Journal of Mammalian Evolution

, Volume 12, Issue 3–4, pp 359–378 | Cite as

A Tachyglossid-Like Humerus from the Early Cretaceous of South-Eastern Australia

  • Peter A. Pridmore
  • Thomas H. Rich
  • Pat Vickers-Rich
  • Petr P. Gambaryan
Comparative Morphology and Early Diversification of Mammals

Abstract

A partial right humerus has been recovered from the Early Cretaceous (Albian) Eumeralla Formation at Dinosaur Cove in south-eastern Australia. General morphology, size and the presence of a single epicondylar foramen (the entepicondylar) suggest that the bone is from a mammal or an advanced therapsid reptile. The humerus is similar in size, shape and torsion to the equivalent bone of extant and late Neogene echidnas (Tachyglossidae) but, contrary to the situation in extant monotremes, in which the ulna and radius articulate with a single, largely bulbous condyle, it bears a shallow, pulley-shaped (i.e. trochlear-form) ulnar articulation that is confluent ventro-laterally with the bulbous radial condyle. This form of ulnar articulation distinguishes this bone from the humeri of most advanced therapsids and members of several major groups of Mesozoic mammals, which have a condylar ulnar articulation, but parallels the situation found in therian mammals and in some other lineages of Mesozoic mammals. As in extant monotremes the distal humerus is greatly expanded transversely and humeral torsion is strong. Transverse expansion of the distal humerus is evident in the humeri of the fossorial docodont Haldanodon, highly-fossorial talpids and some clearly fossorial dicynodont therapsids, but the fossil shows greatest overall similarity to extant monotremes and it is possible that the peculiar elbow joint of extant monotremes evolved from a condition approximating that of the fossil. On the basis of comparisons with Mesozoic and Cainozoic mammalian taxa in which humeral morphology is known, the Dinosaur Cove humerus is tentatively attributed to a monotreme. However, several apparently primitive features of the bone exclude the animal concerned from the extant families Tachyglossidae and Ornithorhynchidae and suggest that, if it is a monotreme, it is a stem-group monotreme. Whatever, the animal's true affinity, the gross morphology of its humerus indicates considerable capacity for rotation-thrust digging.

