Advertisement

Journal of Mammalian Evolution

, Volume 12, Issue 3–4, pp 461–494 | Cite as

“South American” Marsupials from the Late Cretaceous of North America and the Origin of Marsupial Cohorts

  • Judd A Case
  • Francisco J. Goin
  • Michael O. Woodburne
Other Original Articles

Abstract

Newly described marsupial specimens of Judithian (late Campanian) and Lancian (Maastrichtian) age in the western interior of North America (Wyoming to Alberta) have dental morphologies consistent with those expected in comparably aged sediments in South America (yet to be found). Three new Lancian species are referable to the didelphimorphian Herpetotheriidae, which suggests that the ameridelphian radiation was well under way by this time. The presence of a polydolopimorphian from Lancian deposits with a relatively plesiomorphic dental morphology and an additional polydolopimorphian taxon from Judithian deposits with a more derived molar form indicate that this lineage of typically South American marsupials was diversifying in the Late Cretaceous of North America. This study indicates that typical South American lineages (e.g. didelphimorphians and polydolopimorphians) are not the result of North American peradectian progenitors dispersing into South America at the end of the Cretaceous (Lancian), or at the beginning of the Paleocene (Puercan), and giving rise to the ameridelphian marsupials. Instead, these lineages, and predictably others as well, had their origins in North America (probably in more southerly latitudes) and then dispersed into South America by the end of the Cretaceous. Geophysical evidence concerning the connections between North and South America in the Late Cretaceous is summarized as to the potential for overland mammalian dispersal between these places at those times. Paleoclimatic reconstructions are considered, as is the dispersal history of hadrosaurine dinosaurs and boid snakes, as to their contribution to an appraisal of mammalian dispersals in the Late Cretaceous. In addition, we present a revision of the South American component of the Marsupialia. One major outcome of this process is that the Polydolopimorphia is placed as Supercohort Marsupialia incertae sedis because no characteristics currently known from this clade securely place it within one of the three named marsupial cohorts.

