Journal of Mammalian Evolution

, Volume 12, Issue 1–2, pp 209–246 | Cite as

Fossil Evidence and the Origin of Bats

  • Gregg F. GunnellEmail author
  • Nancy B. Simmons


The phylogenetic and geographic origins of bats (Chiroptera) remain unknown. The earliest confirmed records of bats date from the early Eocene (approximately 51 Ma) in North America with other early Eocene bat taxa also being represented from Europe, Africa, and Australia. Where known, skeletons of these early taxa indicate that many of the anatomical specializations characteristic of bats had already been achieved by the early Eocene, including forelimb and manus elongation in conjunction with structural changes in the pectoral skeleton, hind limb reorientation, and the presence of rudimentary echolocating abilities. By the middle Eocene, the diversification of bats was well underway with many modern families being represented among fossil forms. A new phylogenetic analysis indicates that several early fossil bats are consecutive sister taxa to the extant crown group (including megabats), and suggests a single origin for the order, at least by the late Paleocene. Although morphological studies have long placed bats in the Grandorder Archonta, (along with primates dermopterans, and tree shrews), recent molecular studies have refuted this hypothesis, instead strongly supporting placement of bats in Laurasiatheria. Primitively, proto-bats were likely insectivorous, under-branch hangers and elementary gliders that exploited terminal branch habitats. Recent work has indicated that a number of other mammalian groups began to exploit similar arboreal, terminal branch habitats in the Paleocene, including multituberculates, eulipotyphlans, dermopterans, and plesiadapiforms. This may offer an ecological explanation for morphological convergences that led to the erroneous inclusion of bats within Archonta: ancestral archontan groups as well as proto-bats apparently were exploiting similar arboreal habitats, which may have led to concurrent development of homoplasic morphological attributes.


bats phylogeny origins Chiroptera Archonta Lipotyphla Paleocene 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnason, U., Adegoke, J. A., Bodin, K., Born, E. W., Esa, Y. B., Gullberg, A., Nilsson, M., Short, R. V., Xu, X., and Janke, A. (2002). Mammalian mitogenomic relationships and the root of the eutherian tree. Proc. Natl. Acad. Sci. U.S.A 99: 8151.Google Scholar
  2. Arroyo-Cabrales, J., Gregorin, R., Schlitter, D. A., and Walker, A. (2002). The oldest African molossid bat cranium (Chiroptera: Molossidae). J. Vertebr. Paleontol. 22: 380.Google Scholar
  3. Beard, K. C. (1993). Origin and evolution of gliding in early Cenozoic Dermoptera (Mammalia, Primatomorpha). In: Primates and Their Relatives in Phylogenetic Perspective, R. D. E. MacPhee, ed., pp. 63–90, Plenum, New York.Google Scholar
  4. Beard, K. C., Sigé, B., and Krishtalka, L. (1992). A primitive vespertilionoid bat from the early Eocene of central Wyoming. C. R. Acad. Sci. Paris 314: 735.Google Scholar
  5. Benammi, M., Chaimanee, Y., Jaeger, J.-J., Suteethorn, V., and Ducrocq, S. (2001). Eocene Krabi basin (southern Thailand): Paleontology and magnetostratigraphy. Geol. Soc. Amer. Bull. 113: 265.CrossRefGoogle Scholar
  6. Bloch, J. I., and Boyer, D. M. (2002). Grasping primate origins. Science 298: 1606.CrossRefPubMedGoogle Scholar
