Journal of Mammalian Evolution

, Volume 16, Issue 1, pp 25–49

The Phylogenetic Affinities of the Enigmatic Mammalian Clade Gondwanatheria

Original Paper

Abstract

Gondwanatheria is a group of extinct mammals known from the Cretaceous and Paleogene of Gondwana. Resolution of the phylogenetic affinities of gondwanatherians has proven problematical, with the group currently considered Mammalia incertae sedis. We briefly review the morphology of known gondwanatherians, and argue that isolated upper premolars and a partial dentary preserving a blade-like p4 originally referred to the ferugliotheriid gondwanatherian Ferugliotherium windhauseni but subsequently identified as Multituberculata incertae sedis do indeed belong to F. windhauseni. We also suggest that the recently described ?cimolodontan multituberculate Argentodites coloniensis, based on an isolated lower premolar, may in fact be an unworn p4 of Ferugliotherium or a closely related taxon. We present the first phylogenetic analyses to include gondwanatherians, using maximum parsimony and Bayesian methods. Both methods place Ferugliotherium and sudamericid gondwanatherians in a clade with cimolodontan and “plagiaulacidan” multituberculates, although relationships within this clade are largely unresolved. The Gondwanatheria + Multituberculata clade supported here may reflect the convergent evolution of similar dental features, but it is the best supported hypothesis based on currently available data. However, denser sampling of multituberculate taxa and the discovery of more complete gondwanatherian fossils will be required to clarify the precise relationship between gondwanatherians and multituberculates, specifically to determine whether or not gondwanatherians are members of Multituberculata. We hypothesize that the anterior molariforms of sudamericid gondwanatherians evolved from blade-like precursors similar to the p4 of Ferugliotherium, possibly in response to the appearance of grasses in Gondwana during the Cretaceous.

Keywords

Mammalia Gondwana Gondwanatheria Sudamerica Gondwanatherium Sudamericids Ferugliotherium Multituberculates 

