Journal of Mammalian Evolution

, Volume 13, Issue 2, pp 89–123

Spiny Norman in the Garden of Eden? Dispersal and early biogeography of Placentalia

Original Paper

Abstract

The persistent finding of clades endemic to the southern continents (Afrotheria and Xenarthra) near the base of the placental mammal tree has led molecular phylogeneticists to suggest an origin of Placentalia, the crown group of Eutheria, somewhere in the southern continents. Basal splits within the Placentalia have then been associated with vicariance due to the breakup of Gondwana. Southern-origin scenarios suffer from several problems. First, the place of origin of Placentalia cannot be reconstructed using phylogenetic reasoning without reference to outgroups. When available outgroups are considered, a Laurasian origin is most parsimonious. Second, a model of pure vicariance would require that basal placental splits occurred not with the breakup of Gondwana, but of Pangea in the Late Triassic—Early Jurassic. This event long preceded even the oldest molecular divergence estimates for the Placentalia and was coeval only with the earliest mammals in the fossil record. Third, a problem with the number of dispersal events that would be required emerges under different southern-origin scenarios. In considering the geographic distribution of the major placental clades at their first appearance (mostly Early Cenozoic), it becomes clear that a Laurasian center of origin would require fewer dispersal events. Southern-origin models would require at least twice the number of dispersal events in comparison with a model of Laurasian origins. This number of required dispersal events increases if extinct groups of placental mammals are also considered. Results are similar assuming a morphology-based phylogeny. These facts, along with earlier findings speaking against a major placental radiation deep in the Cretaceous without leaving fossil evidence, suggest an origin of Placentalia somewhere in Laurasia with few supraordinal splits occurring before the last 5–10 million years of the Cretaceous.

Keywords

Placentalia Eutheria Biogeography Phylogeny Dispersal Vicariance 

Literature cited

  1. Alroy, J. (1999). The fossil record of North American mammals: Evidence for a Paleocene evolutionary radiation. Syst. Biol. 48: 107–118.CrossRefPubMedGoogle Scholar
  2. Archer, M. (1978). The nature of the molar–premolar boundary in marsupials and a reinterpretation of the homology of marsupial cheekteeth. Mem. Qd. Mus. 18: 157–164.Google Scholar
  3. Archer, M., Arena, R., Bassarova, M., Black, K., Brammall, J., Cooke, B., Creaser, P., Crosby, K., Gillespie, A., Godthelp, H., Gott, M., Hand, S. J., Kear, B., Krikmann, A., Mackness, B., Muirhead, J., Musser, A., Myers, T., Pledge, N., Wang, Y., and Wroe, S. (1999). The evolutionary history and diversity of Australian mammals. Aust. Mammal. 21: 1–45.Google Scholar
  4. Archibald, J. D. (1996). Fossil evidence for a Late Cretaceous origin of “hoofed” mammals. Science 272: 1150–1153.PubMedCrossRefGoogle Scholar
  5. Archibald, J. D. (1998). Archaic ungulates (“Condylarthra”). In: Tertiary Mammals in North America: Volume 1: Terrestrial Carnivores, Ungulates, and Ungulate-like Mammals, C. M. Janis, K. M. Scott, and L. Jacobs, eds., pp. 292–331, Cambridge University Press, Cambridge.Google Scholar
