Journal of Mammalian Evolution

, Volume 12, Issue 1–2, pp 265–282 | Cite as

Locking Yourself Out: Diversity Among Dentally Zalambdodont Therian Mammals

Article

Abstract

We review the evolution of dental zalambdodonty across therian mammals. Among zalambdodonts, there is little or no occlusion between the protocone and talonid basin and one of the central cusps of the upper molars (metacone or paracone) and the talonid basin of the lower molars are lost or reduced. Over two dozen genera of therian mammals show zalambdodont molars, including tenrecids, chrysochlorids, Solenodon, the marsupial mole Notoryctes, the extinct placentals Apternodus, Oligoryctes, Parapternodus, and Koniaryctes, and the extinct marsupials Necrolestes and Yalkaparidon. The chiropteran Harpiocephalus is nearly zalambdodont. Transformation series provided by paleontological or ontogenetic data, plus occlusal relationships, can be used to determine the homology of molar cusps in zalambdodont taxa. Zalambdodont dental specialization does not appear to have led to ecological specialization. With the important exception of golden moles and tenrecs, dentally zalambdodont taxa are less speciose than their nonzalambdodont sister taxa.

Keywords

Mammals Fossils Occlusion Molars Adaptation Phylogeny 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Archer, M., Hand, S., and Godthelp, H. (1988). A new order of Tertiary zalambdodont marsupials. Science 239: 1528–1531.PubMedGoogle Scholar
  2. Archer, M., Hand, S., and Godthelp, H. (2001). Australia's Lost World: Prehistoric Mammals of Riversleigh. Bloomington, Indiana University Press, 264 pp.Google Scholar
  3. Asher, R. J. (1999). A morphological basis for assessing the phylogeny of the “Tenrecoidea” (Mammalia, Lipotyphla). Cladistics 15: 231–252.Google Scholar
  4. Asher, R. J. (2001). Cranial anatomy in tenrecid insectivorans: Character evolution across competing phylogenies. Am. Mus. Novit. 3352: 1–54.Google Scholar
  5. Asher, R. J., Horovitz, I., and Sánchez-Villagra, M. R. (2004). First combined cladistic analysis of marsupial mammal interrelationships. Mol. Phylogenet. Evol. 33: 240–250Google Scholar
  6. Asher, R. J., McKenna, M. C., Emry, R. J., Tabrum, A. R., and Kron, D. G. (2002). Morphology and relationships of Apternodus and other extinct, zalambdodont, placental mammals. Bull. Am. Mus. Nat. Hist. 243: 1–117.Google Scholar
  7. Asher, R. J., Novacek, M. J., and Geisler, J. G. (2003). Relationships of endemic African mammals and their fossil relatives based on morphological and molecular evidence. J. Mamm. Evol. 10: 131–194.Google Scholar
  8. Bown, T. M., and Kraus, M. J. (1979). Origin of the tribosphenic molar and metatherian and eutherian dental formulae. In: Mesozoic Mammals: The First Two-Thirds of Mammalian History, J. A. Lillegraven, Z. Kielan-Jaworowska, and W. A. Clemens, eds., pp. 172–181, University of California Press, Berkeley.Google Scholar
  9. Butler, P. M. (1937). Studies of the mammalian dentition-I. The teeth of Centetes ecaudatus and its allies. Proc. Zool. Soc. Lond. 107: 103–132.Google Scholar
  10. Butler, P. M. (1984). Macroscelidea, Insectivora, and Chiroptera from the Miocene of East Africa. Palaeovertebrata 14: 117–200.Google Scholar
  11. Butler, P. M. (1988). Phylogeny of the insectivores. In: The Phylogeny and Classification of the Tetrapods, M. J. Benton, ed., pp. 117–141, Clarendon, Oxford.Google Scholar
  12. Clemens, W. A. (1966). Fossil mammals of the type Lance Formation, Wyoming. Part II. Marsupialia. Univ. Calif. Publ. Geol. Sci. 62: 1–122.Google Scholar
  13. Corbet, G. B., and Hill, J. E. (1991). The Mammals of the Indomalayan Region: A Systematic Review, Oxford University Press, Oxford.Google Scholar
  14. Crompton, A. W. (1971). The origin of the tribosphenic molar. [In: Early Mammals, D. M. Kermack and K. A. Kermack, eds.]. Zool. J. Linn. Soc. 50(Suppl. 1): 65–87.Google Scholar