  7. Bloch, J. I., and Boyer, D. M. (2003). Response to comment on “Grasping Primate Origins.” Science 300: 741.Google Scholar
  8. Bremer, K. (1988). The limits of amino acid sequence data in angiosperm phylogenetic reconstructions. Evolution 42: 795.Google Scholar
  9. Butler, P. M. (1978). Insectivora and Chiroptera. In: Evolution of African Mammals, V. J. Maglio and H. B. S. Cooke, eds., pp. 56–68, Harvard University Press, Cambridge.Google Scholar
  10. Butler, P. M. (1984). Macroscelidea, Insectivora and Chiroptera from the Miocene of East Africa. Palaeovertebrata 14: 117.Google Scholar
  11. Ciochon, R. L., and Gunnell, G. F. (2004). Eocene large-bodied primates of Myanmar and Thailand: Morphological considerations and phylogenetic affinities. In: Anthropoid Origins: New Visions, C. F. Ross and R. F. Kay, eds., pp. 237–270, Kluwer Academic/Plenum Publishers, New York.Google Scholar
  12. Czaplewski, N. J., and Morgan, G. S. (2000). A new vespertilionid bat (Mammalia: Chiroptera) from the early Miocene (Hemingfordian) of Florida, USA. J. Vertebr. Paleontol. 20: 736.Google Scholar
  13. Czaplewski, N. J., and Morgan, G. S. (2002). Phyllostomid bats from the Oligocene and early Miocene of Florida. J. Vertebr. Paleontol. 22: 48A.Google Scholar
  14. Czaplewski, N. J., Morgan, G. S., and Naeher, T. (2003). Molossid bats from the late Tertiary of Florida with a review of the Tertiary Molossidae of North America. Acta Chiropt. 5: 61.Google Scholar
  15. Czaplewski, N. J., Takai, M., Naeher, T. M., Shigehara, N., and Setoguchi, T. (2003). Additional bats from the middle Miocene La Venta Fauna of Colombia. Rev. Acad. Colomb. Cienc. 27: 263.Google Scholar
  16. Douady, C. J., Chatelier, P. I., Madsen, O., de Jong, W. W., Catzeflis, F., Springer, M. S., and Stanhope, M. J. (2002). Molecular phylogenetic evidence confirming the Eulipotyphla concept and in support of hedgehogs as the sister group to shrews. Mol. Phylogenet. Evol. 25: 200.PubMedGoogle Scholar
  17. Ducrocq, S., Jaeger, J.-J., and Sigé, B. (1993). Un mégachiroptère dans l'Eocène supérieur de Thaïlande—Incidence dans la discussion phylogénique du groupe. N. J. Geol. Paläont. Mh. 9: 561.Google Scholar
  18. Galbreath, E. C. (1962). A new myotid bat from the middle Oligocene of northeastern Colorado. Trans. Kansas Acad. Sci. 65: 448.Google Scholar
  19. Gingerich, P. D. (1987). Early Eocene bats (Mammalia, Chiroptera) and other vertebrates in freshwater limestones of the Willwood Formation, Clark's Fork Basin, Wyoming. Contrib. Mus. Paleontol. Univ. Mich. 27: 275.Google Scholar
  20. Gregory, W. K. (1910). The orders of mammals. Bull. Am. Mus. Nat. Hist. 27: 1.Google Scholar
  21. Gunnell, G. F., Jacobs, B. F., Herendeen, P. S., Head, J. J., Kowalski, E., Msuya, C. P., Mizambwa, F. A., Harrison, T., Habersetzer, J., and Storch, G. (2003). Oldest placental mammal from sub-Saharan Africa: Eocene microbat from Tanzania—Evidence for early evolution of sophisticated echolocation. Palaeontol. Elect. 5: 1.Google Scholar
  22. Habersetzer, J., and Storch, G. (1987). Klassifikation und funktionelle Flügelmorphologie paläogener Fledermäuse (Mammalia, Chiroptera). Cour. Forsch.—Inst. Senckenberg 91: 117.Google Scholar
  23. Habersetzer, J., and Storch, G. (1989). Ecology and echolocation of the Eocene Messel bats. In: European Bat Research 1987, V. Hanák, I. Horáek, and J. Gaisler, eds., pp. 213–233, Charles University Press, Praha.Google Scholar