  6. Archibald, J. D. (1999a). Molecular dates and the mammalian radiation. Trends Ecol. Evol. 14: 278.CrossRefPubMedGoogle Scholar
  7. Archibald, J. D. (1999b). Pruning and grafting on the mammalian phylogenetic tree. Acta Palaeontol. Pol. 44: 220–222.Google Scholar
  8. Archibald, J. D. (2003). Timing and biogeography of the eutherian radiation: Fossils and molecules compared. Mol. Phylogenet. Evol. 28: 350–359.CrossRefPubMedGoogle Scholar
  9. Archibald, J. D., and Deutschman, D. H. (2001). Quantitative analysis of the timing of the origination and diversification of extant placental orders. J. Mamm. Evol. 8: 107–124.CrossRefGoogle Scholar
  10. Archibald, J. D., Hedges, S. B., Kumar, S., Rich, T. H., Vickers-Rich, P., Flannery, T. F., Foote, M., Hunter, J. P., Janis, C. M., and Sepkoski, J. J., Jr. (1999). Divergence times of eutherian mammals. Science 285: 2031a.CrossRefGoogle Scholar
  11. Archibald, J. D., Averianov, A. O., and Ekdale, E. G. (2001). Late Cretaceous relatives of rabbits, rodents, and other extant eutherian mammals. Nature 414: 62–65.CrossRefPubMedGoogle Scholar
  12. Averianov, A., Archibald, J. D., and Martin, T. (2003). Placental nature of the alleged marsupial form the Cretaceous of Madagascar. Acta Palaeontol. Pol. 48: 149–151.Google Scholar
  13. Beard, K. C. (1998). East of Eden: Asia as an important center of taxonomic origination in mammalian evolution. Bull. Carnegie Mus. Nat. Hist. 34: 5–39.Google Scholar
  14. Beard, K. C. (2002). East of Eden at the Paleocene/Eocene boundary. Science 295: 2028–2029.CrossRefPubMedGoogle Scholar
  15. Benton, M. J. (1999). Early origins of modern birds and mammals. Bioessays 21: 1043–1051.CrossRefPubMedGoogle Scholar
  16. Bonaparte, J. F. (1990). New Late Cretaceous mammals from the Los Alamitos Formation, northern Patagonia. Natl. Geogr. Res. 6: 63–93.Google Scholar
  17. Bowen, G. J., Clyde, W. C., Koch, P. L., Ting, S., Alroy, J., Tsubamoto, T., Wang, Y., and Wang, Y. (2002). Mammalian dispersal at the Paleocene/Eocene boundary. Science 295: 2062–2065.CrossRefPubMedGoogle Scholar
  18. Butler, P. M. (1995). Fossil Macroscelidea. Mammal Rev. 25: 3–14.CrossRefGoogle Scholar
  19. Cifelli, R. L. (1983). The origin and affinities of the South American Condylarthra and early Tertiary Litopterna (Mammalia). Am. Mus. Novitates 2772: 1–49.Google Scholar
  20. Cifelli, R. (1993). The phylogeny of native South American ungulates. In: Mammal Phylogeny: Placentals, F. S. Szalay, M. Novacek and M. C. McKenna, eds., pp. 195–216, Springer-Verlag, New York.Google Scholar
  21. Cifelli, R. (2000). Cretaceous mammals of Asia and North America. Paleontol. Soc. Korea Spec. Publ. 4: 49–84.Google Scholar
  22. Cifelli, R. L., Schaff, C. R., and McKenna, M. C. (1989). The relationships of the Arctostylopidae (Mammalia): New data and interpretation. Bull. Mus. Comp. Zool. 152: 1–44.Google Scholar
  23. Clemens, W. A. (2001a). Mammalian evolution across the Cretaceous/Tertiary boundary: The contributions of survival, dispersal, and extinction. Asoc. Paleont. Argentina Publ. Espec. 7: 57–60.Google Scholar
