Advertisement

Journal of Mammalian Evolution

, Volume 12, Issue 3–4, pp 405–417 | Cite as

Incisor Schmelzmuster Diversity in South America's Oldest Rodent Fauna and Early Caviomorph History

  • Thomas Martin
Mammalian Enamel Microstructure

Abstract

Investigation of the enamel microstructure of 20 isolated rodent incisors from the ?Eocene Santa Rosa local fauna (Peru) yielded exclusively schmelzmuster with multiserial Hunter–Schreger bands (HSB). All three subtypes of multiserialHSB with parallel, acute angular, and rectangular interprismatic matrix (IPM) that were previously reported for caviomorph rodents are present. Two lower incisors with rectangular IPM can be attributed to the Octodontoidea, a caviomorph superfamily exhibiting this highly derived enamel type. The plesiomorphic pauciserial condition that characterizes early Paleogene rodents such as North American Ischyromyoidea (including “Franimorpha”) has not been detected. It is therefore probable that the founder populations of South American Caviomorpha already possessed a derived incisor schmelzmuster with multiserial HSB that is shared with African Thryonomyoidea. Because on the North American continent a possible stem-lineage representative of Caviomorpha with multiserial HSB has never been detected, incisor enamel microstructure supports the hypothesis of an African origin of Caviomorpha from a common ancestor shared with Thryonomyoidea.

