Journal of Mammalian Evolution

, Volume 12, Issue 3–4, pp 379–403 | Cite as

Microstructural Reinforcement in the Canine Enamel of the Hyaenid Crocuta crocuta, the FelidPuma concolorand the Late Miocene Canid Borophagus secundus

  • John M. Rensberger
  • Xiaoming Wang
Mammalian Enamel Microstructure


In bone-eating carnivores such as the hyena Crocuta crocuta, the tooth enamel contains a secondary vertical prism decussation phyletically derived from the wavelike horizontal decussation of primitive carnivores. The structure resists fracture under vertical, oblique, and horizontal tensile stresses, owing to the following modifications of the primitive structure. Positions of wave crests and of wave troughs are synchronized in the vertically successive layers of decussating prisms. Prisms in each successive layer run in a common direction at the crests and in a common but reversed direction at the troughs. Between the crests and troughs, prisms in obliquely slanting layers often retain their primitively reversed prism directions. Near the enamel–dentine junction (EDJ), irregular horizontal decussation is retained. In the upper canine of C. crocuta, a consumer of large bones, secondary vertical decussation is largely confined to the labial and anterior sides of the crown toward the tip where modeling of the static stresses predicts the tensile stresses to be highest and aligned vertically. In Puma concolor, which does not consume large bones, secondary vertical decussation is absent, indicating stress magnitude to be a critical factor in the selection for secondary vertical decussation. The canine enamel in Borophagus secundus, an extinct canid with derived aspects of skull and dental shape like those in hyenas, has dental structures similar to those in C. crocuta but which differ in several ways. The wavelike shapes of the decussation planes are better developed in transverse sections in B. secundus than in C. crocuta, suggesting either the folds are less modified or they dip at a steeper angle. Secondary vertical decussation in B. secundus is more extensive around the circumference of the canine than in C. crocuta, related to a difference in cross-sectional shape of the tooth. Vertical prism decussation may have been more frequently attained in carnivorous mammals than in ungulates because of the more random orientation of dental stresses which creates a selective advantage for wavy decussation planes—a structural transition to vertical decussation.