Key Words

Ameridelphia Didelphimorphia Polydolopimorphia Judithian Lancian marsupial phylogeny biogeography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aplin, K., and Archer, M. (1987). Recent advances in marsupial systematics, with a new, higher level classification of the Marsupialia. In: Possums and Opossums: Studies in Evolution, M. Archer, ed., pp. 369–391, Royal Zoological Society of New South Wales, Surrey Beatty and Sons Pty Limited, Chipping Norton, New South Wales.Google Scholar
  2. Archer, M., Jenkins, F. A., Jr., Hand, S. J., Murray, P., and Godhelp, H. (1993). Description of the skull and non-vestigial dentition of a Miocene Platypus (Obdurodon dicksoni, n. sp.) from Riversleigh, Australia, and the problem of monotreme origins. In: Platypus and Echidnas, M. L. Augee, ed., pp. 15–27, Royal Zoological Society of New South Wales, Sydney.Google Scholar
  3. Archer, M., Murray, P., Hand, S., and Godhelp, H. (1992). Reconsideration of monotreme relationships based on the skull and dentition of the Miocene Obdurodon dicksoni. In: Mammalian Phylogeny, Vol. 1, Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials, F. S. Szalay, M. Novacek, and M. McKenna, eds., pp. 75–94, Springer, New York.Google Scholar
  4. Bonaparte, J. F. (1990). New Late Cretaceous mammals from the Los Alamitos Formation, northern Patagonia. Natl. Geograph. Res. 6: 63–93.Google Scholar
  5. Bonaparte, J. F. (1996). Cretaceous tetrapods of Argentina. Münchner Geowissenschaftliche Abhandlungen A 30: 73–130.Google Scholar
  6. Bonaparte, J. F., and Rougier, G. (1987). The Late Cretaceous fauna of Los Alamitos, Patagonia, Argentina. Part VII—The Hadrosaurs. Revista del Museo Argentino de Ciencias Naturales, Paleontologia 3: 155–161.Google Scholar
  7. Carroll, R. L. (1988). Vertebrate Paleontology and Evolution, W. H. Freeman, New York.Google Scholar
  8. Case, J. A. (1992). Paleocene gap in the fossil record of North American Didelphids. J. Vertebr. Paleontol. 13: 22A.Google Scholar
  9. Case, J. A., Martin, J. E., Chaney, D. S., Reguero, M., and Woodburne, M. O. (1998). The first hadrosaur from Antarctica. J. Vertebr. Paleontol. 18: 32A.Google Scholar
  10. Case, J. A., Martin, J. E., Chaney, D. S., Reguero, M., Marenssi, S. A., Santillana, S. M., and Woodburne, M. O. (2000). The first duck-billed dinosaur (Family Hadrosauridae) from Antarctica. J. Vertebr. Paleontol. 20: 612–614.Google Scholar
  11. Case, J. A., and Woodburne, M. O. (1986). South American marsupials: A successful crossing of the Cretaceous-Tertiary boundary. Palaios 1: 413–416.Google Scholar
  12. Cifelli, R. L., Kirkland, J. I., Weil, A., Deino, A. L., and Kowallis, B. J. (1997). High-precision 40Ar/39Ar geochronology and the advent of North America's Late Cretaceous terrestrial fauna. Proc. Natl. Acad. Sci. U.S.A. 94: 11163–11167.PubMedCrossRefGoogle Scholar
  13. Clemens, W. A. (1966). Fossil mammals from the type Lance Formation, Wyoming. Part II. Univ. Calif. Publ. Geol. Sci. 66: 1–122.Google Scholar
  14. Coria, R. A. (1998). A new iguanodontian dinosaur from the Neuquen Group, Argentina, with comments on ornithischian biogeography. J. Vertebr. Paleontol. 18: 35A.Google Scholar
  15. Crochet, J.-Y. (1979). Les Marsupiaux du Tertiare du Tertiare d'Europe, Éditions de la Fondation singer-Polignac, Paris.Google Scholar
  16. Crochet, J.-Y., and Sige, B. (1993). Les mammiferes de Chulpas (Formation Umayo) transition Cretace-Teriare, Perou: donnees preliminaires. Documents d' Laboratoire de Geologie Lyon 125: 97–107.Google Scholar
  17. de Muizon, C. (1991). La fauna de mamíferos de Tiupampa (Paleoceno Inferior, Formación Santa Lucía), Bolivia. In: Fósiles y Facies de Bolivia, 1, Vertebrados, pp. 575–624, Santa Cruz. Revista Técnica de Yacimientos Petroliferos Fiscales Bolivianos 12: 3–4.Google Scholar
  18. de Muizon, C., and Brito, I. M. (1993). Le bassin calcaire de São José de Itaboraí (Rio de Janeiro, Brésil): ses relacions fauniques avec le site de Tiupampa (Cochambamba, Bolivie). Annales de Palaeontologie 79: 233–269.Google Scholar