References

  1. Archibald JD (2003) Timing and biogeography of the eutherian radiation: fossils and molecules compared. Mol Phylogenet Evol 28:350–359. doi:10.1016/S1055-7903(03)00034-4 CrossRefGoogle Scholar
  2. Bergsten J (2005) A review of long-branch attraction. Cladistics 21:163–193. doi:10.1111/j.1096-0031.2005.00059.x CrossRefGoogle Scholar
  3. Bonaparte JF (1986a) Sobre Mesungulatum houssayi y nuevos mamíferos cretácicos de Patagonia, Argentina. Actes Congr Argentina Paleontol 4(2):48–61Google Scholar
  4. Bonaparte JF (1986b) A new and unusual Late Cretaceous mammal from Patagonia. J Vertebr Paleontol 6:264–270.Google Scholar
  5. Bonaparte JF (1987) The Late Cretaceous fauna of Los Alamitos, Patagonia Argentina. VIII. The mammals. Rev Mus Arg Cienc Nat “Bernardino Rivadavia”. Paleontol 3(3):163–169.Google Scholar
  6. Bonaparte JF (1990) New Late Cretaceous mammals from the Los Alamitos Formation, northern Patagonia. Natl Geogr Res 6:63–93.Google Scholar
  7. Brammall J, Archer M (1997) A new species of Burramys (Marsupialia, Burramyidae) from the Oligo-Miocene deposits of Riversleigh, northwestern Queensland. Mem Qld Mus 41:247–268.Google Scholar
  8. Bremer K (1988) The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution 42:795–803. doi:10.2307/2408870 CrossRefGoogle Scholar
  9. Chornogubsky Clerici L (2003) Revisión preliminar de los mamíferos de la Formación Los Alamitos (Campaniano-Maastrichtiano, provincia de Río Negro, Argentina). Tesis de Licenciatura, Universidad de Buenos Aires.Google Scholar
  10. Felsenstein J (1978) Cases in which parsimony or compatibility methods will be positively misleading. Syst Zool 27:401–410. doi:10.2307/2412923 CrossRefGoogle Scholar
  11. Gadagkar SR, Kumar S (2005) Maximum likelihood outperforms maximum parsimony even when evolutionary rates are heterotachous. Mol Biol Evol 22:2139–2141. doi:10.1093/molbev/msi212 PubMedCrossRefGoogle Scholar
  12. Gambaryan PP, Kielan-Jaworowska Z (1995) Masticatory musculature of Asian taeniolabidoid multituberculate mammals. Acta Palaeontol Pol 40:45–108.Google Scholar
  13. Gaucher EA, Miyamoto MM (2005) A call for likelihood phylogenetics even when the process of sequence evolution is heterogeneous. Mol Phylogenet Evol 37:928–931. doi:10.1016/j.ympev.2005.03.027 PubMedCrossRefGoogle Scholar
  14. Goin FJ, Reguero MA, Pascual R, Koenigswald Wv, Woodburne MO, Case JA, Marenssi SA, Vieytes C, Vizcaíno SF (2006) First gondwanatherian mammal from Antarctica. In: Francis JE, Pirrie D, Crame JA (eds) Cretaceous–Tertiary High-latitude Palaeoenvironments, James Ross Basin, Antarctica, vol 258. Geological Society, London, pp 135–144Google Scholar
  15. Goin FJ, Vieytes EC, Vucetich MG, Carlini AA, Bond M (2004) Enigmatic mammal from the Paleogene of Peru. Sci Ser 40:145–153.CrossRefGoogle Scholar
  16. Granger W, Simpson GG (1929) A revision of the Tertiary Multituberculata. Bull Mus Nat Hist 56:601–676Google Scholar
  17. Gurovich Y (2001) Redescription of a dentary of Gondwanatherium patagonicum (Mammalia, Gondwanatheria) and comparisons with dentaries of other gondwanathere mammals of Argentina. J Vertebr Paleontol 21:57A.Google Scholar
  18. Gurovich Y (2006) Bio-evolutionary aspects of Mesozoic mammals: description, phylogenetic relationships and evolution of the Gondwanatheria (Late Cretaceous and Paleocene of Gondwana). Thesis, Universidad de Buenos Aires.Google Scholar
  19. Gurovich Y (2008) Additional specimens of sudamericid (Gondwanatheria) mammals from the early Paleocene of Argentina. Palaeontol 51(5):1069–1089.Google Scholar
  20. Hahn G, Hahn R (2003) New multituberculate teeth from the Early Cretaceous of Morocco. Acta Palaeontol Pol 48:349–556.Google Scholar
  21. Hahn G, Hahn R (2006) Evolutionary tendencies and systematic arrangement in the Haramiyida (Mammalia). Geol Palaeontol 40:173–193.Google Scholar
  22. Huelsenbeck JP (1995) Performance of phylogenetic methods in simulation. Syst Biol 44:17–48. doi:10.2307/2413481 CrossRefGoogle Scholar
  23. Jacobs BF, Kingston JD, Jacobs LL (1999) The origin of grass-dominated ecosystems. Ann Mo Bot Gard 86:590–643. doi:10.2307/2666186 CrossRefGoogle Scholar
  24. Kielan–Jaworowska Z (1970) New Upper Cretaceous multituberculate genera from Bayn Dzak, Gobi Desert. Palaeontol Pol 21:35–49Google Scholar
  25. Kielan–Jaworowska Z (1974) Multituberculate succession in the Late Cretaceous of the Gobi Desert (Mongolia). In: Z Kielan-Jaworowska (ed) Results of the Polish-Mongolian Palaeontological Expeditions pt. V. Palaeontol Pol 30:23–44Google Scholar
