Journal of Mammalian Evolution

, Volume 16, Issue 2, pp 99–115 | Cite as

Dental Ontogeny in Macroscelides proboscideus (Afrotheria) and Erinaceus europaeus (Lipotyphla)

  • Robert J. Asher
  • Gea Olbricht
Original Paper


We investigated the state of dental eruption in specimens of Macroscelides proboscideus and Erinaceus europaeus of known age. When M. proboscideus reaches adult size and sexual maturity, few or none of its replaced permanent cheek teeth have erupted. The approximate sequence of upper tooth eruption is P1, [I3, C, M1], [I1–2], M2, P4, [P2, P3]. Chronologically, E. europaeus erupts its molars and most premolars prior to M. proboscideus; but its first two upper incisors erupt after those of M. proboscideus, and its canines erupt around the same time. The approximate sequence of upper tooth eruption in E. europaeus is [M1, M2, P2, I3], C, M3, P4, P3, I2, I1. Unlike M. proboscideus, E. europaeus does not reach adult size until all permanent teeth except for the anterior incisors have erupted. While not unique among mammals, the attainment of adult body size prior to complete eruption of the permanent cheek teeth is particularly common among macroscelidids and other afrotherians.


Sengi Hedgehog Teeth Dentition Growth Ontogeny Replacement 



We thank U. Schürer, A. Sliwa, and the staff of the Wuppertal Zoo for access to specimens and data files of M. proboscideus. We also thank P.A. Morris for access to his E. europaeus collection and comments on assignment of ages in that taxon; L. Tomsett for access to the NHM London; C. Denys and J. Cuisin for access to the MNHN Paris; O. Grönwall, P. Eriksson, and the European Commission’s Research Infrastructure Action via the SYNTHESYS Project (SE-TAF 4069) for access to the NRM Stockholm; F. Mayer and H. Turni for access to the Museum für Naturkunde Berlin; A. Heaver, A. Goswami, and S. Sawiak for access to noninvasive imaging facilities in the departments of Engineering, Earth Sciences, and the Wolfson Brain Imaging Centre (respectively) at the University of Cambridge. We are grateful to T. Lehmann for data on ZMB specimens, and to T. Lehmann, A. Evans, and G. Rathbun for comments on the manuscript.