  24. Clemens, W. A. (2001b). Patterns of mammalian evolution across the Cretaceous-Tertiary boundary. Mitt. Mus. Nat.kd. Berl., Zool. Reihe 77: 175–191.Google Scholar
  25. Clyde, W. C., Sheldon, N. D., Koch, P. L., Gunnell, G. F., and Bartels, W. S. (2001). Linking the Wasatchian/Bridgerian boundary to the Cenozoic Global Climate Optimum: New magnetostratigraphic and isotopic results from South Pass, Wyoming. Palaeogeogr. Palaeoclimatol. Palaeoecol. 167: 175–199.CrossRefGoogle Scholar
  26. Domning, D. P. (2001a). Sirenians, seagrasses, and Cenozoic ecological change in the Caribbean. Palaeogeogr. Palaeoclimatol. Palaeoecol. 166: 27–50.CrossRefGoogle Scholar
  27. Domning, D. P. (2001b). The earliest known fully quadrapedal sirenian. Nature 413: 625–627.CrossRefPubMedGoogle Scholar
  28. Eaton, J. G. (1993). Marsupial dispersal. Natl. Geogr. Res. 9: 436–443.Google Scholar
  29. Eberle, J. J. (1999). Bridging the transition between didelphodonts and taeniodonts. J. Paleontol. 73: 936–944.Google Scholar
  30. Eizirik, E., Murphy, W. J., and O’Brien, S. J. (2001). Molecular dating and biogeography of the early placental mammal radiation. J. Hered. 92: 212–219.CrossRefPubMedGoogle Scholar
  31. Ekdale, E. G., Archibald, J. D., and Averianov, A. (2004). Petrosal bones of placental mammals from the Late Cretaceous of Uzbekistan. Acta Palaeontol. Pol. 49: 161–176.Google Scholar
  32. Flynn, J. J., Parrish, J. M., Rakotosamimanana, B., Simpson, W. F., and Wyss, A. R. (1999). A Middle Jurassic mammal from Madagascar. Nature 401: 57–60.CrossRefGoogle Scholar
  33. Foote, M., Hunter, J. P., Janis, C. M., and Sepkoski, J. J., Jr. (1999). Evolutionary and preservational constraints on origins of biologic groups: divergence times of eutherian mammals. Science 283: 1310–1314.CrossRefPubMedGoogle Scholar
  34. Fox, R. C., and Naylor, B. G. (2003). A Late Cretaceous taeniodont (Eutheria, Mammalia) from Alberta, Canada. N. Jb. Geol. Palaontol. Mh. 229: 393–420.Google Scholar
  35. Fox, R. C., and Youzwyshyn, G. P. (1994). New primitive carnivorans (Mammalia) from the Paleocene of western Canada, and their bearing on relationships of the order. J. Vertebr. Paleontol. 14: 382–404.CrossRefGoogle Scholar
  36. Gaudin, T. J. (1999). The morphology of xenarthrous vertebrae (Mammalia: xenarthra). Fieldiana: Geol. 41: 1–38.Google Scholar
  37. Gaudin, T. J., and Branham, D. G. (1998). The phylogeny of the Myrmecophagidae (Mammalia, Xenarthra, Vermilingua) and the relationship of Eurotamandua to the Vermilingua. J. Mamm. Evol. 5: 237–265.CrossRefGoogle Scholar
  38. Gheerbrant, E. (1995). Les mammiferes paleocenes du Basin d’Ouarzazate (Maroc); 3, Adapisoriculidae et autres mammiferes (Carnivora?Creodonta, Condylarthra?Ungulata et incertae sedis). Palaeontogr., Abt. A: Palaeozool.-Stratigr. 237: 39–132.Google Scholar
  39. Gheerbrant, E., Sudre, J., and Cappetta, H. (1996). A Paleocene proboscidean from Morocco. Nature 383: 68–70.CrossRefGoogle Scholar
  40. Gheerbrant, E., Sudre, J., Cappetta, H., Iarochene, M., Amaghzaz, M., and Bouya, B. (2002). A new large mammal from the Ypresian of Morocco: Evidence of surprising diversity of early proboscideans. Acta Palaeontol. Pol. 47: 493–506.Google Scholar