  26. Kielan-Jaworowska Z, Bonaparte JF (1996) Partial dentary of a multituberculate mammal from the Late Cretaceous of Argentina and its taxonomic implications. Rev Mus Arg Ciencias Nat, Extra. Nueva Ser 145:1–9.Google Scholar
  27. Kielan-Jaworowska Z, Cifelli RL, Luo Z-X (2004) Mammals from the Age of Dinosaurs: Origins, Evolution and Structure. Columbia University Press, New York.Google Scholar
  28. Kielan-Jaworowska Z, Dashzeveg D, Trofimov BA (1987) Early Cretaceous multituberculates from Asia and a comparison with British and North American Jurassic forms. Acta Palaeontol Pol 32:3–47Google Scholar
  29. Kielan–Jaworowska Z, Hurum JH (2001) Phylogeny and systematics of multituberculate mammals. Palaeontol 44:389–429CrossRefGoogle Scholar
  30. Kielan–Jaworowska Z, Ortiz–Jaureguizar E, Vieytes C, Pascual R, Goin FJ (2007) First ?cimolodontan multituberculate mammal from South America. Acta Palaeontol Pol 52:257–262Google Scholar
  31. Koenigswald Wv, Goin FJ, Pascual R (1999) Hypsodonty and enamel microstructure in the Paleocene gondwanatherian mammal Sudamerica ameghinoi. Acta Palaeontol Pol 44:263–300Google Scholar
  32. Krause DW (1982) Jaw movement, dental function and diet in the Paleocene multituberculate Ptilodus. Paleobiol 8:265–281Google Scholar
  33. Krause DW, Bonaparte JF (1990) The Gondwanatheria, a new suborder of Multituberculata from South America. J Vertebr Paleontol 10:31AGoogle Scholar
  34. Krause DW, Bonaparte JF (1993) Superfamily Gondwanatherioidea: a previously unrecognized radiation of multituberculate mammals in South America. Proc Natl Acad Sci USA 90:9379–9383PubMedCrossRefGoogle Scholar
  35. Krause DW, Grine FE (1996) The first multituberculates from Madagascar: implications for Cretaceous biogeography. J Vertebr Paleontol 16:46AGoogle Scholar
  36. Krause DW, Gottfried MD, O’Connor PM, Roberts EM (2003) A Cretaceous mammal from Tanzania. Acta Palaeontol Pol 48:321–330Google Scholar
  37. Krause DW, Kielan-Jaworowska Z, Bonaparte JF (1992) Ferugliotherium Bonaparte, the first known multituberculate from South America. J Vertebr Paleontol 12:351–376Google Scholar
  38. Krause DW, Prasad GVR, Koenigswald Wv, Sahni A, Grine FE (1997) Cosmopolitanism among Gondwanan Late Cretaceous mammals. Nature 390:504–507CrossRefGoogle Scholar
  39. Lewis PO (2001) A likelihood approach to inferring phylogeny from discrete morphological characters. Syst Biol 50:913–925PubMedCrossRefGoogle Scholar
  40. Linder HP (1987) The evolutionary history of the Poales/Restionales: a hypothesis. Kew Bull 42:297–318CrossRefGoogle Scholar
  41. Luo Z-X, Chen P, Li G, Chen M (2007) A new eutriconodont mammal and evolutionary development in early mammals. Nature 446:288–293PubMedCrossRefGoogle Scholar
  42. Luo Z-X, Cifelli RL, Kielan-Jaworowska Z (2001) Dual origin of tribosphenic mammals. Nature 409:53–57PubMedCrossRefGoogle Scholar
  43. Luo Z-X, Kielan-Jaworowska Z, Cifelli RL (2002) In quest for a phylogeny of Mesozoic mammals. Acta Palaeontol Pol 47:1–78Google Scholar
  44. Luo Z-X, Wible JR (2005) A new Late Jurassic digging mammal and early mammalian diversification. Science 308:103–107PubMedCrossRefGoogle Scholar
  45. Matthew WD (1937) Paleocene faunas of the San Juan Basin, New Mexico. Trans Amer Philos Soc 30:1–510Google Scholar
  46. Meng J, Hu Y, Wang Y, Wang X, Li C (2006) A Mesozoic gliding mammal from northeastern China. Nature 444:889–893PubMedCrossRefGoogle Scholar
  47. Müller-Champrenaud S (1993) The genus Hypsiprymnodon (Potoroidae: Marsupialia): its classification, biology and morphology. Thesis, University of New South Wales.Google Scholar
  48. Nylander JA, Ronquist AF, Huelsenbeck JP, Nieves-Aldrey JL (2004) Bayesian phylogenetic analysis of combined data. Syst Biol 53:47–67PubMedCrossRefGoogle Scholar
  49. Pascual R, Goin FJ, Krause DW, Ortiz-Jaureguizar E, Carlini AA (1999) The first gnathic remains of Sudamerica: implications for gondwanathere relationships. J Vertebr Paleontol 19:373–382Google Scholar
  50. Pascual R, Ortiz-Jaureguizar E (2007) The Gondwanan and South American episodes: two major and unrelated moments in the history of the South American mammals. J Mammal Evol 14:75–137CrossRefGoogle Scholar
  51. Philippe H, Zhou Y, Brinkmann H, Rodrique N, Delsuc F (2005) Heterotachy and long-branch attraction in phylogenetics. BMC Evol Biol 5: 50PubMedCrossRefGoogle Scholar
  52. Poe S, Swofford DL (1999) Taxon sampling revisited. Nature 398:299–300PubMedCrossRefGoogle Scholar
  53. Prasad V, Strömberg CAE, Alimohammadian H, Sahni A (2005) Dinosaur coprolites and the early evolution of grasses and grazers. Science 310:1117–1180CrossRefGoogle Scholar