  1. Anderson A, Wallmo O (1984) Odocoileus hemionus. Mammal Species 219:1–9 doi: 10.2307/3504024 CrossRefGoogle Scholar
  2. Asher RJ (2005) Insectivoran grade placental mammals: character evolution and fossil history. In: Rose KD, Archibald D (eds) The Rise of Placental Mammals: Origin and Relationships of the Major Clades. Johns Hopkins University Press, Baltimore, pp 50–70Google Scholar
  3. Asher RJ, Lehmann T (2008) Dental eruption in afrotherian mammals. BMC Biol 6:14 doi: 10.1186/1741-7007-6-14 PubMedCrossRefGoogle Scholar
  4. Beatty B (2008) Craniodental ontogeny in the Desmostylia. J Vertebr Paleontol 283:49AGoogle Scholar
  5. Bronner G (1992) Notes on the early postnatal development of a giant golden mole. Koedoe 35:57–58Google Scholar
  6. Corbet GB, Hanks J (1968) A revision of the elephant-shrews, Family Macroscelididae. Bull Brit Mus Nat Hist Zool 16:47–111Google Scholar
  7. de Magalhaes JP, Costa J, Toussaint O (2005) HAGR: the Human Ageing Genomic Resources. Nucleic Acids Res 33:D537–D543 doi: 10.1093/nar/gki017 PubMedCrossRefGoogle Scholar
  8. Domning DP, Hayek L (1984) Horizontal tooth replacement in the Amazonian Manatee (Trichechus inunguis). Mammalia 48:105–127Google Scholar
  9. Douady CJ, Catzeflis F, Raman J, Springer MS, Stanhope MJ (2003) The Sahara as a vicariant agent, and the role of Miocene climatic events, in the diversification of the mammalian order Macroscelidea (elephant shrews). Proc Natl Acad Sci USA 10014:8325 doi: 10.1073/pnas.0832467100 PubMedCrossRefGoogle Scholar
  10. Eisenberg JF, Gould E (1970) The tenrecs: a study in mammalian behavior and evolution. Smithson Contrib Zool 27:1–138Google Scholar
  11. Evans FG (1942) The osteology and relationships of the elephant shrews (Macroscelididae). Bull Am Mus Nat Hist 80:85–125Google Scholar
  12. Holroyd P (2008) New data on dental eruption patterns in condylarths and afrotheres. J Vertebr Paleontol 283:93AGoogle Scholar
  13. Jennings MR, Rathbun GB (2001) Petrodromus tetradactylus. Mammal Species 682:1–6 doi: 10.1644/1545-1410(2001)682<0001:PT>2.0.CO;2 CrossRefGoogle Scholar
  14. Kellas L (1954) Observations on the reproductive activity, measurement and growth-rate of the dik-dik. Proc Zool Soc Lond 124:751–784CrossRefGoogle Scholar
  15. Kindahl M (1958) Some observations on the development of the tooth in ElephantuIus myurus jamesoni. Arkiv zool 11:21–29Google Scholar
  16. Kindahl M (1959) The tooth development in Erinaceus europaeus. Acta Odontol Scand 17:468–489Google Scholar
  17. Koontz FW, Reeper NJ (1983) Elephantulus rufescens. Mammal Species 204:1–5 doi: 10.2307/3503972 CrossRefGoogle Scholar
  18. Laws R (1966) Age criteria for the African elephant, Loxodonta africana. Afr Wildl J 4:1–37Google Scholar
  19. Laws R (1968) Dentition and ageing in the hippopotamus. Afr Wildl J 6:19–52Google Scholar
  20. Leche W (1907) Zur Entwicklungsgeschichte des Zahnsystems der Säugetiere, zugleich ein Beitrag zur Stammengeschichte dieser Tiergruppe. Zoologica Stuttg 49:1–157Google Scholar
  21. Loe LE, Meisingset EL, Mysterud A, Langvatn R, Stenseth NC (2004) Phenotypic and environmental correlates of tooth eruption in red deer (Cervus elaphus). J Zool (Lond) 262:83–89 doi: 10.1017/S0952836903004436 CrossRefGoogle Scholar
  22. MacPhee RDE (1987) The shrew tenrecs of Madagascar: systematic revision and Holocene distribution of Microgale (Tenrecidae, Insectivora). Am Mus Novit 2889:1–45Google Scholar
  23. Morris PA (1970) A method for determining absolute age in the hedgehog. J Zool (Lond) 161:277–281CrossRefGoogle Scholar
  24. Morris PA (1971) Epiphyseal fusion in the forefoot as a means of age determination in the hedgehog (Erinaceus europaeus). J Zool (Lond) 164:254–259Google Scholar
  25. Morris PA (1978) The use of teeth for estimating the age of wild mammals. In: Butler PM, Joysey KA (eds) Development, Function and Evolution of Teeth. Academic, London, pp 483–494Google Scholar
  26. Olbricht G (2009) Aspects of the reproductive biology of sengis (Macroscelidea) in general and post-natal development of the short-eared sengi (Macroscelides proboscideus) in particular. PhD dissertation, Univ Duisburg-EssenGoogle Scholar
  27. Olbricht G, Kern C, Vakhruscheva G (2006) Einige Aspekte der Fortpflanzungsbiologie von Kurzohr-Ruesselspringern. Zool Gart 5–6:304–316Google Scholar
  28. Rathbun G (1979) The social structure and ecology of elephant-shrews. Fortschr Verhaltensforsch 20:1–76Google Scholar
  29. Rees J, Kainer R, Davis R (1966) Chronology of mineralization and eruption of mandibular teeth in mule deer. J Wildl Manage 30:629–631 doi: 10.2307/3798761 CrossRefGoogle Scholar
  30. Reeve N (1994) Hedgehogs. Cambridge University Press, CambridgeGoogle Scholar
  31. Robinette W, Jones D, Rogers G, Gashwiler J (1957) Notes of tooth development and wear for Rocky Mountain mule deer. J Wildl Manage 21:134–153 doi: 10.2307/3797579 CrossRefGoogle Scholar
  32. Roche J (1978) Denture et age des Damans de rochers (genre Procavia). Mammalia 42:97–103CrossRefGoogle Scholar
  33. Rosenthal M (1975) The management, behavior and reproduction of the short-eared elephant shrew Macroscelides proboscideus (Shaw). Masters Thesis, Northern Illinois UniversityGoogle Scholar
  34. Sauer EM (1973) Zum Socialverhalten der Kurzohrigen Elefantenspitzmaus. Z Saugetierkd 38:65–97Google Scholar
  35. Sauer FG, Sauer EM (1972) Zur Biologie der Kurzohrigen Elefantenspitzmaus. (M. proboscideus). Z Kolner Zoo 15:119–139Google Scholar
  36. Schoeman S, Bennett N, van der Merwe M, Schoeman A (2004) Aseasonal reproduction in the Hottentot golden mole, Amblysomus hottentotus (Afrosoricida: Chrysochloridae) from KwaZulu-Natal, South Africa. Afr Zool 39:41–46Google Scholar
  37. Smith BH (1989) Dental development as a measure of life history in primates. Evolution 43:683–688 doi: 10.2307/2409073 CrossRefGoogle Scholar
  38. Smith BH (2000) “Schultz’s Rule” and the evolution of tooth replacement patterns in primates and ungulates. In: Teaford MF, Smith MM, Ferguson MWJ (eds) Development, Function and Evolution of Teeth. Cambridge University Press, Cambridge pp 212–227Google Scholar
  39. Springer MS, Stanhope MJ, Madsen O, de Jong WW (2004) Molecules consolidate the placental mammal tree. Trends Ecol Evol 19:430–438 doi: 10.1016/j.tree.2004.05.006 PubMedCrossRefGoogle Scholar
  40. Tabuce R, Asher RJ, Lehmann T (2008) Afrotherian mammals: a review of current data. Mammalia 72:2–14 doi: 10.1515/MAMM.2008.004 CrossRefGoogle Scholar
  41. van Nievelt A, Smith KK (2005) To replace or not to replace: the significance of reduced tooth replacement in marsupial and placental mammals. Paleobiol 31:324–346 doi: 10.1666/0094-8373(2005)031[0324:TRONTR]2.0.CO;2 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Museum of ZoologyUniversity of CambridgeCambridgeUK
  2. 2.Department of General ZoologyUniversity of Duisburg-EssenEssenGermany

Personalised recommendations