieur, Sultanat d’Oman). Premier inventaire systématique. Münchner Geowiss Abh 26:35–48Google Scholar
  143. Silva-Taboada G (1974) Fossil Chiroptera from cave deposits in central Cuba, with descriptions of two new species (genera Pteronotus and Mormoops) and the first West Indian record of Mormoops megalophylla. Acta Zool Cracov 19:33–73Google Scholar
  144. Simmons NB (2005) Order Chiroptera. In: Wilson DE, Reeder DM (eds) Mammal Species of the World: a Taxonomic and Geographic Reference, 3rd edn. The Johns Hopkins University Press, Baltimore, pp 312–529Google Scholar
  145. Simmons NB, Geisler JH (1998) Phylogenetic relationships of Icaronycteris, Archaeonycteris, Hassianycteris, and Palaeochiropteryx to extant bat lineages, with comments on the evolution of echolocation and foraging strategies in Microchiroptera. Bull Am Mus Nat Hist 235:1–182Google Scholar
  146. Simmons NB, Seymour KL, Habersetzer J, Gunnell GF (2008) Primitive early Eocene bat from Wyoming and the evolution of flight and echolocation. Nature 451:818–822PubMedGoogle Scholar
  147. Smith JD, Storch G (1981) New middle Eocene bats from “Grube Messel” near Darmstadt, W-Germany (Mammalia: Chiroptera). Senckenberg Biol 61:153–167Google Scholar
  148. Smith R, Russell DE (1992) Mammifères (Marsupialia, Chiroptera) de l’Yprésien de la Belgique. Bull Inst Roy Sci Nat Belg, Sci Terre 62:223–227Google Scholar
  149. Smith T, Rana RS, Missiaen P, Rose KD, Sahni A, Singh H, Singh L (2007) High bat (Chiroptera) diversity in the early Eocene of India. Naturwissenschaften 94:1003–1009PubMedGoogle Scholar
  150. Springer MS, Teeling EC, Madsen O, Stanhope MJ, de Jong WW (2001) Integrated fossil and molecular data reconstruct bat echolocation. Proc Natl Acad Sci USA 98:6241–6246PubMedGoogle Scholar
  151. Stirton RA (1931) A new genus of the family Vespertilionidae from the San Pedro Pliocene of Arizona. Univ California, Bull Dep Geol Sci 20:27–30Google Scholar
  152. Storch G (1999) Order Chiroptera. In: Rossner GE, Heissig K (eds) The Miocene Land Mammals of Europe. Verlag Dr Friedrich Pfeil, Munich, Germany, pp 81–90Google Scholar
  153. Storch G, Sigé B, Habersetzer J (2002) Tachypteron franzeni n. gen., n. sp., earliest emaballonurid bat from the middle Eocene of Messel (Mammalia, Chiroptera). Paläontol Zeit 76:189–199Google Scholar
  154. Storer JE (1984) Mammals of the Swift Current Creek Local Fauna (Eocene; Uintan), Saskatchewan. Nat Hist Contrib, Mus Nat Hist, Regina 7:1–158Google Scholar
  155. Strand E (1928) Miscellanea nomenclatorica zoologica et palaeontologica. Arch Naturgesch 92:30–75Google Scholar
  156. Suárez W, Díaz-Franco S (2003) A new fossil bat (Chiroptera: Phyllostomidae) from a Quaternary cave deposit in Cuba. Caribb J Sci 39:371–377Google Scholar
  157. Sutton JF, Genoways HH (1974) A new vespertilionine bat from the Barstovian deposits of Montana. Occ Papers, Mus Tx Tech Univ 20:1–8Google Scholar
  158. Teeling EC, Springer MS, Madsen O, Bates P, O’Brien SJ, Murphy WJ (2005) A molecular phylogeny for bats illuminates biogeography and the fossil record. Science 307:580–584PubMedGoogle Scholar
  159. Tejedor MF, Czaplewski NJ, Goin FJ, Aragón E (2005) The oldest record of South American bats. J Vertebr Paleontol 25:990–993Google Scholar
  160. Thewissen JGM, Smith GR (1987) Vespertilionid bats (Chiroptera, Mammalia) from the Pliocene of Idaho. Contrib Mus Paleont, Univ Mich 27:237–245Google Scholar
  161. Tong Y-S (1997) Middle Eocene small mammals from Liguanqiao Basin of Henan Province and Yuanqu Basin of Shanxi Province, central China. Paleontol Sinica C 26:1–256Google Scholar
  162. Topál G (1963) Description of a new bat, Rhinolophus macrorhinus sp. n. from the lower Pleistocene of Hungary. Vertebr Hung 5:219–227Google Scholar
