Journal of Mammalian Evolution

, Volume 12, Issue 3–4, pp 337–357 | Cite as

New Study on Dental and Skeletal Features of the Cretaceous “Symmetrodontan” Mammal Zhangheotherium

Comparative Morphology and Early Diversification of Mammals


A new partial skeleton of the Cretaceous “symmetrodontan” mammal Zhangheotherium quinquecuspedens from the Yixian Formation of Liaoning, China has shed light on the dental and skeletal features of this taxon. The new fossil is a juvenile individual of late growth stage, preserved with interesting features of the premolar replacement. This fossil also provides new information on the vertebral column, the pelvis, the hindlimb and pes. Zhangheotherium has a typical diphyodont replacement of its premolars that is characterized by an alternating pattern (p1 → p3 → p2). This alternating replacement of premolars is a derived condition shared by Dryolestes, Slaughteria, and some basal eutherians, and differs from the plesiomorphic sequential replacement of anterior postcanines in eutricondontans, in most multituberculates and in stem mammaliaforms. The calcaneus and astragalus in the ankle joint of Zhangheotherium lack superposition. This shows that the trechnotherian clade, of which Zhangheotherium is a basal taxon, has retained the primitive condition of mammaliaforms in which the astragalus is in juxtaposition with the calcaneus. Coupled with recent evidence from the earliest metatherians and eutherians, this suggests that the superposition of astragalus and calcaneus evolved in parallel in metatherians and eutherians.