Key Words

Humerus Mammalia Monotremes Cretaceous Fossil 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Archer, M., Flannery, T. F., Ritchie, A., and Molnar, R. E. (1985). First Mesozoic mammal from Australia—An early Cretaceous monotreme. Nature 318: 363–366.CrossRefGoogle Scholar
  2. Archer, M., Arena, R., Bassarova, M., Black, K., Brammall, J., Cooke, B., Creaser, P., Crosby, K., Gillespie, A., Godthelp, H., Gott, M., Hand, S. J., Kear, B., Krikmann, A., Mackness, B., Muirhead, J., Musser, A., Myers, T., Pledge, N., Wang, Y., and Wroe, S. (1999). The evolutionary history and diversity of Australian mammals. Aust. Mammal. 21: 1–45.Google Scholar
  3. Carroll, R. L. (1988). Vertebrate Paleontology and Evolution, W.H. Freeman and Co., New York.Google Scholar
  4. Chinsamy, A., Rich, T. H., and Vickers-Rich, P. (1998). Polar dinosaur bone histology. J. Vertebr. Paleontol. 18: 385–390.CrossRefGoogle Scholar
  5. Cifelli, R., Wible, J. R., and Jenkins, F. A., Jr. (1998). Triconodont mammals from the Cloverly Formation (Lower Cretaceous), Montana and Wyoming. J. Vertebr. Paleontol. 18: 237–241.Google Scholar
  6. Clemens, W. A., and Kielan-Jarworowska, Z. (1979). Multituberculata. In: Mesozoic Mammals: The First Two-thirds of Mammalian History, J. A. Lillegraven, Z. Kielan-Jaworowska, and W. A. Clemens, eds., pp. 99–149, University of California Press, Berkeley.Google Scholar
  7. Cluver, M. A. (1978). The skeleton of the mammal-like reptile Cistecephalus with evidence for a fossorial mode of life. Ann. S. Afr. Mus. 78: 213–246.Google Scholar
  8. Constantine, A. (2001). Sedimentology, Stratigraphy and Palaeoenvironment of the Upper Jurassic-Lower Cretaceous Non-Marine Strezelecki Group, Gippsland Basin, Southeastern Australia, Unpublished Ph.D. dissertation, Monash University, Clayton, Victoria, Australia.Google Scholar
  9. Cox, C. B. (1972). A new digging dicynodont from the Upper Permian of Tanzania. In: Studies in Vertebrate Evolution, K. A. Joysey and T. S. Kemp, eds., pp. 173–189, Oliver and Boyd, Edinburgh.Google Scholar
  10. Evans, F. G., and Krahl, V. E. (1945). The torsion of the humerus: A phylogenetic survey from fish to man. Am. J. Anat. 76: 303–337.CrossRefGoogle Scholar
  11. Flannery, T. F., Archer, M., Rich, T. H., and Jones, R. (1995). A new family of monotremes from the Cretaceous of Australia. Nature 377: 418–420.CrossRefGoogle Scholar
  12. Forasiepi, A. M., and Martinelli, A. G. (2003). Femur of a monotreme (Mammalia, Monotremata) from the Early Paleocene Salamance Formation of Patagonia, Argentine. Ameghiniana 40: 625–630.Google Scholar
  13. Gambaryan, P. P., and Keilan-Jaworowska, Z. (1997). Sprawling versus parasagittal stance in multituberculate mammals. Acta Palaeontol. Polon. 42: 13–44.Google Scholar
  14. Gow, C. E. (2001). A partial skeleton of the trithelodontid Pachygenelus (Therapsida, Cynodontia). Palaeontol. Afr. 37: 93–97.Google Scholar
  15. Haines, R. W. (1946). A revision of the movements of the forearm in tetrapods. J. Anat. 80: 1–11.PubMedGoogle Scholar
  16. Hildebrand, M. (1985). Digging of quadrupeds. In: Functional Vertebrate Morphology, M. Hildebrand, D. M. Bramble, K. F. Liem, and D. B. Wake, eds., pp. 89–109, Belknap Press, Cambridge, Massachusetts.Google Scholar
  17. Howell, A. B. (1937a). The swimming mechanism of the platypus. J. Mammal. 18: 217–222.Google Scholar
  18. Howell, A. B. (1937b). Morphogenesis of the shoulder architecture. Part V. Monotremata. Quart. Rev. Biol. 12: 191–205.Google Scholar
  19. Jenkins, F. A., Jr. (1970). Cynodont postcranial anatomy and the “prototherian” level of mammalian organization. Evolution 24: 230–252.Google Scholar
  20. Jenkins, F. A., Jr. (1971). The postcranial skeleton of the African cynodonts. Bull. Peabody Mus. Nat. Hist., Yale 36: 1–216.Google Scholar
  21. Jenkins, F. A., Jr. (1973). The functional anatomy and evolution of the mammalian humero-ulnar articulation. Am. J. Anat. 137: 281–298.PubMedCrossRefGoogle Scholar