Key Words

Enamel microstructure Stress resistance Crocuta crocuta Puma concolor Borophagus secundus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Biknevicius, A. R., and Ruff, C. B. (1992). The structure of the mandibular corpus and its relationship to feeding behaviors in extant carnivorans. J. Zool. 228: 479–507.Google Scholar
  2. Boyde, A. (1976). Enamel structure and cavity margins. Operat. Dent. 1: 13–28.Google Scholar
  3. Boyde, A., and Fortelius, M. (1986). Development, structure and function of rhinoceros enamel. Zool. J. Linn. Soc. 87: 181–214.Google Scholar
  4. Brain, C. K. (1981). The Hunters or the Hunted? An Introduction to African Cave Taphonomy, University of Chicago Press, Chicago.Google Scholar
  5. Cook, J., and Gordon, J. E. (1964). A mechanism for the control of crack propagation in all-brittle systems. Proc. R. Soc. Lond. Ser. A 282: 508–520.Google Scholar
  6. Cope, E. D. (1892). A hyaena and other Carnivora from Texas. Proc. Natl. Acad. Sci. U.S.A. 44: 326–327.Google Scholar
  7. Currey, J. (1984). The Mechanical Adaptations of Bones, Princeton University Press, Princeton.Google Scholar
  8. Ferretti, M. P. (1999). Tooth enamel structure in the hyaenid Chasmaporthetes lunensis lunensis from the late Pliocene of Italy, with implications for feeding behavior. J. Vertebr. Paleontol. 19: 767–770.CrossRefGoogle Scholar
  9. Fortelius, M. (1985). Ungulate cheek teeth: Developmental, functional, and evolutionary inter-relations. Acta Zool. Fenn. 180: 1–76.Google Scholar
  10. Galiano, H., and Frailey, D. (1977). Chasmaporthetes kani, new species from China, with remarks on phylogenetic relationships of genera within the Hyaenidae (Mammalia, Carnivora). Am. Mus. Novit. 2632.Google Scholar
  11. Kalthoff, D. C. (2000). Die Schmelzmikrostruktur in den Incisiven der hamsterartigen Nagetiere und anderer Myomorpha (Rodentia, Mammalia). Palaeontographica A259: 1–193.Google Scholar
  12. Kingery, W. D., Bowen, H. K., and Uhlmann, D. R. (1976). Introduction to Ceramics, Wiley, New York.Google Scholar
  13. Koenigswald, W. V. (1980). Schmelzstruktur und Morphologie in den Molaren der Arvicolidae (Rodentia). Abh. Senckenb. naturforsch. Ges. 539: 1–129.Google Scholar
  14. Koenigswald, W. V. (1992). Tooth enamel of the cave bear (Ursus spelaeus) and the relationship between diet and enamel structures. Ann. Zool. Fenn. 28: 217–227.Google Scholar
  15. Koenigswald, W. V. (1994). Differenzierungen im Zahnschmelz der Marsupialia im Vergleich zu den Verhältnissen bei den Placentalia (Mammalia). Berliner Geowiss. Abh. E13: 45–81.Google Scholar
  16. Koenigswald, W. V. (1997). Evolutionary trends in the differentiation of mammalian enamel ultrastructure. In: Tooth Enamel Microstructure, W. V. Koenigswald and P. M. Sander, eds., pp. 203–235, Balkema, Rotterdam.Google Scholar
  17. Koenigswald, W. V. (2004). The three basic types of schmelzmuster in fossil and extant rodent molars and their distribution among rodent clades. Palaeontographica A270: 95–132.Google Scholar
  18. Koenigswald, W. V., Rensberger, J. M., and Pfretzschner, H. U. (1987). Changes in the tooth enamel of early Paleocene mammals allowing dietary diversity. Nature 328: 150–152.CrossRefGoogle Scholar
  19. Korvenkontio, V. A. (1934). Mikroskopische Untersuchungen an Nagerincisiven unter Hinweis auf die Schmelzstruktur der Backenzähne. Ann. Zool. Soc. Zool.-Bot. Fennicae Vanamo 2: 1–274.Google Scholar
  20. Kozawa, Y., and Suzuki, K. (1995). Appearance of new characteristic features of tooth structure in the evolution of molar teeth of Equoidea and Proboscidea. In: Aspects of Dental Biology: Palaeontology, Anthropology and Evolution, J. Moggi-Cecchi, ed., pp. 27–31, International Institute for the Study of Man, Florence.Google Scholar