  24. Habersetzer, J., and Storch, G. (1992). Cochlea size in extant Chiroptera and middle Eocene microchiropterans from Messel. Naturwiss 79: 462.Google Scholar
  25. Hand, S. J. (1993). First skull of a species of Hipposideros (Brachipposideros) (Microchiroptera: Hipposideridae) from Australian Miocene sediments. Mem. Queensland Mus. 33: 179.Google Scholar
  26. Hand, S. J. (1996). New Miocene and Pliocene megadermatids (Mammalia, Microchiroptera) from Australia, with comments on broader aspects of megadermatid evolution. Geobios 29: 365.CrossRefGoogle Scholar
  27. Hand, S. J. (1997a). Hipposideros bernardsigei, a new hipposiderid (Microchiroptera) from the Miocene of Australia and a reconsideration of the monophyly of related species groups. Münch. Geowiss. Abh. A 34: 73.Google Scholar
  28. Hand, S. J. (1997b). New Miocene leaf-nosed bats (Microchiroptera: Hipposideridae) from Riversleigh, northwestern Queensland. Mem. Queensland Mus. 41: 335.Google Scholar
  29. Hand, S. J. (1997c). Miophyllorhina riversleighensis gen. et sp. nov., a Miocene leaf-nosed bat (Microchiroptera: Hipposideridae) from Riversleigh, Queensland. Mem. Queensland Mus. 41: 351.Google Scholar
  30. Hand, S. J. (1998a). Xenorhinos, a new genus of Old World leaf-nosed bats (Microchiroptera: Hipposideridae) from the Australian Miocene. J. Vertebr. Paleontol. 18: 430.CrossRefGoogle Scholar
  31. Hand, S. J. (1998b). Riversleigha williamsi gen. et sp. nov., a large Miocene hipposiderid (Microchiroptera) from Riversleigh, Queensland. Alcheringa 22: 259.CrossRefGoogle Scholar
  32. Hand, S. J., and Kirsch, J. A. W. (2003). Archerops, a new annectent hipposiderid genus (Mammalia: Microchiroptera) from the Australian Miocene. J. Paleontol. 77: 1139.Google Scholar
  33. Hand, S. J., Archer, M., and Godthelp, H. (1997). First record of Hydromops (Microchiroptera: Molossidae) from Australia: Its biocorrelative significance. In: Actes du Congrès BiochroM'97, J.-P. Aguilar, S. Legendre, and J. Michaux, eds., Mém. Trav. E. P. H. E., Inst. Montpellier 21: 153.Google Scholar
  34. Hand, S. J., Murray, P., Megirian, D., Archer, M., and Godthelp, H. (1998). Mystacinid bats (Microchiroptera) from the Australian Tertiary. J. Paleontol. 72: 538.Google Scholar
  35. Hand, S., Novacek, M., Godthelp, H., and Archer, M. (1994). First Eocene bat from Australia. J. Vertebr. Paleontol. 14: 375.CrossRefGoogle Scholar
  36. Hill, J. E., and Smith, J. D. (1984). Bats: A Natural History, British Museum (Natural History), London.Google Scholar
  37. Hoofer, S. R., Reeder, S. A., Hansen, E. W., and Van Den Bussche, R. A. (2003). Molecular phylogenetics and taxonomic review of noctilionoid and vespertilionoid bats (Chiroptera, Yangochiroptera). J. Mammal. 84: 809.CrossRefGoogle Scholar
  38. Hoofer, S. R., and Van Den Bussche, R. A. (2001). Phylogenetic relationships of plecotine bats and allies based on mitochondrial ribosomal sequences. J. Mammal. 82: 131.CrossRefGoogle Scholar
  39. Hooker, J. J. (1996). A primitive emballonurid bat (Chiroptera, Mammalia) from the earliest Eocene of England. Palaeovertebrata 25: 287.Google Scholar
  40. Hooker, J. J. (2001). Tarsals of the extinct insectivoran family Nyctitheriidae (Mammalia): Evidence for archontan relationships. Zool. J. Linn. Soc. 132: 501.CrossRefGoogle Scholar