  22. Jenkins, F. A., Jr., and Parrington, F. R. (1976). Post-cranial skeletons of the Triassic mammals Eozostrodon, Megazostrodon and Erythrotherium. Philos. Trans. R. Soc. Lond. Ser. B 273: 387–431.Google Scholar
  23. Jenkins, F. A., Jr., and Schaff, C. R. (1988). The Early Cretaceous mammal Gobiconodon (Mammalia, Triconodonta) from the Cloverly Formation in Montana. J. Vertebr. Paleontol. 6: 1–24.Google Scholar
  24. Kemp. T. S. (1980). Aspects of the structure and functional anatomy of the Middle Triassic cynodont Luangwa. J. Zool., Lond. 191: 193–239.CrossRefGoogle Scholar
  25. Kielan-Jaworowska, Z., and Gambaryan, P. P. (1994). Postcranial anatomy and habits of Asian multituberculate mammals. Fossils Strata 36: 1–92.Google Scholar
  26. Krebs, B. (1991). Das Skelett von Henkelotherium guimarotae ge. et sp. nov. (Eupantotheria, Mammalia) aus dem Oberen Jura von Portugal. Berliner geowiss. Abh. A 133: 1–110.Google Scholar
  27. Kron, D. G. (1979). Docodonta. In: Mesozoic Mammals: The First Two-thirds of Mammalian History, J. A. Lillegraven, Z. Kielan-Jaworowska, and W. A. Clemens, eds., pp. 91–98, University of California Press, Berkeley.Google Scholar
  28. Krusat, G. (1991). Functional morphology of Haldanodon exspectatus (Mammalia, Docodonta) from the Upper Jurassic of Portugal. In: Fifth Symposium on Mesozoic Terrestrial Ecosystems and Biotas {(Extended Abstracts)}, Z. Kielan-Jaworowska, N. Heintz, and H. A. Nakrem, eds., pp. 37–38, Contributions of the Paleontological Museum, University of Oslo, No. 364.Google Scholar
  29. Kühne, W. (1956). The Liassic Therapsid Oligokyphus, British Museum (Natural History), London.Google Scholar
  30. Lessertisseur, J., and Saban, R. (1967). Squellette appendiculaire. In: Traité de Zoologie, 1st edn., Vol. 16, P.-P. Grassé, ed., pp. 709–1078, Masson et Cie, Paris.Google Scholar
  31. Luo, Z.-X., Cifelli, R. L., and Kielan-Jarworowska, Z. (2002). In quest of a phylogeny of Mesozoic mammals. Acta Palaeontologica Polonica 47: 1–78.Google Scholar
  32. Marsicano, C. A. (1993). Postcranial skeleton of a brachiopoid (Amphibia, Temnospondyli) from the Triassic of Mendoza (Argentina). Alcheringa 17: 185–197.CrossRefGoogle Scholar
  33. Martin, T. (2000a). The dryolestids and the primitive “peramurid” from the Guimarota. In: Guimarota a Jurassic Ecosystem, T. Martin and B. Krebs, eds., pp. 109–120, Verlag Dr. Friedrich Pfeil, München.Google Scholar
  34. Martin, T. (2000b). Evolutionary trends and adaptations in Late Jurassic mammals from Guimarota (Portugal). In: Origin and Evolutionary Transformation of Mammals—Using Biological Signals in Understanding Earth History (Abstracts), U. Zeller and P. Bartsch, eds., pp. 21–23, Natural History Museum, Humbolt-University, Berlin.Google Scholar
  35. McKenna, M. C., and Bell, S. K. (1997). Classification of Mammals Above the Species Level, Columbia University Press, New York.Google Scholar
  36. Murray, P. F. (1978). Late Cenozoic monotreme anteaters. Aust. Zool. 20: 29–55.Google Scholar
  37. Musser, A. M. (1999). Diversity and relationships of living and extinct monotremes. Aust. Mammal. 21: 8–9.Google Scholar
  38. Pascual, R., Archer, M., Ortiz Jaureguizar, E., Prado, J. L., Godthelp, H., and Hand, S. J. (1992a). First discovery of monotremes in South America. Nature 356: 704–706.CrossRefGoogle Scholar
  39. Pascual, R., Archer, M., Ortiz Jaureguizar, E., Prado, J. L., Godthelp, H., and Hand, S. J. (1992b). The first non-Australian monotreme: An early Paleocene South American platypus (Monotremata, Ornithorhynchidae). In: Platypus and Echidnas, M. L. Augee, ed., pp 2–15, Royal Zoological Society of New South Wales, Mosman.Google Scholar
  40. Reed, C. A. (1951). Locomotion and appendicular anatomy in three soricoid insectivores. Am. Midl. Nat. 45: 513–671.Google Scholar
  41. Rich, T. H. V., and Rich, P. V. (1988). Tetrapod (terrestrial vertebrate) assemblages. In: Geology of Victoria, J. G. Douglas and J. A. Ferguson, eds., pp. 240–243, Geological Society of Australia, Melbourne.Google Scholar