  21. Lanyon, L. E., and Rubin, C. T. (1985). Functional adaptation in skeletal structures. In: Functional Vertebrate Morphology, M. Hildebrand, D. M. Bramble, K. F. Liem, and D. B. Wake, eds., pp. 1–25, Belknap Press of Harvard University Press, Cambridge, Massachusetts.Google Scholar
  22. Martin, T. (1997). Incisor enamel microstructure and systematics in rodents. In: Tooth Enamel Microstructure, W. V. Koenigswald and P. M. Sander, eds., pp. 163–175, Balkema, Rotterdam.Google Scholar
  23. Matthew, W. D., and Stirton, R. A. (1930). Osteology and affinities of Borophagus. Univ. Calif. Publ. Bull. Geol. Sci. 19: 171–216.Google Scholar
  24. Munthe, K. (1998). Canidae. In: Evolution of Tertiary Mammals of North America, Vol. 1, C. M. Janis, K. M. Scott, and L. L. Jacobs, eds., pp. 124–143, Cambridge University Press, New York.Google Scholar
  25. Parker, E. R. (1957). Brittle Behavior of Engineering Structures, Wiley, New York.Google Scholar
  26. Pfretzschner, H. U. (1988). Structural reinforcement and crack propagation in enamel. In: Teeth Revisited—Proceedings of the VIIth International Symposium on Dental Morphology, Paris, D. E. Russell, J.-P. Santoro, and D. Sigogneau-Russell, eds., Mém. Mus. Natl. d'Hist. Nat., Paris (C) 53: 133–143.Google Scholar
  27. Pfretzschner, H. U. (1992). Enamel microstructure and hypsodonty in large mammals. In: Structure, Function and Evolution of Teeth, P. Smith and E. Tchernov, eds., pp. 147–162, Freund Publishing House, London and Tel Aviv.Google Scholar
  28. Pfretzschner H. U. (1993). Enamel microstructure in the phylogeny of the Equidae. J. Vertebr. Paleontol. 13: 342–349.CrossRefGoogle Scholar
  29. Rasmussen S. T., Patchin, R. E., Scott, D. B., and Heuer, H. H. (1976). Fracture properties of human enamel and dentin. J. Dent. Res. 55: 154–164.PubMedGoogle Scholar
  30. Rensberger, J. M. (1987). Cracks in fossil enamels resulting from premortem vs. postmortem events. Scann. Microsc. 1: 631–645.Google Scholar
  31. Rensberger, J. M. (1992). Relationship of chewing stress and enamel microstructure in rhinocerotoid cheek teeth. In: Structure, Function and Evolution of Teeth, P. Smith and E. Tchernov, eds., pp. 163–183, Freund Publishing House, London and Tel Aviv.Google Scholar
  32. Rensberger, J. M. (1993). Adaptation of enamel microstructure to differences in stress intensity in the Eocene perissodactyl Hyracotherium. In: Structure, Formation and Evolution of Fossil Hard Tissues, I. Kobayashi, H. Mutvei, and A. Sahni, eds., pp. 131–145, Tokai University Press, Tokyo.Google Scholar
  33. Rensberger, J. M. (1995a). Determination of stresses in mammalian dental enamel and their relevance to the interpretation of feeding behaviors in extinct taxa. In: Functional Morphology in Vertebrate Paleontology, J Thomason, ed., pp. 151–172, Cambridge University Press, New York.Google Scholar
  34. Rensberger, J. M. (1995b). Relationship of chewing stresses to 3-dimensional geometry of enamel microstructure in rhinocerotoids. In: Aspects of Dental Biology: Palaeontology, Anthropology and Evolution, Moggi-Cecchi, ed., pp. 129–146, International Institute for the Study of Man, Florence.Google Scholar
  35. Rensberger, J. M. (1995c). Enamel specialization in hyenas—A structure useful for assessing bone-eating behavior in carnivorous mammals. J. Paleontol. 15: 49A.Google Scholar
  36. Rensberger, J. M. (2000). Pathways to functional differentiation in mammalian enamel. In: Development, Function and Evolution of Teeth, M. F. Teaford, M. M. Smith, and M. W. J. Ferguson, eds., pp. 252–268, Cambridge University Press, New York.Google Scholar