  15. Douady, C. J., Catzeflis, F., Kao, D. J., Springer, M. S., and Stanhope, M. J. (2002). Molecular evidence for the monophyly of Tenrecidae (Mammalia) and the timing of the colonization of Madagascar by Malagasy tenrecs. Mol. Phylogenet. Evol. 22: 357–363.PubMedGoogle Scholar
  16. Eisenberg, J. F., and Gould, E. (1970). The tenrecs: A study in mammalian behavior and evolution. Smithson. Contrib. Zool. 27: 1–138.Google Scholar
  17. Fleagle, J. G. (1999). Primate Adaptation and Evolution, 2nd edn., Academic, San Diego, CA.Google Scholar
  18. Gill, T. (1883). On the classification of the insectivorous mammals. Bull. Philos. Soc. Wash. 5: 118–120.Google Scholar
  19. Goin, F. J., Abello, A., Bellosi, E., Kay, R., Madden, R., and Carlini, A. A. (in press). Los Metatheria sudamericanos de comienzos del Neógeno (Mioceno Temprano, Edad-mamífero Colhuehuapense). Parte I: Introducción, Didelphimorphia y Sparassodonta. Ameghiniana.Google Scholar
  20. Gould, S. J., and Lewontin, R. C. (1979). The spandrels of San Marco and the panglossian paradigm: A critique of the adaptationist programme. Proc. R. Soc. Lond. B 205: 581–598.PubMedCrossRefGoogle Scholar
  21. Gregory, W. K. (1910). The orders of mammals. Bull. Am. Mus. Nat. Hist. 27: 1–524.Google Scholar
  22. Gregory, W. K., and Simpson, G. G. (1926). Cretaceous mammal skulls from Mongolia. Am. Mus. Novit. 225: 1–20.Google Scholar
  23. Grzimek, B. (1988). Enzyklopaedie der Säugetiere, Kindler, München, Germany.Google Scholar
  24. Heard, S. B., and Hauser, D. L. (1995). Key evolutionary innovations and their ecological mechanisms. Hist. Biol. 10: 151–173.CrossRefGoogle Scholar
  25. Hershkovitz, P. (1971). Basic crown patterns and cusp homologies of mammalian teeth. In: Dental Morphology and Evolution, A. A. Dahlberg, ed., pp. 95–150, University of Chicago Press, Chicago.Google Scholar
  26. Hickman, G. C. (1990). The Chrysochloridae: Studies toward a broader perspective of adaptation in subterranean mammals. In: Evolution of Subterranean Mammals at the Organismal and Molecular Levels, E. Nevo and A. L. Gardner, eds., pp. 23–48, Alan R. Liss, New York.Google Scholar
  27. Hoofer, S. R., Reeder, S. A., Hansen, E. W., and van den Bussche, R. A. (2003). Molecular phylogenetics and taxonomic review of noctilionoid and vespertilionoid bats (Chiroptera: Yangochiroptera). J. Mamm. 84: 809–821.CrossRefGoogle Scholar
  28. Horovitz, I., and Sánchez-Villagra, M. R. (2003). A morphological analysis of marsupial mammal higher-level phylogenetic relationships. Cladistics 19: 181–212.CrossRefGoogle Scholar
  29. Hunter, J. P. (1998). Key innovations and the ecology of macroevolution. Trends Ecol. Evol. 13: 31–36.Google Scholar
  30. Hunter, J. P., and Jernvall, J. (1995). The hypocone as a key innovation in mammalian evolution. Proc. Natl. Acad. Sci. U.S.A. 92: 10718–10722.PubMedGoogle Scholar
  31. Jernvall, J. (1995). Mammalian molar cusp patterns: Developmental mechanisms of diversity. Acta Zool. Fennica 198: 1–61.Google Scholar
  32. Jernvall, J., Hunter, J. P., and Fortelius, M. (1996). Molar tooth diversity, disparity, and ecology in Cenozoic ungulate radiations. Science 274: 1489–1492.CrossRefPubMedGoogle Scholar
  33. Jernvall, J., Keränen, S. V. E., and Thesleff, I. (2000). Evolutionary modification of development in mammalian teeth: Quantifying gene expression patterns and topography. Proc. Natl. Acad. Sci. U.S.A. 97: 14444–14448.PubMedGoogle Scholar
  34. Kangas, A. T., Evans, A. R., Thesleff, I., and Jernvall, J. (2004). Nonindependence of mammalian dental characters. Nature 432: 211–214.CrossRefPubMedGoogle Scholar
  35. Kay, R. F. (1975). The functional adaptations of primate molar teeth. Am. J. Phys. Anthropol. 43: 195–216.PubMedGoogle Scholar