  42. Rich, T. H., and Rich, P. V. (1989). Polar dinosaurs and biotas of the Early Cretaceous of southeastern Australia. Nat. Geog. Res. 5: 15–53.Google Scholar
  43. Rich, T. H., and Vickers-Rich, P. (2000). Dinosaurs of Darkness, Indiana University Press, Bloomington.Google Scholar
  44. Rich, T. H., and Vickers-Rich, P. (2004). The diversity of the Early Cretaceous mammals from Victoria, Australia. Bull. Am. Mus. Nat. Hist. 285: 36–53.Google Scholar
  45. Rich, T. H., Rich, P. V., Wagstaff, B., McEwen Mason, J., Douthitt, C. B., and Gregory, R. T. (1989). Early Cretaceous biota from the northern side of the Australo-Antarctic Rift Valley. In: Origins and Evolution of the Antarctic Biota, J. A. Crame, ed., pp. 121–130, Geological Society London Special Publication No. 47.Google Scholar
  46. Rich, T. H., Vickers-Rich, P., Constantine, A., Flannery, T. F., Kool, L., and van Klaveren, N. (1997). A tribosphenic mammal from the Mesozoic of Australia. Science 278: 1438–1442.PubMedCrossRefGoogle Scholar
  47. Rich, T. H., Flannery, T. F., and Vickers-Rich, P. (1998). Alleged Cretaceous placental from down under: Reply. Lethaia 31: 346–348.Google Scholar
  48. Rich, T. H., Vickers-Rich, P., Constantine, A., Flannery, T. F., Kool, L., and van Klaveren, N. (1999). Early Cretaceous mammals from Flat Rocks, Victoria, Australia. Rec. Queen Vic. Mus. 106: 1–35.Google Scholar
  49. Rich, T. H., Flannery, T. F., Trusler, P., Kool, L., van Klaveren, N., and Vickers-Rich, P. (2001a). A second tribosphenic mammal from the Mesozoic of Australia. Rec. Queen Vic. Mus. 110: 1–9.Google Scholar
  50. Rich, T. H., Vickers-Rich, P., Trusler, P., Flannery, T. F., Cifelli, R., Constantine, A., Kool, L., and van Klaveren, N. (2001b). Monotreme nature of the Australian Early Cretaceous mammal Teinolophos. Acta Palaeontol. Polon. 46: 113–118.Google Scholar
  51. Romer, A. S. (1956). Osteology of the Reptiles, University of Chicago Press, Chicago.Google Scholar
  52. Rougier, G. W. (1993). Vincelestes neuquenianus Bonaparte (Mammalia, Theria un primitivo mamífero del Cretácico Inferior de la Cuenca Neuquina), Unpublished Ph.D. dissertation, Universidad Nacional de Buenos Aires, Buenos Aires, Argentina.Google Scholar
  53. Simpson, G. G. (1928). A Catalogue of the Mesozoic Mammals in the Geological Department of the British Museum, British Museum (Natural History), London.Google Scholar
  54. Vázquez-Molinero, R., Martin, T., Fischer, M. S., and Frey, R. (2001). Comparative anatomical investigations of the postcranial skeleton of Henkelotherium guimarotae Krebs, 1991 (Eupantotheria, Mammalia) and their implications for its locomotion. Mitt. Mus. Nat. kd Berl., Zool. Reihe 77: 207–216.Google Scholar
  55. Wagstaff, B. E., and McEwen-Mason, J. (1989). Palynological dating of lower Cretaceous coastal vertebrate localities, Victoria, Australia. Natl. Geogr. Res. 5: 54–63.Google Scholar
  56. Wang, Y., Hu, Y., Meng, J., and Li, C. (2001). An ossified Meckel's cartilage in two Cretaceous mammals and the origin of the mammalian middle ear. Science 294: 357–361.PubMedGoogle Scholar
  57. Warren, A. A., and Hutchison, M. N. (1983). The last labyrinthodont? A new brachiopoid (Amphibia, Temnospondyli) from the Early Jurassic Evergreen Formation of Queensland, Australia. Phil. Trans. R. Soc. Lond. Ser. B 303: 1–62.Google Scholar
  58. Westling, C. (1889). Anatomische Untersuchungen über Echidna. Bihang K. Svenska Vetensk.-Akad. Handl. (Stockholm) Bd. 15 part 4, No. 3: 1–71.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Peter A. Pridmore
    • 1
    • 5
  • Thomas H. Rich
    • 2
    • 3
  • Pat Vickers-Rich
    • 3
  • Petr P. Gambaryan
    • 4
  1. 1.Department of Environmental Management and EcologyLa Trobe UniversityWodongaAustralia
  2. 2.Museum VictoriaMelbourneAustralia
  3. 3.School of GeosciencesMonash UniversityClaytonVictoriaAustralia
  4. 4.Zoological Institute, Russian Academy of SciencesPetersburgRussia
  5. 5.Department of Environmental Management and EcologyLa Trobe UniversityWodongaAustralia

Personalised recommendations