  163. Topál G (1974) The first record of Megaderma in Hungary (Pliocene sediments of Osztramos, Locality 10). Vertebr Hung 15:95–104Google Scholar
  164. Topál G (1983) New and rare fossil mouse-eared bats from the middle Pliocene of Hungary (Mammalia, Chiroptera). Fragm Mineral Palaeontol 11:43–54Google Scholar
  165. Topál G (1985) Bats from the lowermost Pleistocene locality 15 at Beremend, Hungary (Mammalia, Chiroptera). Fragm Mineral Palaeontol 12:51–57Google Scholar
  166. Topál G (1989a) New Tertiary plecotines from Hungary (Mammalia, Chiroptera). In: Hanák V, Horáček I, Gaisler J (eds) European Bat Research 1987. Charles University Press, Prague, pp 77–86Google Scholar
  167. Topál G (1989b) Tertiary and early Quaternary remains of Corynorhinus and Plecotus from Hungary (Mammalia, Chiroptera). Vertebr Hung 23:33–55Google Scholar
  168. Valentine JW (1989) How good was the fossil record? Clues from the California Pleistocene. Paleobiology 15:83–94Google Scholar
  169. Walker A (1969) True affinities of Propotto leakeyi Simpson 1967. Nature 223:647–648Google Scholar
  170. Wesselmann HB (1984) The Omo Micromammals. Systematics and Paleoecology of Early Man Sites from Ethiopia. Karger, New YorkGoogle Scholar
  171. Wessels W, Fejfar O, Peláez-Campomanes P, van der Meulen A, de Bruijn H (2003) Miocene small mammals from Jebel Zelten, Libya. Coloq Paleont 1(suppl):699–715Google Scholar
  172. White JA (1969) Late Cenozoic bats (subfamily Nyctophylinae) from the Anza-Borrego Desert of California. Misc Publ, Univ Kansas Mus Nat Hist 51:275–282Google Scholar
  173. Wilson RL (1968) Systematics and faunal analysis of a lower Pliocene vertebrate assemblage from Trego County, Kansas. Contrib Mus Paleontol, Univ Mich 22:75–126Google Scholar
  174. Wołoszyn BW (1986) A new species of long-winged bat Miniopterus tao sp. n. (Mammalia: Chiroptera) from Locality 1 at Choukoutien, China. Acta Universit Carolin- Geol, Spinar 2:205–211Google Scholar
  175. Wood AR, Zelditch ML, Rountrey AN, Eiting TP, Sheets HD, Gingerich PD (2007) Multivariate stasis in the dental morphology of the Paleocene-Eocene condylarth Ectocion. Paleobiology 33:248–260Google Scholar
  176. Worthy TH, Holdaway RN (1994) Quaternary fossil faunas from caves in Takaka valley and on Takaka Hill, northwest Nelson, South Island, New Zealand. J Roy Soc New Zealand 24:297–391Google Scholar
  177. Yang J (1977) On some Salientia and Chiroptera from Shanwang, Linqu, Shandong Vertebr Palasiatica 15:76–80Google Scholar
  178. Yoon MH, Kuramoto T, Uchida TA (1984) Studies of middle Pleistocene bats including Pleistomyotis gen. et sp. nov. and two new extinct Myotis species from the Akiyoshi-dai Plateau. Bull Akiyoshi-dai Mus Nat Hist 19:15–26Google Scholar
  179. Zapfe H (1950) Die fauna der Mioznäen Spaltenflülung von Neudorf an der March (ČSSR). Chiroptera. Sitzungberichte Akad Wissenschaft Wien, Abt 1 159:51–64Google Scholar
  180. Zapfe H (1970) Paleptesicus nom. nov. fur. “Paraptesicus” (Chiroptera) aus der Mioznäen Spaltenflülung von Neudorf an der March (ČSSR). Sitzungsberichte Math-Naturwissenschaft Klasse, Österreich Akad Wissenschaft 6:93–94Google Scholar
  181. Ziegler R (1994) Die Chiroptera (Mammalia) aus dem Untermiozän von Stubersheim 3 (Baden-Württemberg). Münchner Geowiss Abh 26:97–116Google Scholar
  182. Ziegler R (2003) Bats (Chiroptera, Mammalia) from middle Miocene karstic fissure fillings of Petersbuch near Eichstätt, Southern Franconian Alb (Bavaria). Géobios 36:447–490Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Program in Organismic and Evolutionary Biology, 221 Morrill Science Center SouthUniversity of MassachusettsAmherstUSA
  2. 2.Museum of PaleontologyUniversity of MichiganAnn ArborUSA

Personalised recommendations