Key Words

Caviomorpha enamel microstructure Eocene Peru Santa Rosa 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boyde, A. (1978). Development of the structure of the enamel on the incisor teeth in the three classical subordinal groups of the Rodentia. In: Development, Function and Evolution of Teeth, P. M. Butler and K. A. Josey, eds., pp. 43–58, Academic Press, London.Google Scholar
  2. Campbell, K. E., ed. (in press). The Paleogene Mammalian Fauna of Santa Rosa, Amazonian Peru, Natural History Museum of Los Angeles County, Science Series 40: 1–163.Google Scholar
  3. Clemens, W. A., and Koenigswald, W. V. (1991). Purgatorius, plesiadapiforms, and evolution of Hunter–Schreger bands. J. Vertebr. Paleontol. 11(Suppl.): 43A.Google Scholar
  4. Frailey, C. D., and Campbell, K. E. (2004). The Rodents of the Santa Rosa Local Fauna. In: The Paleogene Mammalian Fauna of Santa Rosa, Amazonian Peru, K. E. Campbell Jr., ed., Natural History Museum of Los Angeles County, Science Series 40: 71–130.Google Scholar
  5. Houle, A. (1999). The origin of platyrrhines: An evaluation of the Antarctic scenario and the floating island model. Am. J. Phys. Anthropol. 109: 541–559.PubMedCrossRefGoogle Scholar
  6. Huchon, D., and Douzery, E. J. P. (2001). From the Old World to the New World: A molecular chronicle of the phylogeny and biogeography of hystricognath rodents. Mol. Phylogenet. Evol. 20: 238–251.PubMedGoogle Scholar
  7. Hussain, S. T., de Bruijn, H., and Leinders, J. M. (1978). Middle Eocene rodents from the Kala Chitta Range (Punjab, Pakistan) III. Proc. Kon. Ned. Akad. Wetensch. B 81: 101–112.Google Scholar
  8. Jaeger, J. J., Denys, C., and Coiffait, B. (1985). New Phiomorpha and Anomaluridae from the late Eocene of North-West Africa: Phylogenetic implications. In: Evolutionary Relationships Among Rodents, W. P. Luckett and J.-L. Hartenberger, eds., pp. 567–588, Plenum, New York.Google Scholar
  9. Kalthoff, D. C. (2000). Die Schmelzmikrostruktur in den Inzisiven der hamsterartigen Nagetiere und anderer Myomorpha (Rodentia, Mammalia). Palaeontographica A 259: 1–193.Google Scholar
  10. Koenigswald, W. v. (1980). Schmelzmuster und Morphologie in den Molaren der Arvicolidae (Rodentia). Abh. senckenberg. naturforsch. Ges. 539: 1–129.Google Scholar
  11. Koenigswald, W. v. (1985). Evolutionary trends in the enamel of rodent incisors. In: Evolutionary Relationships Among Rodents, W. P. Luckett and J.-L. Hartenberger, eds., pp. 403–422, Plenum, New York.Google Scholar
  12. Koenigswald, W. v. (1997). Brief survey of enamel diversity at the schmelzmuster level in Cenozoic placental mammals. In: Tooth Enamel Microstructure, W. v. Koenigswald and P. M. Sander, eds., pp. 137–161, Balkema, Rotterdam.Google Scholar
  13. Koenigswald, W. v. (2004). Enamel microstructure of rodent molars, classification and parallelisms, with a note on the systematic affiliation of the enigmatic Eocene rodent Protoptychus. J. Mamm. Evol. 11: 127–142.Google Scholar
  14. Koenigswald, W. v., and Pfretzschner, H. U. (1991). Biomechanics in the enamel of mammalian teeth. In: Constructional Morphology and Biomechanics, N. Schmidt-Kittler and K. Vogel, eds., pp. 113–125, Springer-Verlag, Berlin.Google Scholar
  15. Koenigswald, W. v., Rensberger, J. M., and Pfretzschner, H. U. (1987). Changes in the tooth enamel of early Paleocene mammals allowing increased diet diversity. Nature 328: 150–152.CrossRefGoogle Scholar
  16. Koenigswald, W. v., and Sander, P. M. (1997). Glossary of terms used for enamel microstructures. In: Tooth Enamel Microstructure, W. v. Koenigswald and P. M. Sander, eds., pp. 267–280, Balkema, Rotterdam.Google Scholar
  17. Korvenkontio, V. A. (1934). Mikroskopische Untersuchungen an Nagerincisiven, unter Hinweis auf die Schmelzstruktur der Backenzähne. Ann. Zool. Soc. Zool.-Bot. Fenn. Vanamo 2: 1–274.Google Scholar
  18. Lavocat, R. (1969). La systématique des rongeurs hystricomorphes et la dérive des continents. C. R. Acad. Sci., Paris D 269: 1496–1497.Google Scholar
  19. Lavocat, R. (1971). Affinités systématiques des caviomorphes et des phiomorphes et origine africaine des caviomorphes. An. Acad. Bras. Cienc. 43(Suppl.): 515–522.Google Scholar
  20. Lavocat, R. (1974). The interrelationships between the African and South American rodents and their bearing on the problem of the origin of South American monkeys. J. Hum. Evol. 3: 323–326.Google Scholar
  21. Lavocat, R. (1976). Rongeurs caviomorphes de l' Oligocène de Bolivie. II. Rongeurs du bassin Déséadien de Salla-Luribay. Palaeovertebrata 7: 15–90.Google Scholar
  22. Lehner, J., and Plenk, H. (1936). Die Zähne. In: Handbuch der mikroskopischen Anatomie des Menschen 5/3, W. v. Möllendorff, ed., pp. 447–708, Springer-Verlag, Berlin.Google Scholar