  41. Hulva, P., and Horacek, I. (2002). Craseonycteris thonglongyai (Chiroptera: Craseonycteridae) is a rhinolophoid: Molecular evidence from cytochrome b. Acta Chiropt 4: 107.Google Scholar
  42. Hutcheon, J. M., Kirsch, J. A. W., and Pettigrew, J. D. (1998). Base compositional biases and the bat problem. III. The question of microchiropteran monophyly. Philos. Trans. Roy. Soc. Lond. B 353: 607.Google Scholar
  43. Jenkins, F. A. Jr., and Krause, D. W. (1983). Adaptations for climbing in North American Multituberculates (Mammalia). Science 220: 712.PubMedGoogle Scholar
  44. Jepsen, G. L. (1966). Early Eocene bat from Wyoming. Science 154: 1333.PubMedGoogle Scholar
  45. Jepsen, G. L. (1970). Bat origins and evolution. In: Biology of Bats 1, W. A. Wimsatt, ed., pp. 1–64, Plenum, New York.Google Scholar
  46. Kirsch, J. A. W. (1996). Bats are monophyletic; megabats are monophyletic; but are microbats also? Bat Res. News 36: 78.Google Scholar
  47. Legendre, S. (1984). Identification de deux sous-genres fossiles et comprehension phylogénique du genre Mormopterus (Molossidae, Chiroptera). C. R. Acad. Sci. Paris 298: 715.Google Scholar
  48. Legendre, S. (1985). Molossidés (Mammalia, Chiroptera) cénozoïques de l'Ancien et du Nouveau Monde; statut systématique; integration phylogénique des données. N. Jb. Geol. Paläont. Abh. 170: 205.Google Scholar
  49. Maddison, W. P., and Maddison, D. R. (1992). MacClade: Analysis of Phylogeny and Character Evolution, Version 3.0, Sunderland, Sinauer Associates, Massachusetts.Google Scholar
  50. Matthew, W. D., and Granger, W. (1921). New genera of Paleocene mammals. Am. Mus. Novit 13: 1.Google Scholar
  51. McKenna, M. C., and Bell, S. K. (1997). Classification of Mammals Above the Species Level, Columbia University Press, New York.Google Scholar
  52. Meschinelli, L. (1903). Un nuovo Chirottero fossile (Archaeopteropus transiens Mesch). dell ligniti di Monteviale. Atti Reale Ist. Veneto Sci., Lettere ed Arti 62: 1329.Google Scholar
  53. Miyamoto, M. M. (1996). A congruence study of molecular and morphological data for eutherian mammals. Mol. Phylogenet. Evol. 6: 373.PubMedGoogle Scholar
  54. Miyamoto, M. M., Porter, C., and Goodman, M. (2000). cMyc gene sequences and the phylogeny of bats and other eutherian mammals. Syst. Biol. 49: 501.PubMedGoogle Scholar
  55. Morgan, G. S. (2002). New bats in the Neotropical families Emballonuridae and Mormoopidae from the Oligocene and Miocene of Florida, and the biochronology of Florida Whitneyan, Arikareean, and Hemingfordian faunas. J. Vertebr. Paleontol. 22: 90AGoogle Scholar
  56. Morgan, G. S., and Czaplewski, N. J. (2003). A new bat (Chiroptera: Natalidae) from the early Miocene of Florida, with comments on natalid phylogeny. J. Mammal. 84: 729.CrossRefGoogle Scholar
  57. Murphy, W. J., Eizirik, E., Johnson, W. E., Zhang, Y. P., Ryder, O. A., and O'Brien, S. J. (2001). Molecular phylogenetics and the origin of placental mammals. Nature 409: 614.CrossRefPubMedGoogle Scholar
  58. Novacek, M. J. (1985). Evidence for echolocation in the oldest known bats. Nature 315: 140.CrossRefPubMedGoogle Scholar
  59. Novacek, M. J. (1987). Auditory features and affinities of the Eocene bats Icaronycteris and Palaeochiropteryx (Microchiroptera, incertae sedis). Am. Mus. Novit. 2877: 1.Google Scholar
  60. Novacek, M. J., Wyss, A. R., and McKenna, M. C. (1988). The major groups of eutherian mammals. In: The Phylogeny and Classification of the Tetrapods 2, M. J. Benton, ed., pp. 31–71, Clarendon Press, Oxford.Google Scholar