  41. Gingerich, P. D., Abbas, S. G., and Arif, M. (1997). Early Eocene Quettacyon parachai (Condylarthra) from the Ghazij Formation of Baluchistan (Pakistan): Oldest Cenozoic land mammal from South Asia. J. Vertebr. Paleontol. 17: 629–637.CrossRefGoogle Scholar
  42. Gingerich, P. D., Arif, M., Khan, I. H., Clyde, W. C., and Bloch, J. I. (1999). Machocyon abbasi, a new early Eocene Quettacyonid (Mammalia, Condylarthra) from the middle Ghazij Formation of Mach and Daghari coal fields, Baluchistan (Pakistan). Contrib. Mus. Paleontol. Univ. Mich. 30: 233–250.Google Scholar
  43. Gunnell, G. F. (1998). Creodonta. In: Evolution of Tertiary Mammals of North America: Volume 1: Terrestrial Carnivores, Ungulates, and Ungulatelike Mammals, C. M. Janis, K. M. Scott, and L. L. Jacobs, eds., pp. 91–109, Cambridge University Press, New York.Google Scholar
  44. Hedges, S. B., Parker, P. H., Sibley, C. G., and Kumar, S. (1996). Continental breakup and the ordinal diversification of birds and mammals. Nature 381: 226–229.CrossRefPubMedGoogle Scholar
  45. Holroyd, P. A. (1999). New Pterodontinae (Creodonta; Hyaenodontidae) from the late Eocene–early Oligocene Jebel Qatrani Formation, Fayum Province, Egypt. PaleoBios 19: 1–18.Google Scholar
  46. Holroyd, P. A., Bown, T. M., Gingerich, P. D., Kraus, M. J., Polly, P. D., and Simons, E. L. (1996). New records of terrestrial mammals from the upper Eocene Qasr El Sagha Formation, Fayum Depression, Egypt. Palaeovertebrates 25: 175–192.Google Scholar
  47. Hunter, J. P. (1997). Adaptive radiation of early Paleocene condylarths. J. Vertebr. Paleontol. 17: 54A.Google Scholar
  48. Hunter, J. P. (1999). The radiation of Paleocene mammals with the demise of the dinosaurs: Evidence from southwestern North Dakota. N. Dak. Acad. Sci. Proc. 53: 141–144.Google Scholar
  49. Hunter, J. P. (2004). Alternative interpretation of molar morphology and wear in the Early Cretaceous mammal Ausktribosphenos. J. Vertebr. Paleontol. 24: 73A.CrossRefGoogle Scholar
  50. Ji, Q., Luo, Z.-X., Yuan, C.-X., Wible, J. R., Zhang, J.-P., and Georgi, J. A. (2002). The earliest known eutherian mammal. Nature 416: 816–822.CrossRefPubMedGoogle Scholar
  51. Khosla, A., Prasad, G. V. R., Verma, O., Jain, A. K., and Sahni, A. (2004). Discovery of a micromammal-yielding Deccan intertrappean site near Kisalpuri, Dindori District, Madhyra Pradesh. Curr. Sci. 87: 380–383.Google Scholar
  52. Krause, D. W. (2001). Fossil molar from a Madagascan marsupial. Nature 412: 497–498.CrossRefPubMedGoogle Scholar
  53. Krause, D. W., and Maas, M. C. (1990). The biogeographic origins of late Paleocene–early Eocene mammalian immigrants to the Western Interior of North America. Geol. Soc. Amer. Spec. Paper 243: 71–105.Google Scholar
  54. Krause, D. W., Prasad, G. V. R., Koenigswald, W., Sahni, A., and Grine, F. E. (1997). Cosmopolitanism among Gondwanan Late Cretaceous mammals. Nature 390: 504–507.CrossRefGoogle Scholar
  55. Krause, D. W., Gottfried, M. D., O’Connor, P. M., and Roberts, E. M. (2003). A Cretaceous mammal from Tanzania. Acta Palaeontol. Pol. 48: 321–330.Google Scholar
  56. Kumar, S., and Hedges, S. B. (1998). A molecular timescale for vertebrate evolution. Nature 392: 917–920.CrossRefPubMedGoogle Scholar