  37. Rensberger, J. M. (2004). Evidence from the enamel microstructure for reversals in dietary behavior in the transition from primitive Ceratomorpha to Rhinocerotoidea. In: Fanfare for an Uncommon Paleontologist: Papers in Honor of Malcolm C. McKenna, Mary R. Dawson and Jason A. Lillegraven, eds., Bull. Carnegie Mus. Nat. Hist. 36: 199–210.Google Scholar
  38. Rensberger, J. M., and Koenigswald, W. V. (1980). Functional and phylogenetic interpretation of enamel microstructure in rhinoceroses. Paleobiology 6: 477–495.Google Scholar
  39. Rensberger, J. M., and Pfretzschner, H. U. (1992). Enamel structure in astrapotheres and its functional implications. Scann. Microsc. 6: 495–510.Google Scholar
  40. Richy, K. A. (1979). Variation and evolution in the premolar teeth of Osteoborus and Borophagus (Canidae). Trans. Nebr. Acad. Sci. 7: 105–123.Google Scholar
  41. Schaffler, M. B., and Burr, D. B. (1988). Stiffness of compact bone: Effects of porosity and density. J. Biomech. 21: 13–16.PubMedCrossRefGoogle Scholar
  42. Stefen, C. (1997a). Differentiations in Hunter–Schreger bands of carnivores. In: Tooth Enamel Microstructure, W. V. Koenigswald and P. M. Sander, eds., pp. 123–136, Balkema, Rotterdam.Google Scholar
  43. Stefen, C. (1997b). The enamel of Creodonta, Arctocyonidae and Mesonychidae (Mammalia) with special reference to the appearance of Hunter–Schreger bands. Paläeontol. Zeitsch. 71: 291–303.Google Scholar
  44. Stefen, C. (1999). Enamel microstructure of Recent and fossil Canidae (Carnivora: Mammalia). {J. Vertebr. Paleontol.} 19: 576–587.CrossRefGoogle Scholar
  45. Stefen, C., and Rensberger, J. M. (2002). The specialized enamel structure of hyaenids (Mammalia, Hyaenidae): Description and development within the lineage—including percrocutids. Zool. Abh. 52: 127–147.Google Scholar
  46. Tedford, R. H., Taylor, B. E., and Wang, X. (1995). Phylogeny of the Caninae (Carnivora: Canidae): The living taxa. Am. Mus. Novit. 3146: 1–37.Google Scholar
  47. Van Valkenburgh, B. (1988). Incidence of tooth breakage among large predatory mammals. Am. Nat. 131: 291–302.Google Scholar
  48. Van Valkenburgh, B. (1996). Feeding behavior in free-ranging, large African carnivores. J. Mammal. 77: 240–254.Google Scholar
  49. Van Valkenburgh, B., and Ruff, C.B. (1987). Canine tooth strength and killing behaviour in large carnivores. J. Zool. (Lond.) 212: 1–19.Google Scholar
  50. Van Valkenburgh, B., Sacco, T., and Wang, X. (2003). Pack hunting in Miocene borophagine dogs: Evidence from craniodental morphology and body size. Bull. Am. Mus. Nat. Hist. 279: 147–162.Google Scholar
  51. Van Valkenburgh, B., Teaford, M. F., and Walker, A. (1990). Molar microwear and diet in large carnivores: Inferences concerning diet in the sabretooth cat, Smilodon fatalis. J. Zool. (Lond.) 222: 319–340.Google Scholar
  52. Wahlert, J. H. (1968). Variability of rodent incisor enamel as viewed in thin section, and the microstructure of the enamel in fossil and recent rodent groups. Breviora 309: 1–18.Google Scholar
  53. Wang, X. (1994). Phylogenetic systematics of the Hesperocyoninae (Carnivora: Canidae). Bull. Am. Mus. Nat. Hist. 221: 1–207.Google Scholar
  54. Wang, X., Tedford, R., and Taylor, B. (1999). Phylogenetic systematics of the Borophaginae (Carnivora: Canidae). Bull. Am. Mus. Nat. Hist. 243: 1–391.Google Scholar
  55. Werdelin, L. (1989). Constraint and adaptation in the bone-cracking canid Osteoborus (Mammalia: Canidae). Paleobiology 15: 387–401.Google Scholar
  56. Werdelin, L., and Solounias, N. (1991). The Hyaenidae: Taxonomy, systematics and evolution. Fossils Strata 30: 1–104.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Earth and Space Sciences and Burke MuseumUniversity of WashingtonSeattleUSA
  2. 2.Natural History Museum of Los Angeles CountyLos AngelesUSA
  3. 3.Department of Earth and Space SciencesUniversity of WashingtonSeattleUSA

Personalised recommendations