  23. MacFadden, B., Campbell, K. E., Cifelli, R. L., Siles, O., Johnson, N. M., Naeser, C. W., and Zeitler, P. K. (1985). Magnetic polarity stratigraphy and mammalian fauna of the Deseadan (late Oligocene-early Miocene) Salla beds of northern Bolivia. J. Geol. 93: 223–250.CrossRefGoogle Scholar
  24. Marivaux, L., Vianey-Liaud, M., and Jaeger, J. J. (2004): High-level phylogeny of early Tertiary rodents: Dental evidence. Zool. J. Linn. Soc. 142: 105–134.CrossRefGoogle Scholar
  25. Marshall, L. G., Cifelli, R. L., Drake, R. E., and Curtis, G. H. (1986). Vertebrate paleontology, geology, and geochronology of the Tapera de Lopez and Scarrit Pocket, Chubut Province, Argentina. J. Paleontol. 60: 920–951.Google Scholar
  26. Martin, T. (1992). Schmelzmikrostruktur in den Inzisiven alt- und neuweltlicher hystricognather Nagetiere. Palaeovertebrata, Mém. extra. 1–168.Google Scholar
  27. Martin, T. (1993). Early rodent incisor enamel evolution: Phylogenetic implications. J. Mamm. Evol. 1: 227–253.Google Scholar
  28. Martin, T. (1994). African origin of caviomorph rodents is indicated by incisor enamel microstructure. Paleobiology 20: 5–13.Google Scholar
  29. Martin, T. (1997). Incisor enamel microstructure and systematics in rodents. In: Tooth Enamel Microstructure, W. v. Koenigswald and P. M. Sander, eds., pp. 163–175, Balkema, Rotterdam.Google Scholar
  30. Martin, T. (1999). Evolution of incisor enamel microstructure in Theridomyidae (Rodentia). J. Vertebr. Paleontol. 19: 550-565.CrossRefGoogle Scholar
  31. Martin, T. (2004). Evolution of incisor enamel microstructure in Lagomorpha. J. Vertebr. Paleontol. 24: 411–426.Google Scholar
  32. Martin, T. (2004). Incisor enamel microstructure of South America's earliest rodents: Implications for caviomorph origin and diversification. In: The Paleogene Mammalian Fauna of Santa Rosa, Amazonian Peru, K. E. Campbell Jr., ed., Natural History Museum of Los Angeles County, Science Series 40: 131–140.Google Scholar
  33. Patterson, B., and Wood, A. E. (1982). Rodents from the Deseadan Oligocene of Bolivia and the relationships of the Caviomorpha. Bull. Mus. Comp. Zool. 149: 371–543.Google Scholar
  34. Pfretzschner, H. U. (1988). Structural reinforcement and crack propagation in enamel. In: Teeth Revisited: Proceedings of the VIIth International Symposium on Dental Morphology, Paris 1986, D. E. Russell, J.-P. Santoro, and D. Sigogneau-Russell, eds., Mém. Mus. natn. Hist. nat., Paris, (sér. C) 53: 133–144.Google Scholar
  35. Pfretzschner, H. U. (1994). Biomechanik der Schmelzmikrostruktur in den Backenzähnen von Groß säugern. Palaeontographica A 234: 1–88.Google Scholar
  36. Rensberger, J. M. (1997). Mechanical adaptation in enamel. In: Tooth Enamel Microstructure, W. v. Koenigswald and P. M. Sander, eds., pp. 237–257, Balkema, Rotterdam.Google Scholar
  37. Simpson, G. G. (1980). Splendid Isolation: The Curious History of South American Mammals, Yale University Press, New Haven, CT.Google Scholar
  38. Stefen, C. (1997). Differentiations in Hunter–Schreger bands of carnivores. In: Tooth Enamel Microstructure, W. V. Koenigswald and P. M. Sander, eds., pp. 123–136, Balkema, Rotterdam.Google Scholar
  39. Wahlert, J. H. (1968). Variability of rodent incisor enamel as viewed in thin section, and the microstructure of the enamel in fossil and Recent rodent groups. Brev. Mus. Comp. Zool. 309: 1–18.Google Scholar
  40. Wahlert, J. H. (1984). Hystricomorphs, the oldest branch of the Rodentia. Ann. N. Y. Acad. Sci. 435: 356–357.Google Scholar
  41. Wahlert, J. H. (1989). The three types of incisor enamel in rodens. In: Papers on Fossil Rodents in Honor of Albert Elmer Wood, C. C. Black and M. R. Dawson, eds., pp. 7–16, Natural History Museum of Los Angeles County, Science Series 33.Google Scholar
  42. Wood, A. E. (1981). The origin of the caviomorph rodents from a source in middle America: A clue to the area of origin of the platyrrhine primates. In: Evolutionary Relationships of the New World Monkeys and Continental Drift, R. L. Ciochon and A. B. Chiarelli, eds., pp. 79–91, Plenum, New York.Google Scholar
  43. Wood, A. E. (1985). The relationships, origin, and dispersal of the hystricognathous rodents. In: Evolutionary Relationships Among Rodents, W. P. Luckett and J.-L. Hartenberger, eds., pp. 475–513, Plenum, New York.Google Scholar
  44. Wood, A. E., and Patterson, B. (1959). The rodents of the Deseadan Oligocene of Patagonia and the beginnings of South American rodent evolution. Bull. Mus. Comp. Zool. 120: 282–428.Google Scholar
  45. Wyss, A. E., Flynn, J. F., Norell, M. A., Swisher, C. C., III, Charrier, R., Novacek, M. J., and McKenna, M. C. (1993). South America's earliest rodent and recognition of a new interval of mammalian evolution. Nature 365: 434–437.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Forschungsinstitut SenckenbergFrankfurt am MainGermany

Personalised recommendations