Key Words

Zhangheotherium Trechnotherians premolar replacement pattern ankle morphology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Averianov, A. O. (2002). Early Cretaceous “symmetrodont” mammal Gobiotheriodon from Mongolia and the classification of “Symmetrodonta.” Acta Palaeontol. Polon. 47: 705–716.Google Scholar
  2. Cifelli, R. L. (1999). Therian teeth of unusual design from the medial Cretaceous (Albian–Cenomanian) Cedar Mountain Formation, Utah. J. Mammal. Evol. 6: 247–270.CrossRefGoogle Scholar
  3. Cifelli, R. L., and Madsen, S. K. (1999). Spalacotheriid symmetrodonts (Mammalia) from the medial Cretaceous (upper Albian or lower Cenomanian) Mussentuchit local fauna, Cedar Mountain Formation, Utah, USA. Geodiversitas 21: 167–214.Google Scholar
  4. Crompton, A. W. (1971). The origin of the tribosphenic molar. In: Early Mammals, D. M. Kermack and K. A. Kermack, eds., pp. 65–87, Zool. J. Linn. Soc. 50, London.Google Scholar
  5. Crompton, A. W., and Jenkins, F. A., Jr. (1967). American Jurassic symmetrodonts and Rhaetic “pantotheres.” Science 155: 1006–1009.PubMedGoogle Scholar
  6. Crompton, A. W., and Luo, Z.-X. (1993). Relationships of the Liassic mammals Sinoconodon, Morganucodon, and Dinnetherium. In: Mammal Phylogeny: Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials, F. S. Szalay, M. J. Novacek, and M. C. McKenna, eds., pp. 30–44. Springer-Verlag, New York.Google Scholar
  7. Evans, H. E. (1995). Miller's Anatomy of The Dog (3rd edn.), Saunders, New York.Google Scholar
  8. Fox, R. C. (1976). Addition to the mammalian local fauna from the upper Milk River Formation (Upper Cretaceous), Alberta. Can. J. Earth Sci. 13: 1105–1118.Google Scholar
  9. Fox, R. C. (1985). Upper molar structure in the Late Cretaceous symmetrodont Symmetrodontoides Fox, and a classfication of the Symmetrodonta (Mammalia). J. Paleontol. 59: 21–26.Google Scholar
  10. Gill, P. (2004). A new symmetrodont from the Early Cretaceous of England. Journal of Vertebrate Paleontology 24: 748–752.Google Scholar
  11. Greenwald, N. S. (1988). Patterns of tooth eruption and replacement in multituberculate mammals. J. Vertebr. Paleontol. 8: 265–277.CrossRefGoogle Scholar
  12. Horovitz, I. (2000). The tarsus of Ukhaatherium nessovi (Eutheria, Mammalia) from the Late Cretaceous of Mongolia: an appraisal of the evolution of the ankle in basal therians. J. Vertebr. Paleontol. 20: 547–560.Google Scholar
  13. Hu, Y-M., and Wang, Y.-Q. (2002). Sinobataar gen. nov.: First multituberculate from Jehol Biota of Liaoning, Northern China. Chin. Sci. Bull. 47: 933–938.Google Scholar
  14. Hu, Y.-M., Wang, Y.-Q., Luo, Z.-X., and Li, C.-K. (1997). A new symmetrodont mammal from China and its implications for mammalian evolution. Nature 390: 137–142.PubMedGoogle Scholar
  15. Hu, Y.-M., Wang, Y.-Q., Li, C.-K., and Luo, Z.-X. (1998). Morphology of dentition and forelimb of Zhangheotherium. Vertebrata PalAsiatica 36: 102–125.Google Scholar
  16. Hu, Y.-M., Meng, J., Wang, Y.-Q., and Li, C.-K. (2005). Large Mesozoic mammals fed on young dinosaurs. Nature. 433: 149–153.PubMedCrossRefGoogle Scholar
  17. Jenkins, F. A., Jr. (1970). Cynodont postcranial anatomy and the “prototherians” level of mammalian organization. Evolution 24: 230–252.Google Scholar
  18. Jenkins, F. A., Jr., and Parrington, F. R. (1976). The postcranial skeletons of the Triassic mammals Eozostrodon, Megazostrodon and Erythrotherium. Philos. Trans. R. Soc. Lond. 273: 387–431.Google Scholar
  19. Jenkins, F. A., Jr., and Schaff, C. R. (1988). The Early Cretaceous mammal Gobiconodon (Mammalia, Triconodonta) from the Cloverly Formation in Montana. J. Vertebr. Paleontol. 6: 1–24.Google Scholar
  20. Ji, Q., Luo, Z.-X., and Ji, S. (1999). A Chinese triconodont mammal and mosaic evolution of the mammalian skeleton. Nature 398: 326–330.PubMedCrossRefGoogle Scholar
  21. Ji, Q., Luo, Z.-X., Yuan, C.-X., Wible, J. R., Zhang, J.-P., and Georgi, J. A. (2002). The earliest known eutherian mammal. Nature 416: 816–822.PubMedCrossRefGoogle Scholar
  22. Kielan-Jaworowska, Z. (1975). Possible occurrence of marsupial bones in Cretaceous eutherian mammals. Nature 255: 698–699.CrossRefGoogle Scholar
  23. Kielan-Jaworowska, Z. (1977). Evolution of the therian mammals in the Late Cretaceous of Asia. Part II. Postcranial skeleton in Kennalestes and Asioryctes. Palaeontol. Polon. 37: 65–83.Google Scholar
  24. Kielan-Jaworowska, Z. (1979). Pelvic structure and nature of reproduction in Multituberculata. Nature 277: 402–403.PubMedCrossRefGoogle Scholar
  25. Kielan-Jaworowska, Z., and Dashzeveg, D. (1998). Early Cretaceous amphilestid (“triconodont”) mammals from Mongolia. Acta Palaeontol. Polon. 43: 413–438.Google Scholar
  26. Kielan-Jaworowska, Z., and Gambaryan, P. P. (1994). Postcranial anatomy and habits of Asian multituberculate mammals. Fossils Strata 36: 1–92.Google Scholar
  27. Kielan-Jaworowska, Z., Cifelli, R. L., and Luo, Z.-X. (2004). Mammals from the Age of Dinosaurs: Origins, Structure, and Evolution, Columbia University Press, New York.Google Scholar
  28. Kobayashi, Y., Winkler, D. A., and Jacobs, L. L. (2002). Origin of the tooth-replacement pattern in therian mammals: Evidence from a 110 Myr old fossil. Proc. R. Soc. Lond. 269: 369–373.Google Scholar
  29. Krause, D. W., and Jenkins, F. A. (1983). The postcranial skeleton of North American multituberculates. Bull. Mus. Comp. Zool. 150: 199–246.Google Scholar