  54. Prasad GVR, Verma O, Sahni A, Krause DW, Khosla A, Parmar V (2007) A new Late Cretaceous gondwanatherian mammal from central India. Proc Indian Nat Sci Acad 73:17–24Google Scholar
  55. Prideaux GJ (2004) Systematics and evolution of the sthenurine kangaroos. Univ Calif Publ Geol Sci 146:1–623Google Scholar
  56. Rannala B, Huelsenbeck JP, Yang Z, Nielsen R (1998) Taxon sampling and the accuracy of large phylogenies. Syst Biol 47:702–710PubMedCrossRefGoogle Scholar
  57. Reguero MA, Marenssi SA, Santillana SN (2002) Antarctic Peninsula and South America (Patagonia) Paleogene terrestrial faunas and environments: biogeographic relationships. Palaeogeogr Palaeocl 179:189–210CrossRefGoogle Scholar
  58. Ronquist F, Huelsenbeck JP (2003) MrBayes3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  59. Rose KD (1975) The Carpolestidae: early Tertiary primates from North America. Bull Mus Comp Zool 47:1–74Google Scholar
  60. Rosenberg MS, Kumar S (2001) Incomplete taxon sampling is not a problem for phylogenetic inference. Proc Natl Acad Sci USA 98:10751–10756PubMedCrossRefGoogle Scholar
  61. Rougier GW, Apesteguía S (2004) The Mesozoic radiation of dryolestoids in South America: dental and cranial evidence. J Vertebr Paleontol 24:106AGoogle Scholar
  62. Rougier GW, Martinelli AG, Forasiepi AM, Novacek MJ (2007) New Jurassic mammals from Patagonia, Argentina: a reappraisal of australosphenidan morphology and interrelationships. Am Mus Novitates 3566:1–54CrossRefGoogle Scholar
  63. Rowe T, Rich TH, Vickers-Rich P, Springer M, Woodburne MO (2008) The oldest platypus and its bearing on divergence timing of the platypus and echidna clades. Proc Natl Acad Sci USA 105:1238–1242PubMedCrossRefGoogle Scholar
  64. Scillato-Yané GJ, Pascual R (1984) Un peculiar Paratheria, Edentata (Mammalia) del Paleoceno medio de Patagonia. I Jornadas Paleontol Vertebr, Resúmenes, La Plata: 15Google Scholar
  65. Scillato-Yané GJ, Pascual R (1985) Un peculiar Xenarthra del Paleoceno medio de Patagonia (Argentina). Su importancia en la sistemática de los Paratheria. Ameghiniana 21:173–176Google Scholar
  66. Sigogneau–Russell D (1991) First evidence of Multituberculata (Mammalia) in the Mesozoic of Africa. Neues Jahrb Geol Paläontol M 1991:119–125Google Scholar
  67. Sigogneau–Russell D, Bonaparte JF, Frank RM, Escribano V (1991) Ultrastructure of dental tissues of Gondwanatherium and Sudamerica (Mammalia, Gondwanatheria). Lethaia 24:27–38CrossRefGoogle Scholar
  68. Simpson GG (1933) The “plagiaulacoid“ type of mammalian dentition: a study of convergence. J Mammal 14:97–107CrossRefGoogle Scholar
  69. Spencer M, Susko E, Roger AJ (2005) Likelihood, parsimony, and heterogeneous evolution. Mol Biol Evol 22:1161–1164PubMedCrossRefGoogle Scholar
  70. Suzuki Y, Glazko GV, Nei M (2002) Overcredibility of molecular phylogenies obtained by Bayesian phylogenetics. Proc Natl Acad Sci USA 99:16138–16143PubMedCrossRefGoogle Scholar
  71. Swofford DL, Waddell PJ, Huelsenbeck JP, Foster PG, Lewis PO, Rogers JS (2001) Bias in phylogenetic estimation and its relevance to the choice between parsimony and likelihood methods. Syst Biol 50:525–539PubMedCrossRefGoogle Scholar
  72. Taylor DJ, Piel WH (2004) An assessment of accuracy, error, and conflict with support values from genome-scale phylogenetic data. Mol Biol Evol 21:1534–1537PubMedCrossRefGoogle Scholar
  73. Wiens JJ (1998) Does adding characters with missing data increase or decrease phylogenetic accuracy? Syst Biol 47:625–640PubMedCrossRefGoogle Scholar
  74. Wiens JJ (2005) Can incomplete taxa rescue phylogenetic analyses from long-branch attraction? Syst Biol 54:731–742PubMedCrossRefGoogle Scholar
  75. Wilson G, Das Sarma DC, Anatharaman S (2007) Late Cretaceous sudamericid gondwanatherians from India. J Vertebr Paleontol 27:521–531CrossRefGoogle Scholar
  76. Woodburne MO, Rich TH, Springer MS (2003) The evolution of tribospheny and the antiquity of mammalian clades. Mol Phylogenet Evol 28:360–385PubMedCrossRefGoogle Scholar
  77. Worthy TH, Tennyson AD, Archer M, Musser AM, Hand SJ, Jones C, Douglas BJ, McNamara JA, Beck RMD (2006) Miocene mammal reveals a Mesozoic ghost lineage on insular New Zealand, southwest Pacific. Proc Natl Acad Sci USA 103:19219–19223CrossRefGoogle Scholar
  78. Yang Z (1996) Phylogenetic analysis using parsimony and likelihood methods. J Mol Evol 42:294–307PubMedCrossRefGoogle Scholar
  79. Zwickl DJ, Hillis DM (2002) Increased taxon sampling greatly reduces phylogenetic error. Syst Biol 51:588–598PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.School of Biological, Earth and Environmental SciencesUniversity of New South Wales (UNSW)SydneyAustralia

Personalised recommendations