  19. de Muizon, C., Cifelli, R. L., and Paz, R. C. (1997). The origin of the dog-like borhyaenoid marsupials of South America. Nature 389: 486–489.PubMedCrossRefGoogle Scholar
  20. de Muizon, C., and Marshall, L. G. (1992). Alcidedorbignya inopinata (Mammalia: Pantodonta) from the early Paleocene of Bolivia: Phylogenetic and paleobiogeographic implications. J. Paleontol. 66: 499–520.Google Scholar
  21. Flannery, T., Archer, M., Rich, T. H., and Jones, R. (1995). A new family of monotremes from the Cretaceous of Australia. Nature 377: 418–420.CrossRefGoogle Scholar
  22. Flynn, J. J., and Swisher, C. C., III. (1995). Cenozoic South American land mammal ages: Correlation to global geochronologies. In: Geochronology, Time-Scales and Global Stratigraphic Correlations: A Unified Framework for an Historical Geology, W. A. Berggren, D. V. Kent, M.-P. Aubry, and J. Hardenbol, eds., pp. 317–333, Society of Stratigraphic Geology, Special Publ. 54, Tulsa, Oklahoma.Google Scholar
  23. Fox, R. C. (1979). Mammals from the Upper Cretaceous Oldman Formation, Alberta: I, Alphadon, Simpson (Marsupialia). Can. J. Earth Sci. 16: 91–102.Google Scholar
  24. Goin, F. J. (2003). Early marsupial radiations in South America. In: Predators with Pouches: The Biology of Carnivorous Marsupials, M. Jones, C. Dickman,and M. Archer, eds., pp. 30–42, Commonwealth Scientific & Industrial Research Organization, Sydney.Google Scholar
  25. Goin, F. J., and Candela, A. M. (1996). A new early Eocene polydolopimorphian (Mammalia, Marsupialia) from Patagonia. J. Vertebr. Paleontol. 16: 292–296.CrossRefGoogle Scholar
  26. Goin, F. J., Candela, A. M., Bond, M., Pascual, R., and Escribano, V. (1998a). Una nueva ëcomadrejaí (Mammalia, Marsupialia, Polydolopimorphia) del Paleoceno de Patagonia, Argentina. Associacion Paleontolog1ia Argentina. Pub. Spec. 5. Paleogeno de America del Sur y de la PenÌnsula Antartica: 71–78.Google Scholar
  27. Goin, F. J., Candela, A. M., and de Muizon, C. (2003). The affinities of Roberthoffstetteria nationalgeographica (Marsupialia) and the origin of the polydolopine molar pattern. J. Vertebr. Paleontol. 23: 869–876.Google Scholar
  28. Goin, F. J., Case, J. A., Woodburne, M. O., Vizcaino, S. F., and Reguero, M. A. (1999). New discoveries of “opossum-like” marsupials from Antarctica (Seymour Island, Middle Eocene). J. Mamm. Evol. 6: 335–365.Google Scholar
  29. Goin, F. J., Oliveira, E. V., and Candela, A. M. (1998b). Carolocoutoia ferigoloi n. gen. et. sp. (Protodidelphidae), a new Paleocene “opossum-like” marsupial from Brazil. Palaeovertabrata 27: 145–154.Google Scholar
  30. Gradstein, F. M., Agterberg, F. P., Ogg, J. G., Hardenbol, J., Van Veen, P., Thierry, J., and Huang, Z. (1995). A Triassic, Jurassic, and Cretaceous time scale. In: Geochronology, Time-Scales and Global Stratigraphic Correlations: A Unified Framework for an Historical Geology, W. A. Berggren, D. V. Kent, M.-P. Aubry, and J. Hardenbol, eds., pp. 95–126, Society for Stratigraphic Geology Special Publ. 54, Tulsa, Oklahoma.Google Scholar
  31. Huber, B. T. (1998). Tropical Paradise at the Poles? Science 282: 2199–2200.CrossRefGoogle Scholar
  32. Johanson, Z. (1996). New marsupial from the Fort Union Formation, Swain Quarry, Wyoming. J. Paleontol. 70: 1023–1032.Google Scholar
  33. Keller, G. (2001). The End-Cretaceous mass extinction in the marine realm: Year 2000 Assessment. Planet. Space Sci. 49: 817–830.CrossRefGoogle Scholar
  34. Kirsch, J. A. W., Dickerman, A. A., Reig, O. A., and Springer, M. S. (1991). DNA hybridization evidence for the Australasian affinity of Dromiciops australis. Proc. Natl. Acad. Sci. U.S.A. 88: 10465–10469.PubMedGoogle Scholar
  35. Kirsch, J. A. W., Lapointe, F.-J., and Springer, M. S. (1997). DNA-hybridization studies of marsupials and their implications for metatherian classification. Aust. J. Zool. 45: 211–280.CrossRefGoogle Scholar