  36. Kay, R. F., and Sheine, W. S. (1979). On the relationship between chitin particle size and digestability in the primate Galago senegalensis. Am. J. Phys. Anthropol. 50: 301–308.CrossRefGoogle Scholar
  37. Kirsch, J. A. W., Lapointe, F.-J., and Springer, M. S. (1997). DNA-hybridization studies of marsupials and their implications for metatherian classification. Aust. J. Zool. 45: 211–280.CrossRefGoogle Scholar
  38. Koopman, K. F., and MacIntyre, G. T. (1980). Phylogenetic analysis of chiropteran dentition. In: Proceedings, Fifth International Bat Research Conference, D. E. Wilson and A. L. Gardner, eds., pp. 279–288, Texas Tech Press, Lubbock.Google Scholar
  39. Leche, W. (1907). Zur Entwicklungsgeschichte des Zahnsystems der Säugethiere, zugleich ein Beitrag zur Stammesgeschichte dieser Thiergruppe. II. Theil. Phylogenie. 2. Heft. Die Familien der Centetidae, Solenodontidae und Chrysochloridae. Zool. Stuttgart 20: 157.Google Scholar
  40. Long, J., Archer, M., Flannery, T. J., and Hand, S. (2002). Prehistoric Mammals of Australia and New Guinea, John Hopkins University Press, Baltimore.Google Scholar
  41. Lopatin, A. V. (2003). A zalambdodont insectivore of the family Apternodontidae (Insectivora, Mammalia) from the Middle Eocene of Mongolia. Paleontol. Zh. 2: 82–91.Google Scholar
  42. Maier, W. (1978). Die Evolution der tribosphenischen Säugetiermolaren. Sonderbd. Naturwiss. Ver. Hamburg 3: 41–60.Google Scholar
  43. Maier, W. (1985). Zalambdodontic teeth of mammals as a morphological paradigm. [In: Vertebrate Morphology, Duncker and Fleischer, eds.]. Fortschr. Zool. 30: 253–256.Google Scholar
  44. Malia, M. J., Adkins, R. M., and Allard, M. W. (2002). Molecular support for Afrotheria and the polyphyly of Lipotyphla based on analyses of the growth hormone receptor gene. Mol. Phylogenet. Evol. 24: 91–101.PubMedGoogle Scholar
  45. Martin, T. (2000). The dryolestids and the primitive “peramurid” from the Guimarota mine. In: Guimarota, A Jurassic Ecosystem, T. Martin and B. Krebs, eds., pp. 109–120, Pfeil Verlag, München, Germany.Google Scholar
  46. Matthew, W. D. (1903). The fauna of the Titanotherium beds at Pipestone Springs, Montana. Bull. Am. Mus. Nat. Hist. 19: 197–226.Google Scholar
  47. Matthew, W. D. (1913). A zalambdodont insectivore from the basal Eocene. Bull. Am. Mus. Nat. Hist. 32: 307–314.Google Scholar
  48. Mayr, E. (1960). The emergence of evolutionary novelties. In: The Evolution of Life, S. Tax, ed., pp. 349–380, University of Chicago Press, Chicago.Google Scholar
  49. McDowell, S. B. Jr. (1958). The Greater Antillean insectivores. Bull. Am. Mus. Nat. Hist. 115: 113–214.Google Scholar
  50. McKenna, M. C., and Bell, S. K. (1997). Classification of Mammals Above the Species Level, Columbia University Press, New York.Google Scholar
  51. Mein, P., and Pickford, M. (2003). Insectivora from Arrisdrift, a basal Middle Miocene locality in southern Namibia. Mem. Geol. Surv. Namibia 19: 143–146.Google Scholar
  52. Murphy, W. J., Eizirik, E., O'Brien, S. J., Madsen, O., Scally, M., Douady, C. J., Teeling, E., Ryder, O. A., Stanhope, M. J., de Jong, W. W., and Springer, M. S. (2001). Resolution of the early placental mammal radiation using Baysian phylogenetics. Science 294: 2348–2351.CrossRefPubMedGoogle Scholar
  53. Nowak, R. M. (1999). Walker's Mammals of the World, 6th edn., Johns Hopkins University Press, Baltimore.Google Scholar
  54. Oron, U., and Crompton, A. W. (1985). A cineradiographic and electromyographic study of mastication in Tenrec ecaudatus. J. Morphol. 185: 155–182.CrossRefPubMedGoogle Scholar
  55. Ottenwalder, J. A. (2001). Systematics and biogeography of the West Indian genus Solenodon. In: Biogeography of the West Indies, Patterns and Perspectives, 2nd edn., C. A. Woods and F. Sergile, eds., pp. 253–329, CRC, Boca Raton, FL.Google Scholar
  56. Patterson, B. (1956). Early Cretaceous mammals and the evolution of mammalian molar teeth. Fieldiana Geol. 13: 1–105.Google Scholar