  61. de Paula Couto, C. (1956). Une chauve-souris fossile des argiles feuilletées pléistocènes de Tremembé, Etat de Sao Paulo (Brésil). Act. 4th Congr. Internatl. Quat. Rome, pp. 343–347.Google Scholar
  62. Pettigrew, J. D. (1986). Flying primates? Megabats have the advanced pathway from eye to midbrain. Science 231: 1304.PubMedGoogle Scholar
  63. Pettigrew, J. D. (1995). Flying primates: Crashed or crashed through? In: Ecology, Evolution and Behavior of Bats, P. A. Racey and S. M. Swift, eds., Symp. Zool. Soc. Lond. 67: 3.Google Scholar
  64. Pettigrew, J. D., Jamieson, B. G. M., Robson, S. K., Hall, L. S., McAnally, K. I., and Cooper, H. M. (1989). Phylogenetic relations between microbats, megabats and primates (Mammalia: Chiroptera and Primates). Philos. Trans. R. Soc. Lond. B 325: 489.Google Scholar
  65. Pirlot, P. (1977). Wing design and the origin of bats. In: Major Patterns in Vertebrate Evolution, M. K. Hecht, P. C. Goody, and B. M. Hecht, eds., pp. 375–410, Plenum, New York.Google Scholar
  66. Polly, P. D., Le Comber, S. C., and Burland, T. M. (2005). On the occlusal fit of tribosphenic molars: Are we underestimating species diversity in the Mesozoic? J. Mammal. Evol. 12: 285–301.Google Scholar
  67. Remy, J. A., Crochet, J-Y., Sigé, B., Sudre, J., de Bonis, L., Vianey-Liaud, M., Godinot, M., Hartenberger, J.-L., Lange-Badré, B., and Comte, B. (1987). Biochronologie des phosphorites du Quercy: Mise à jour des listes fauniques et nouveaux gisements de mammifères fossiles. Münchner Geowiss. Abh. 10: 169.Google Scholar
  68. Rose, K. D. (1981). The Clarkforkian Land-Mammal Age and mammalian faunal composition across the Paleocene-Eocene boundary. Univ. Mich. Pap. Paleontol. 26: 1.Google Scholar
  69. Russell, D. E., and Gingerich, P. D. (1981). Lipotyphla, Proteutheria (?), and Chiroptera (Mammalia) from the early-middle Eocene Kuldana Formation of Kohat (Pakistan). Contrib. Mus. Paleontol. Univ. Mich. 25: 277.Google Scholar
  70. Russell, D. E., Louis, P., and Savage, D. E. (1973). Chiroptera and Dermoptera of the French Early Eocene. Univ. Calif. Publ. Geol. Sci. 95: 1.Google Scholar
  71. Schutt, W. A. Jr., and Simmons, N. B. (1998). Morphology and homology of the chiropteran calcar, with comments on the phylogenetic relationships of Archaeopteropus. J. Mamm. Evol. 5: 1.Google Scholar
  72. Sigé, B. (1985). Les chiroptères oligocènes du Fayum, Egypte. Geol. et Palaeontol. 19: 161.Google Scholar
  73. Sigé, B. (1990). Nouveaux chiroptères de l'Oligocène moyen des phosphorites du Quercy, France. C. R. Acad. Sci. Paris 310: 1131.Google Scholar
  74. Sigé, B. (1991). Rhinolophoidea et Vespertilionoidea (Chiroptera) du Chambi (Eocène inférieur de Tunisie). Aspects biostratigraphique, biogéographique et paléoécologique de l'origine des chiroptères modernes. N. Jb. Geol. Paläont. Abh. 182: 355.Google Scholar
  75. Sigé, B., Thomas, H., Sen, S., Gheerbrant, E., Roger, J., and Al-Sulaimani, Z. (1994). Les chiroptères de Taqah (Oligocène inférieur, Sultanat d'Oman). Premier inventaire systématique. Münchner Geowiss. Abh. 26: 35.Google Scholar
  76. Simmons, N. B. (1993). The importance of methods: Archontan phylogeny and cladistic analysis of morphological data. In: Primates and Their Relatives in Phylogenetic Perspective, R. D. E. MacPhee, ed., pp. 1–61, Plenum, New York.Google Scholar