  57. Lucas, S. G. (1993). Pantodonts, tillodonts, uintatheres, and pyrotheres are not ungulates. In: Mammal Phylogeny: Placentals, F. S. Szalay, M. Novacek and M. C. McKenna, eds., pp. 182–194, Springer-Verlag, New York.Google Scholar
  58. Luo, Z., Cifelli, R., and Kielan-Jaworowska, Z. (2001). Dual origin of tribosphenic mammals. Nature 409: 53–57.CrossRefPubMedGoogle Scholar
  59. Luo, Z., Kielan-Jaworowska, Z., and Cifelli, R. (2002). In quest for a phylogeny of Mesozoic mammals. Acta Palaeontol. Pol. 47: 1–78.Google Scholar
  60. Luo, Z., Ji, Q., Wible, J. R., and Yuan, C.-X. (2003). An Early Cretaceous tribosphenic mammal and metatherian evolution. Science 302: 1934–1940.CrossRefPubMedGoogle Scholar
  61. MacPhee, R. D. E., and Novacek, M. J. (1993). Definition and relationships of Lipotyphla. In: Mammal Phylogeny: Placentals, F. S. Szalay, M. J. Novacek and M. C. McKenna, eds., pp. 13–31, Springer-Verlag, New York.Google Scholar
  62. Madsen, O., Scally, M., Douady, C. J., Kao, D. J., DeBry, R. W., Adkins, R., Amrine, H. M., Stanhope, M. J., de Jong, W. W., and Springer, M. S. (2001). Parallel adaptive radiations in two major clades of placental mammals. Nature 409: 610–614.CrossRefPubMedGoogle Scholar
  63. Marshall, L. G. (1980). Marsupial paleobiogeography. In: Aspects of Vertebrate History: Essays in Honor of Edwin Harris Colbert, L. L. Jacobs, ed., pp. 345–386, Museum of Northern Arizona Press, Flagstaff.Google Scholar
  64. McKenna, M. C. (1973). Sweepstakes, filters, corridors, Noah’s arks, and beached Viking funeral ships in paleogeography. In: Implications of Continental Drift to the Earth Sciences, D. H. Tarling and S. K. Runcorn, eds., pp. 21–46, Academic Press, London and New York.Google Scholar
  65. McKenna, M. (1975). Toward a phylogenetic classification of the Mammalia. In: Phylogeny of the Primates, W. P. Luckett and F. S. Szalay, eds., pp. 21–46, Plenum Publishing Corporation, New York.Google Scholar
  66. McKenna, M. C., and Bell, S. K. (1997). Classification of Mammals Above the Species Level, Columbia University Press, New York.Google Scholar
  67. Meng, J., Zhai, R., and Wyss, A. R. (1998). The late Paleocene Bayun Ulan fauna Inner Mongolia. Bull. Carnegie Mus. Nat. Hist. 34: 148–185.Google Scholar
  68. Morales, J., Fraile, S., Pickford, M., and Soria, D. (1998a). New carnivores from the basal middle Miocene of Arrisdrift, Namibia. Eclogae Geol. Helv. 91: 27–40.Google Scholar
  69. Morales, J., Pickford, M., and Soria, D. (1998b). A new creodont Metapterodon stromeri nov. sp. (Hyaenodontidae, Mammalia) from the early Miocene of Langental (Sperregebiet, Namibia). C. R. Acad. Sci., Ser. II. Sciences de la Terre et des Planetes 327: 633–638.Google Scholar
  70. Muizon, C., de., and Cifelli, R. (2000). The “condylarths” (archaic Ungulata, Mammalia) from the early Palaeocene of Tiupampa (Bolivia): Implications on the origins of South American ungulates. Geodiversitas 22: 47–150.Google Scholar
  71. Murphy, W. J., Eizirik, E., Johnson, W. E., Zhang, Y. P., Ryder, O. A., and O’Brien, S. J. (2001a). Molecular phylogenetics and the origins of placental mammals. Nature 409: 614–618.CrossRefPubMedGoogle Scholar