  30. Krebs, B. (1991). Das Skelett von Henkelotherium guimarotae gen. et sp. nov. (Eupantotheria, Mammalia) aus dem Oberen Jura von Portugal. Berliner geowissenschafliche Abhandlungen A 133: 1–110.Google Scholar
  31. Li, J.-L., Wang, Y., Wang, Y.-Q., and Li, C.-K. (2001). A new family of primitive mammals from the Mesozoic of western Liaoning, China. Chin. Sci. Bull. 46: 782–785.Google Scholar
  32. Li, C.-K., Wang, Y.-Q., Hu, Y.-M., and Meng, J. (2003). A new species of Gobiconodon (Triconodonta, Mammalia) and its implications for the age of Jehol Biota. Chin. Sci. Bull. (English Edition) 48: 1129–1134.Google Scholar
  33. Lo, C.-H., Chen, P.-J., Tsou, T.-Y., Sun, S.-S., and Lee, C.-Y. (1999). 40Ar/39Ar laser single grain and K-Ar dating of Yixian Formation, NE China. In: Jehol Biota, P.-J. Chen and F. Jin, eds., pp. 328–340, Science Press, Beijing.Google Scholar
  34. Luo, Z.-X., Ji, Q., and Ji, S. A. (2001). New evidence on dental replacement in symmetrodonts and its implications for mammalian evolution. J. Morphol. 248: 256.Google Scholar
  35. Luo, Z.-X., Kielan-Jaworowska, Z., and Cifelli, R. L. (2002). In quest for a phylogeny of Mesozoic mammals. Acta Palaeontol. Polon. 47: 1–78.Google Scholar
  36. Luo, Z.-X., Ji, Q., Wible, J. R., and Yuan, C.-X. (2003). An Early Cretaceous tribosphenic mammal and metatherian evolution. Science 302: 1934–1940.PubMedCrossRefGoogle Scholar
  37. Luo, Z.-X., Kielan-Jaworowska, Z., and Cifelli, R. L. (2004). Evolution of dental replacement in mammals. In: Fanfare for an Uncommon Paleontologist—Festschrift in Honor of Dr. Malcolm C. McKenna, M. R. Dawson, and J. A. Lillegraven, eds., pp. 159–175. The Carnegie Museum of Natural History Bulletin 36.Google Scholar
  38. Martin, T. (1997). Tooth replacement in Late Jurassic Dryolestidae (Eupantotheria, Mammalia). J. Mammal. Evol. 4: 1–18.CrossRefGoogle Scholar
  39. Martin, T. (1999). Dryolestidae (Dryolestoidea, Mammalia) aus dem Oberen Jura von Portugal. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft 550: 1–119.Google Scholar
  40. Martin, T., and Nowotny, M. (2000). The docodont Haldanodon from the Guimarota Mine. In: Guimarota: A Jurassic Ecosystem, T. Martin and B. Krebs, eds., pp. 91–96, Verlag Dr. Friedrich Pfeil, Munich.Google Scholar
  41. McKenna, M. C. (1975). Toward a phylogenetic classification of the Mammalia. In: Phylogeny of the Primates, W. P. Luckett and F. S. Szalay, eds., pp. 21–46. Plenum, New York.Google Scholar
  42. Mills, J. R. E. (1984). The molar dentition of a Welsh pantothere. Zool. J. Linn. Soc. 82: 189–205.Google Scholar
  43. de Muizon, C. (1998). Mayulestes ferox, a borhyaenoid (Metatheria, Mammalia) from the early Palaeocene of Bolivia. Phylogenetic and palaeobiologic implications. Geodiversitas 20: 19–142.Google Scholar
  44. Novacek, M. J., Rougier, G. W., Wible, J. R., McKenna, M. C., Dashzeveg, D., and Horovitz, I. (1997). Epipubic bones in eutherian mammals from the Late Cretaceous of Mongolia. Nature 389: 483–486.PubMedCrossRefGoogle Scholar
  45. Nowotny, M., Martin, T., and Fischer, M. (2001). Dental anatomy and tooth replacement of Haldanodon exspectatus (Docodonta, Mammalia) from the Upper Jurassic of Portugal. J. Morphol. 248: 268.Google Scholar
  46. Prothero, D. R. (1981). New Jurassic mammals from Como Bluff, Wyoming, and the interrelationships of non-tribosphenic Theria. Bull. Am. Mus. Nat. Hist. 167: 277–326.Google Scholar
  47. Rougier, G. W. (1993). Vincelestes neuquenianus Bonaparte (Mammalia, Theria) un primitivo mamífero del Cretácico Inferior de la Cuenca Neuquina, Ph.D. Dissertation, Universidad Nacional de Buenos Aires, Buenos Aires.Google Scholar
  48. Rougier, G. W., Wible, J. R., and Novacek, M. J. (1998). Implications of Deltatheridium specimens for early marsupial history. Nature 396: 459–463.PubMedCrossRefGoogle Scholar
  49. Rougier, G. W., Ji, Q., and Novacek, M. J. (2003). A new symmetrodont mammal with fur impression from the Mesozoic of China. Acta Geol. Sinica 77: 7–14.Google Scholar
  50. Rowe, T. B. (1988). Definition, diagnosis, and origin of Mammalia. J. Vertebr. Paleontol. 8: 241–264.Google Scholar
  51. Sigogneau-Russell, D., and Ensom, P. C. (1998). Thereuodon (Theria, Symmetrodonta) from the Lower Cretaceous of North Africa and Europe, and a brief review of symmetrodonts. Cretaceous Res. 19: 1–26.CrossRefGoogle Scholar
  52. Simpson, G. G. (1928). A Catalogue of the Mesozoic Mammalia in the Geological Department of the British Museum. Trustees of the British Museum, London.Google Scholar
  53. Swisher, C. C., III, Wang, Y.-Q., Wang, X.-L., Xu, X., and Wang, Y. (1999). Cretaceous age for the feathered dinosaurs of Liaoning, China. Nature 398: 58–61.Google Scholar
  54. Szalay, F. S. (1994). Evolutionary History of the Marsupials and an Analysis of Osteological Characters, Cambridge University Press, Cambridge.Google Scholar
  55. Wang, Y.-Q., Hu, Y.-M., Meng, J., and Li, C.-K. (2001). An ossified Meckel's cartilage in two Cretaceous mammals and origin of the mammalian middle ear. Science 294: 357–361.PubMedGoogle Scholar
  56. Zhang, F.-K., Crompton, A. W., Luo, Z.-X., and Schaff, C. R. (1998). Pattern of dental replacement of Sinoconodon and its implications for evolution of mammals. Vertebr. PalAsiatica 36: 197–217.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Section of Vertebrate Paleontology, Carnegie Museum of Natural HistoryPittsburghUSA
  2. 2.Institute of Geology, The Chinese Academy of Geological SciencesBeijingChina

Personalised recommendations