  77. Simmons, N. B. (1994). The case for chiropteran monophyly. Am. Mus. Novit. 3103: 1.Google Scholar
  78. Simmons, N. B. (1995). Bat relationships and the origin of flight. In: Ecology, Evolution and Behavior of Bats, P. A. Racey and S. M. Swift, eds., Symp. Zool. Soc. Lond. 67: 27.Google Scholar
  79. Simmons, N. B. (1998). A reappraisal of interfamilial relationships of bats. In: Bat Biology and Conservation, T. H. Kunz and P. A. Racey, eds., pp. 1–26, Smithsonian Institution Press, Washington, DC.Google Scholar
  80. Simmons, N. B. (2005a). Chiroptera. In: The Rise of Placental Mammals, K. D. Rose and J. D. Archibald, eds., pp. 159–174, Johns Hopkins University Press, Baltimore.Google Scholar
  81. Simmons, N. B. (2005b). Order Chiroptera. In: Mammal Species of the World: A Taxonomic and Geographic Reference, D. E. Wilson and D. M. Reeder, eds., Smithsonian Institution Press, Washington, DC.Google Scholar
  82. Simmons, N. B., and Geisler, J. H. (1998). Phylogenetic relationships of Icaronycteris, Archaeonycteris, Hassianycteris, and Palaeochiropteryx to extant bat lineages, with comments on the evolution of echolocation and foraging strategies in Microchiroptera. Bull. Am. Mus. Nat. Hist. 235: 1.Google Scholar
  83. Simmons, N. B., and Geisler, J. H. (2002). Sensitivity analysis of different methods of coding taxonomic polymorphism: An example from higher level bat phylogeny. Cladistics 18: 571.Google Scholar
  84. Simmons, N. B., and Quinn, T. H. (1994). Evolution of the digital tendon locking mechanism in bats and dermopterans: A phylogenetic perspective. J. Mammal. Evol. 2: 231.CrossRefGoogle Scholar
  85. Simpson, G. G. (1967). The Tertiary lorisiform primates of Africa. Bull. Mus. Comp. Zool. Harv. 136: 39.Google Scholar
  86. Smith, J. D. (1977). Comments on flight and the evolution of bats. In: Major Patterns in Vertebrate Evolution, M. K. Hecht, P. C. Goody, and B. M. Hecht, eds., pp. 427–437, Plenum, New York.Google Scholar
  87. Smith, J. D., and Madkour, G. (1980). Penal morphology and the question of chiropteran phylogeny. In: Proceedings of the Fifth International Bat Research Conference, D. E. Wilson and A. L. Gardner, eds., pp. 347–365, Texas Tech Press, Lubbock.Google Scholar
  88. Springer, M. S., Teeling, E. C., Madsen, O., Stanhope, M. J., and de Jong, W. W. (2001). Integrated fossil and molecular data reconstruct bat echolocation. Proc. Natl. Acad. Sci. U. S. A. 98: 6241.CrossRefPubMedGoogle Scholar
  89. Storch, G. (1999). Order Chiroptera. In: The Miocene Land Mammals of Europe, G. E. Rossner and K. Heissig, eds., pp. 81–90, Verlag Dr. Friedrich Pfeil, München.Google Scholar
  90. Storch, G., Sigé, B., and Habersetzer, J. (2002). Tachypteron franzeni n. gen., n. sp., earliest emballonurid bat from the middle Eocene of Messel (Mammalia, Chiroptera). Paläont. Zeit. 76: 189.Google Scholar
  91. Storer, J. E. (1996). Eocene-Oligocene faunas of the Cypress Hills Formation, Saskatchewan. In: The Terrestrial Eocene-Oligocene Transition in North America, D. R. Prothero and R. J. Emry, eds., pp. 240–261, Cambridge University Press, Cambridge.Google Scholar
  92. Swofford, D. L. (2002). PAUP . Phylogenetic Analysis Using Parsimony ( and Other Methods), Version 4, Sinauer Associates, Sunderland, Massachusetts.Google Scholar