  36. Krause, D. W., Rodgers, R. R., Forester, C. A., Hartman, J. A., Buckley, G. A., and Sampson, S. D. (1999). The Late Cretaceous vertebrate fauna of Madagascar: Implications for Gondwanan paleobiogeography. GSA Today 9: 1–7.Google Scholar
  37. Krishtalka, L., and Stucky, R. K. (1983). Paleocene and Eocene marsupals of North America. Ann. Carnegie Mus. Nat. Hist. 52: 229–263.Google Scholar
  38. Ladevéze, S. (2004). Metatherian petrosals from the late Paleocene of Itaboraí, Brazil, and their phylogenetic implications. J. Vertebr. Paleontol. 21: 202–213.Google Scholar
  39. Lillegraven, J. A. (1969). Latest Cretaceous mammals of upper part of Edmonton Formation of Alberta, Canada, and review of marsupial placental dichotomy of mammalian evolution. Univ. Kansas Paleontol. Contrib. 50: 1–122.Google Scholar
  40. Lillegraven, J. A., and McKenna, M. C. (1986). Fossil mammals from the “Mesaverde” Formation (Late Cretaceous, Judithian) of the Bighorn and Wind River basins, Wyoming, with definitions of Late Cretaceous North American land-mammals “ages.” Am. Mus. Nat. Hist. Novit. 2840: 1–68.Google Scholar
  41. Luckett, W. P. (1993). An ontogenetic assessment of dental homologies in therian mammals. In: Mammal Phylogeny, Vol. 1, Meosozic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials, F. S. Szalay, M. J. Novacek, and M. C. McKenna, eds., pp. 182–204, Springer-Verlag, New York.Google Scholar
  42. Marshall, L. G. (1987). Systematics of Itaboraian (middle Paleocene) age “opossum-like” marsupials from the limestone quarry at São José de Itaboraí, Brazil. In: Possums and Opossums: Studies in Evolution, M. Archer, ed., pp. 91–160, Royal Zoological Society of New South Wales, Surrey Beatty and Sons Pty Limited, Chipping Norton, New South Wales.Google Scholar
  43. Marshall, L. G., Case, J. A., and Woodburne, M. O. (1990). Phylogenetic relationships of the families of marsupials. In:Current Mammalogy, Vol. 2, H. Genoways, ed., pp. 33–405, Plenum Press, New York.Google Scholar
  44. Marshall, L. G., and de Muizon, C. (1988). The dawn of the age of mammals in South America. Natl. Geograph. Res. 4: 23–55.Google Scholar
  45. Martin, J. E., Case, J. A., Jagt, J. W. M., Schulp, A. S., and Mulder, E. W. A. (2003). The first didelphid marsupial (Mammalia) from Europe and its significance concerning Late Cretaceous biogeography. J. Vertebr. Paleontol. 29: 32A.Google Scholar
  46. McKenna, M. C., and Bell, S. K. (1997). Classification of Mammals Above the Species Level, Columbia University Press, New York.Google Scholar
  47. Pascual, R., Archer, M., Ortiz-Jaureguizar, E., Prado, J. L., Godthelp, H., and Hand, S. J. (1992). First discovery of monotremes in South America. Nature 356: 704–706.CrossRefGoogle Scholar
  48. Paula Couto, C., de. (1970). News on the fossil marsupials from the Riochican of Brazil. Anales de la Acadamia Brasiliera de Ciencias 42: 19–34.Google Scholar
  49. Pindell, J. L. (1994). Evolution of the Gulf of Mexico and the Caribbean. In: Caribbean Geology: An Introduction, S. K. Donovan and T. A. Jackson, eds., pp. 13–39, The University of West Indies Publishers Association, Mona, Jamaica.Google Scholar
  50. Rage, J. C. (1978). Une connexion continentale entre Amérique du Nord et Amérique du Sud au Crétacé superieur? L'exemple des vertébrés continentaux. Compte rendu sommaire de Scéances de la Société Géologique de France 6: 281–285.Google Scholar
  51. Ride, W. D. L. (1964). A review of Australian fossil marsupials. J. Proc. R. Soc. West. Aust. 47: 97–131.Google Scholar
  52. Ride, W. D. L. (1970). A Guide to the Native Mammals of Australia, Melbourne, Oxford University Press, New York.Google Scholar
  53. Rigby, J. K., and Wolberg, D. L. (1987). The therian mammalian fauna (Campanian) of Quarry 1, Fossil Forest study area, San Juan Basin, New Mexico. Geol. Soc. Am. Spec. Pap. 209: 51–79.Google Scholar