  57. Patterson, B. (1958). Affinities of the Patagonian fossil mammal Necrolestes. Breviora 94: 1–14.Google Scholar
  58. Polly, P. D. (2000). Development and evolution occlude: Evolution of development in mammalian teeth. Proc. Natl. Acad. Sci. U.S.A. 97: 14019–14021.CrossRefPubMedGoogle Scholar
  59. Polly, P. D., Le Comber, S. C., and Burland, T. M. (2005). On the occlusal fit of tribosphenic molars: Are we underestimating species diversity in the Mesozoic? J. Mamm. Evol. 12: 283–299.Google Scholar
  60. Roca, A. L., Bar-Gal, G. K., Eizirik, E., Helgen, K. M., Maria, R., Springer, M. S., O'Brien, S. J., and Murphy, W. J. (2004). Mesozoic origin for West Indian insectivores. Nature 429: 649–651.CrossRefPubMedGoogle Scholar
  61. Salazar-Ciudad, I., and Jernvall, J. (2002). A gene network model accounting for development and evolution of mammalian teeth. Proc. Natl. Acad. Sci. U.S.A. 99: 8116–8120.CrossRefPubMedGoogle Scholar
  62. Sánchez-Villagra, M. R., and Kay, R. F. (1996). Do phalangeriforms (Marsupialia: Diprotodontia) have a ‘hypocone’? Aust. J. Zool. 44: 461–467.Google Scholar
  63. Schlaikjer, E. M. (1933). Contributions to the stratigraphy and palaeontology of the Goshen Hole area, Wyoming. I. A detailed study of the structure and relationships of a new zalambdodont insectivore from the middle Oligocene. Bull. Mus. Comp. Zool. 76: 1–27.Google Scholar
  64. Simpson, G. G. (1945). The principles of classification and a classification of mammals. Bull. Am. Mus. Nat. Hist. 85: 1–350.Google Scholar
  65. Simpson, G. G. (1953). The Major Feature of Evolution, Columbia University Press, New York.Google Scholar
  66. Springer, M. S., Westerman, M., Kavanagh, J. R., Burk, A., Woodburne, M. O., Kao, D. J., and Krajewski, C. (1998). The origin of the Australasian marsupial fauna and the phylogenetic affinities of the enigmatic monito del monte and marsupial mole. Proc. R. Soc. Lond. B 265: 2381–2386.CrossRefGoogle Scholar
  67. Stanhope, M. J., Waddell, V. G., Madsen, O., de Jong, W. W., Hedges, S. B., Cleven, G. C., Kao, D., and Springer, M. S. (1998). Molecular evidence for multiple origins of the Insectivora and for a new order of endemic African mammals. Proc. Nat. Acad. Sci. U.S.A. 95: 9967–9972.Google Scholar
  68. Tedford, R. H., and Woodburne, M. O. (1998). The diprotodontian “hypocone” revisited. Aust. J. Zool. 46: 249–250.CrossRefGoogle Scholar
  69. Thenius, E. (1989). Zähne und Gebiss der Säugetiere, W. de Gruyter, Berlin.Google Scholar
  70. Thewissen, J. G. M., and Gingerich, P. D. (1989). Skull and endocranial cast of Eoryctes melanus, a new palaeoryctid (Mammalia: Insectivora) from the early Eocene of Western North America. J. Vertebr. Paleontol. 9: 459–470.CrossRefGoogle Scholar
  71. Tong, Y. (1997). Middle Eocene small mammals of Liquanqiao Basin of Henan province and Yuanqu basin of Shanxi province, central China. Palaeontol. Sin. Whole Number 18, New Ser. C 26: 1–256.Google Scholar
  72. Vandebroek, G. (1961). The comparative anatomy of the teeth of lower and nonspecialized mammals. International Colloquium on the evolution of mammals. Koninklijke Academic der Schoone Kunsten. 1: 215–320.Google Scholar
  73. Wiegmann, B. M., Mitter, C., and Farrell, B. (1993). Diversification of carnivorous parasitic insects: Extraordinary radiation or specialized dead end? Am. Nat. 142: 737–754.CrossRefGoogle Scholar
  74. Wilson, D. E., and Reeder, D. M., eds. (1993). Mammal Species of the World, 2nd edn., Smithsonian Institution Press, Washington DC.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Robert J. Asher
    • 1
    • 3
  • Marcelo R. Sánchez-Villagra
    • 2
  1. 1.Museum für NaturkundeHumboldt UniversitätBerlinGermany
  2. 2.Department of PalaeontologyNatural History MuseumLondonUnited Kingdom
  3. 3.Museum für NaturkundeHumboldt UniversitätBerlinGermany

Personalised recommendations