  72. Murphy, W. J., Eizirik, E., O’Brien, S. J., Madsen, O., Scally, M., Douady, C. J., Teeling, E., Ryder, O. A., Stanhope, M. J., de Jong, W. W., and Springer, M. S. (2001b). Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294: 2348–2351.CrossRefPubMedGoogle Scholar
  73. Murray, A. M. (2001). The fossil record and biogeography of the Cichlidae (Actinopterygii: Labroidei). Biol. J. Linn. Soc. Lond. 74: 517–532.CrossRefGoogle Scholar
  74. Nessov, L. A., Archibald, J. D., and Kielan-Jaworowska, Z. (1998). Ungulate-like mammals from the Late Cretaceous of Uzbekistan and a phylogenetic analysis of Ungulatomorpha. Bull. Carnegie Mus. Nat. Hist. 34: 40–88.Google Scholar
  75. Novacek, M. J. (1986). The skull of leptictid insectivorans and the higher-level classfication of eutherian mammals. Bull. Am. Mus. Nat. Hist. 183: 1–111.Google Scholar
  76. Novacek, M. J. (1992). Mammalian phylogeny: Shaking the tree. Nature 356: 121–125.CrossRefPubMedGoogle Scholar
  77. Novacek, M. J. (1999). 100 million years of land vertebrate evolution: The Cretaceous-Early Tertiary transition. Ann. Missouri Bot. Garden 86: 230–258.CrossRefGoogle Scholar
  78. Novacek, M. J., and Wyss, A. R. (1986). Higher-level relationships of the Recent eutherian orders: Morphological evidence. Cladistics 2: 257–287.Google Scholar
  79. Novacek, M. J., Rougier, G. W., Wible, J. R., McKenna, M. C., Dashzeveg, D., and Horowitz, I. (1997). Epipubic bones in eutherian mammals from the Late Cretaceous of Mongolia. Nature 389: 483–486.CrossRefPubMedGoogle Scholar
  80. Novacek, M., Rougier, G., Dashzeveg, D., and McKenna, M. C. (2000). New eutherian mammal from the Late Cretaceous of Mongolia and its bearing on the origins of the modern placental radiation. J. Vertebr. Paleontol. 20: 61A.Google Scholar
  81. Pascual, R. (1996). Late Cretaceous–Recent land-mammals, an approach to South American geobiotic evolution. Mastozoologia Neotropical 3: 133–152.Google Scholar
  82. Pascual, R. (1998). The history of South American land mammals: the seminal Cretaceous–Paleocene transition. Asoc. Paleontol. Argentina Publ. Espec. 5: 9–18.Google Scholar
  83. Pascual, R., and Goin, F. J. (1999). Non-tribosphenic Gondwanan mammals, and a distinct attainment of the molars reversed triangle pattern, In: International Symposium on Mesozoic Terrestrial Ecosystems, pp. 48–49, Buenos Aires, Argentina.Google Scholar
  84. Pascual, R., Goin, F. J., Gonzalez, P., Ardolino, A., and Puerta, P. F. (2000). A highly derived docodont from the Patagonian Late Cretaceous: Evolutionary implications for Gondwanan mammals. Geodiversitas 22: 395–414.Google Scholar
  85. Prasad, G. V. R., and Godinot, M. (1994). Eutherian tarsal bones from the Late Cretaceous of India. J. Paleontol. 68: 892–902.Google Scholar
  86. Prasad, G. V. R., and Khajuria, C. K. (1990). A record of microvertebrate fauna from the intertrappean beds of Naskal, Andhra Pradesh. J. Palaeontol. Soc. India 35: 151–161.Google Scholar
  87. Prasad, G. V. R., and Sahni, A. (1988). First Cretaceous mammal from India. Nature 332: 638–640.CrossRefGoogle Scholar
  88. Prasad, G. V. R., Jaeger, J. A., Sahni, A., Gheerbrant, E., and Khajuria, C. K. (1994). Eutherian mammals from the Upper Cretaceous (Maastrictian) Intertrappean Beds of Naskal, Andhra Pradesh, India. J. Vertebr. Paleontol. 14: 260–277.CrossRefGoogle Scholar