  93. Szalay, F. S., and Drawhorn, G. (1980). Evolution and diversification of the Archonta in an arboreal milieu. In: Comparative Biology and Evolutionary Relationships of Tree Shrews, W. P. Luckett, ed., pp. 133–169, Plenum, New York.Google Scholar
  94. Szalay, F. S., and Lucas, S. G. (1993). Cranioskeletal morphology of archontans, and diagnoses of Chiroptera, Volitantia, and Archonta. In: Primates and Their Relatives in Phylogenetic Perspective, R. D. E. MacPhee, ed., pp. 187–226, Plenum, New York.Google Scholar
  95. Szalay, F. S., and Lucas, S. G. (1996). The postcranial morphology of Paleocene Chriacus and Mixodectes and the phylogenetic relationships of archontan mammals. Bull. New Mex. Mus. Nat. Hist. Sci 7: 1.Google Scholar
  96. Teeling, E. C., Scully, M., Kao, D. J., Romagnoli, M. L., Springer, M. S., and Stanhope, M. J. (2000). Molecular evidence regarding the origin of echolocation and flight in bats. Nature 403: 188.PubMedGoogle Scholar
  97. Teeling, E. C., Madsen, O., Van Den Bussche, R. A., de Jong, W. W., Stanhope, M. J., and Springer, M. S. (2002). Microbat paraphyly and the convergent evolution of a key innovation in Old World rhinolophid microbats. Proc. Natl. Acad. Sci. U. S. A. 99: 1431.CrossRefPubMedGoogle Scholar
  98. Thewissen, J. G. M., and Babcock, S. K. (1991). Distinctive cranial and cervical innervation of wing muscles: New evidence for bat monophyly. Science 251: 934.PubMedGoogle Scholar
  99. Thewissen, J. G. M., and Babcock, S. K. (1993). The implications of the propatagial muscles of flying and gliding mammals for archontan systematics. In: Primates and Their Relatives in Phylogenetic Perspective, R. D. E. MacPhee, ed., pp. 91–109, Plenum, New York.Google Scholar
  100. Tong, Y. (1997). Middle Eocene small mammals from Liguanqiao Basin of Henan Province and Yuanqu Basin of Shanxi Province, central China. Paleontol. Sin. 26: 1.Google Scholar
  101. Van Den Bussche, R. A., and Hoofer, S. R. (2000). Further evidence for inclusion of the New Zealand short tailed bat (Mystacina tuberculata) within Noctilionoidea. J. Mammal. 81: 865.CrossRefGoogle Scholar
  102. Van Den Bussche, R. A., and Hoofer, S. R. (2001). Evaluating monophyly of Nataloidea (Chiroptera) with mitochondrial DNA sequences. J. Mammal. 83: 320.Google Scholar
  103. Van Den Bussche, R. A., and Hoofer, S. R. (2004). Phylogenetic relationships among recent chiropteran families and the importance of choosing appropriate out-group taxa. J. Mammal. 85: 321.CrossRefGoogle Scholar
  104. Van Den Bussche, R. A., Hoofer, S. R., and Hansen, E. W. (2002). Characterization and phylogenetic utility of the mammalian protamine P1 gene. Mol. Phylogenet. Evol. 22: 333.PubMedGoogle Scholar
  105. Van Den Bussche, R. A., Reeder, S. A., Hansen, E. W., and Hoofer, S. R. (2003). Utility of the dentin matrix protein 1 (DMP1) gene for resolving mammalian intraordinal relationships. Mol. Phylogenet. Evol. 26: 89.PubMedGoogle Scholar
  106. Wible, J. R., and Novacek, J. M. (1988). Cranial evidence for the monophyletic origin of bats. Am. Mus. Novit. 2911: 1.Google Scholar
  107. Yang, J. (1977). On some Salientia and Chiroptera from Shanwang, Linqu Shandong. Vert. PalAs. 15: 76 (in Chinese).Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Museum of PaleontologyUniversity of MichiganAnn ArborUSA
  2. 2.Division of Vertebrate Zoology, Department of MammalogyAmerican Museum of Natural HistoryNew YorkUSA

Personalised recommendations