  54. Rougier, G. W., Noavcek, M. J., Pascual, R., Gelfo, J. N., and Ladera, G. (2001). New Late Cretaceous mammals from Argentina and the survival of Mesozoic lineages in the Patagonian early Tertiary. J. Vertebr. Paleontol. 19: 65A.Google Scholar
  55. Sahni, A. (1972). The vertebrate fauna of the Judith River Formation, Montana. Bull. Am. Mus. Nat. Hist. 147: 323–412.Google Scholar
  56. Sempere, T., Butler, R. G., Richards, D. R., Marshall, L. G., Sharp, W., and Swisher, C. C., III (1997). Stratigraphy and chronology of Upper Cretaceous-lower Paleogene strata in Bolivia and northwest Argentina. Geol. Soc. Am. Bull. 109: 709–727.CrossRefGoogle Scholar
  57. Simpson, G. G. (1945). The principles of classification and a classification of mammals. Bull. Am. Mus. Nat. Hist. 85: vi–xvi, 1–350.Google Scholar
  58. Simpson, G. G. (1953). Evolution and Geography. In: Condon Lectures, Oregon State System of Higher Education, Oregon, p. 35.Google Scholar
  59. Springer, M. S., Westerman, M., Kavanagh, J. R., Burk, A., Woodburne, M. O., Kao, D. J., and Krajewski, C. (1998). The origin of the Australasian marsupial fauna and the phylogenetic affinities of the enigmatic Monito de Monte and marsupial mole. Proc. R. Soc. Lond. B 265: 2381–2386.CrossRefGoogle Scholar
  60. Szalay, F. S. (1982a). A new appraisal of marsupial phylogeny and classification. In: Carnivorous Marsupials, M. Archer, ed., pp. 621–640, Royal Zoological Society of New South Wales, Mossman, Australia.Google Scholar
  61. Szalay, F. S. (1982b). Phylogenetic relationships of the marsupials. Geobios Memoire Special 6: 177–190.Google Scholar
  62. Szalay, F. S. (1994). Evolutionary History of the Marsupials and an Analysis of Osteological Characters, Cambridge University Press, New York.Google Scholar
  63. Temple-Smith, P. (1987). Sperm structure and marsupial phylogeny. In: Possums and Opossums: Studies in Evolution, M. Archer, ed., pp. 171–193, Royal Zoological Society of New South Wales, Surrey Beatty and Sons Pty Limited, Chipping Norton, New South Wales.Google Scholar
  64. Villamil, T., and Pindell, J. L. (1998). Mesozoic paleogeographic evolution of northern South America: Foundation for sequence stratigraphic studies in passive margin strata deposited during non-glacial times. In: Paleogeographic Evolution and Non-Glacial Eustacy, Northern South America, J. L. Pindell and C. Drake, eds., pp. 283–318, Society of Economic Paleontologists and Mineralogists, Special Publ. No. 58, Tulsa, Oklahoma.Google Scholar
  65. Woodbure, M. O. (2004). Global events and the North American mammalian biochronology. In: Late Cretaceous and Cenozoic Mammals of North America: Biostratigraphy and Geochronology, M. O. Woodburne, ed., pp. 315–343, Columbia University Press, New York.Google Scholar
  66. Woodburne, M. O. (2003). Monotremes as tribosphenic mammals. J. Mamm. Evol. 10: 195–248.Google Scholar
  67. Woodburne, M. O., and Case, J. A. (1996). Dispersal, vicariance, and the Late Cretaceous to early Tertiary land mammal biogeography from South America to Australia. J. Mamm. Evol. 3: 121–161.Google Scholar
  68. Woodburne, M. O., and Swisher, C. C., III (1995). Land mammal high resolution geochronology, intercontinental overland dispersals, sea-level, climate, and vicariance. In: Geochronology, Time-Scales and Global Stratigraphic Correlations: A Unified Framework for an Historical Geology, W. A. Berggren, D. V. Kent, M.-P. Aubry, and J. Hardenbol, eds., pp. 335–364, Society of Stratigraphic Geology, Spec. Publ. No. 54, Tulsa, Oklahoma.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Judd A Case
    • 1
    • 4
  • Francisco J. Goin
    • 2
  • Michael O. Woodburne
    • 3
  1. 1.Department of BiologySaint Mary's College of CaliforniaMoragaUSA
  2. 2.División Paleontología Vertebrados, Museo de La PlataLa PlataArgentina
  3. 3.Department of GeologyMuseum of Northern ArizonaFlagstaffUSA
  4. 4.Department of BiologySaint Mary's College of CaliforniaMoragaUSA

Personalised recommendations