  89. Prasad, G. V. R., Khajuria, C. K., and Manhas, B. K. (1995). Palaeobiogeographic significance of the Deccan infra- and intertrappean biota from peninsular India. Hist. Biol. 9: 319–334.CrossRefGoogle Scholar
  90. Rana, R. S., and Wilson, G. P. (2003). New Late Cretaceous mammals from the Intertrappean beds of Rangapur, India and paleobiogeographic framework. Acta Palaeontol. Pol. 48: 331–348.Google Scholar
  91. Rauhut, O. W. M., Martin, T., Ortiz-Jaureguizar, E., and Puerta, P. (2002). A Jurassic mammal from South America. Nature 416: 165–168.CrossRefPubMedGoogle Scholar
  92. Rich, T. H., Vickers-Rich, P., Constantine, A., Flannery, T. F., Kool, L., and van Klaveren, N. (1997). A tribosphenic mammal from the Mesozoic of Australia. Science 278: 1438–1442.CrossRefPubMedGoogle Scholar
  93. Rich, T. H., Vickers-Rich, P., Constantine, A., Flannery, T. F., Kool, L., and van Klaveren, N. (1999). Early Cretaceous mammals from Flat Rocks, Victoria, Australia. Rec. Queen Victoria Mus. 106: 1–35.Google Scholar
  94. Rich, T. H., Flannery, T. F., Trusler, P., Kool, L., van Klaveren, N., and Vickers-Rich, P. (2001a). A second tribosphenic mammal from the Mesozoic of Australia. Rec. Queen Victoria Mus. 110: 1–10.Google Scholar
  95. Rich, T. H., Flannery, T., Trusler, P., and Vickers-Rich, P. (2001b). Corroboration of the Garden of Eden Hypothesis. In: Faunal and Floral Migrations and Evolution in SE Asia-Australia, I. Metcalfe, J. M. B. Smith, M. Morwood, I. Davidson and K. Hewison, eds., pp. 323–332, Balkema Publishers, Lisse, Netherlands.Google Scholar
  96. Rich, T. H., Flannery, T. F., Trusler, P., Kool, L., van Klaveren, N. A., and Vickers-Rich, P. (2002). Evidence that monotremes and ausktribosphenids are not sister groups. J. Vertebr. Paleontol. 22: 466–469.CrossRefGoogle Scholar
  97. Rose, K. D., and Lucas, S. G. (2000). An early Paleocene palaeanodont (Mammalia?Pholidota) from New Mexico, and the origin of the Palaeanodonta. J. Vertebr. Paleontol. 20: 139–156.CrossRefGoogle Scholar
  98. Sigogneau-Russell, D. (1991a). Decouverte du premier mammifere tribosphenique du Mesozoique africain. C. R. Acad. Sci. Paris, Ser. II. Sciences de la Terre et des Planetes 313: 1635–1640.Google Scholar
  99. Sigogneau-Russell, D. (1991b). First evidence of Multituberculata (Mammalia) in the Mesozoic of Africa. N. Jb. Geol. Palaeontol. Mh. 2: 119–125.Google Scholar
  100. Sigogneau-Russell, D., Hooker, J. J., and Ensom, P. C. (2001). The oldest tribosphenic mammal from Laurasia (Purbeck Limestone Group, Berriasian, Cretaceous, UK) and its bearing on the ‘dual origin’ of Tribosphenida. C. R. Acad. Sci. Paris, Ser. II. Sciences de la Terre et des Planetes 333: 141–147.Google Scholar
  101. Simons, E. L., Holroyd, P. A., and Bown, T. M. (1991). Early Tertiary elephant-shrews from Egypt and the origin of the Macroscelidea. Proc. Natl. Acad. Sci. U.S.A. 88: 9734–9737.PubMedCrossRefGoogle Scholar
  102. Springer, M. S., Cleven, G. C., Madsen, O., de Jong, W. W., Waddell, V. G., Amrine, H. M., and Stanhope, M. J. (1997). Endemic African mammals shake the phylogenetic tree. Nature 388: 61–64.CrossRefPubMedGoogle Scholar
  103. Springer, M. S., Murphy, W. J., Eizirik, E., and O’Brien, S. J. (2003). Placental mammal diversification and the Cretaceous–Tertiary boundary. Proc. Natl. Acad. Sci. U.S.A. 100: 1056–1061.CrossRefPubMedGoogle Scholar
  104. Stanhope, M. J., Waddell, V. G., Madsen, O., de Jong, W. W., Hedges, S. B., Cleven, G. C., Kao, D., and Springer, M. S. (1998). Molecular evidence for multiple origins of Insectivora and for a new order of endemic African insectivore mammals. Proc. Natl. Acad. Sci. U.S.A. 95: 9967–9972.CrossRefPubMedGoogle Scholar
  105. Stevens, N. J., and Heesy, C. P. (2000). Biogeographic origins of primate higher taxa. J. Vertebr. Paleontol. 20: 71A.Google Scholar
  106. Stewart, C.-B., and Disotell, T. R. (1998). Primate evolution—in and out of Africa. Curr. Biol. 8: R582–R588.CrossRefPubMedGoogle Scholar
  107. Strait, D. S., and Wood, B. A. (1999). Early hominid biogeography. Proc. Natl. Acad. Sci. U.S.A. 96: 9196–9200.CrossRefPubMedGoogle Scholar
  108. Tavare, S., Marshall, C. R., Will, O., Soligo, C., and Martin, R. D. (2002). Using the fossil record to estimate the age of the last common ancestor of extant primates. Nature 416: 726–729.CrossRefPubMedGoogle Scholar
  109. van Dijk, M. A. M., Madsen, O., Catzeflis, F., Stanhope, M. J., de Jong, W. W., and Pagel, M. (2001). Protein sequence signatures support the African clade of mammals. Proc. Natl. Acad. Sci. U.S.A. 98: 188–193.CrossRefPubMedGoogle Scholar
  110. Van Valen, L. M. (1985). Why and how do mammals evolve unusually rapidly? Evol. Theory 7: 127–132.Google Scholar
  111. Vizcaino, S. F., Pascual, R., Reguero, M. A., and Goin, F. J. (1998). Antarctica as background for mammalian evolution. Asoc. Paleont. Argentina Publ. Espec. 5: 199–209.Google Scholar
  112. Weil, A. (2001). Mammalian evolution: relationships to chew over. Nature 409: 28–29, 31.CrossRefPubMedGoogle Scholar
  113. Wible, J. R., Novacek, M. J., and Rougier, G. W. (2004). New data on the skull and dentition in the Mongolian Late Cretaceous eutherian mammal Zalambdalestes. Bull. Am. Mus. Nat. Hist. 281: 1–144.CrossRefGoogle Scholar
  114. Woodburne, M. O., and Case, J. A. (1996). Dispersal, vicariance, and the post-Gondwanan Late Cretaceous to early Tertiary biogeography from South America to Australia. J. Mammal. Evol. 3: 121–161.CrossRefGoogle Scholar
  115. Woodburne, M. O., Rich, T. H., and Springer, M. S. (2003). The evolution of tribospheny and the antiquity of mammalian clades. Mol. Phylogenet. Evol. 28: 360–385.CrossRefPubMedGoogle Scholar
  116. Zack, S. P., Penkrot, T. A., Bloch, J. I., and Rose, K. D. (2005). Affinities of “hyopsodontids” to elephant-shrews and a holartic origin of Afrotheria. Nature 434: 497–501.CrossRefPubMedGoogle Scholar
  117. Zalmout, I. S., Gingerich, P. D., and Ul-Haq, M. (2003). New species of protosiren (Mammalia, Sirenia) from the early middle Eocene of Balochistan (Pakistan). Contrib. Mus. Paleontol. Univ. Mich. 31: 79–87.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Museum of Biological DiversityOhio State UniversityColumbusUSA
  2. 2.Department of Ecology and Evolutionary BiologyBrown UniversityProvidenceUSA
  3. 3.Department of Evolution, Ecology, and Organismal BiologyOhio State University at NewarkNewarkUSA

Personalised recommendations