Journal of Mammalian Evolution

, Volume 12, Issue 1–2, pp 145–160 | Cite as

Phylogenetic Relationships of Extinct Cetartiodactyls: Results of Simultaneous Analyses of Molecular, Morphological, and Stratigraphic Data

  • Jonathan H. GeislerEmail author
  • Mark D. Uhen


Although some recent morphological and molecular studies agree that Cetacea is closely related to Hippopotamidae, there is little consensus on the phylogeny within Cetartiodactyla. We addressed this problem by conducting two analyses: (1) a simultaneous cladistic analysis of intrinsic data (morphology and molecules) and (2) a stratocladistic analysis, which included morphological, molecular, and stratigraphic data. Unlike previous simultaneous analyses, we had the opportunity to include data from the recently described hindlimbs of protocetid and pakicetid cetaceans. Our intrinsic dataset includes 73 taxa scored for 8,229 informative characters, of which 208 are morphological and 8,021 molecular. Both analyses supported the exclusion of Mesonychia from Cetartiodactyla and a close phylogenetic relationship between Hippopotamidae and Cetacea. Many polytomies in the strict consensus of the most parsimonious trees for the intrinsic dataset can be attributed to differing positions for Raoellidae, which in some trees is the sister-group to Cetacea. Pruning Raoellidae and 18 other taxa from all most parsimonious produced a fully resolved agreement subtree, which indicates that the Old World taxa Cebochoerus and Mixtotherium are successive stem taxa to Whippomorpha (i.e., Cetacea + Hippopotamidae). The main result of adding stratigraphic information to the intrinsic dataset was that we found fewer most parsimonious trees, which in most respects were congruent with a subset of the shortest trees for the intrinsic dataset. Our stratocladistic analysis supports species of Diacodexis as the most basal cetartiodactyls, a clade of suiform cetartiodactyls, a monophyletic Tylopoda that includes Protoceratidae, and a monophyletic Carnivora. We were unable to identify any pre-Miocene stem taxa to Hippopotamidae, thus its ghost lineage is still 39 million years long. The relatively low Bremer support for many nodes in our trees indicates that our phylogenetic hypotheses should be subjected to further testing.


Cetacea Artiodactyla Cetartiodactyla Total evidence Stratocladistics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnason, U., Gullberg, A., Gretarsdottir, S., Ursing, B., and Janke, A. (2000). The mitochondrial genome of the sperm whale and a new molecular reference for estimating eutherian divergence dates. J. Mol. Evol. 50: 569–578.PubMedGoogle Scholar
  2. Asher, R. J., Novacek, M. J., and Geisler, J. H. (2003). Relationships of endemic African mammals and their fossil relatives based on morphological and molecular evidence. J. Mamm. Evol. 2: 157–184.Google Scholar
  3. Bajpai, S., and Gingerich, P. D. (1998). A new Eocene archaeocete (Mammalia, Cetacea) from India and the time of origin of whales. Proc. Natl. Acad. Sci. USA 95: 15464–15468.CrossRefPubMedGoogle Scholar
  4. Behrensmeyer, A. K., Deino, A. L., Hill, A., Kingston, J. D., and Saunders, J. J. (2002). Geology and geochronology of the middle Miocene Kipsaramon site complex, Muruyur beds, Tugen Hills, Kenya. J. Hum. Evol. 42: 11–38.CrossRefPubMedGoogle Scholar
  5. Bodenbender, B. E., and Fisher, D. C. (2001). Stratocladistic analysis of blastoid phylogeny. J. Paleontol. 75: 351–369.Google Scholar
  6. Bremer, K. (1988). The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution 42: 785–803.Google Scholar
  7. Bremer, K. (1994). Branch support and tree stability. Cladistics 10: 295–304.CrossRefGoogle Scholar
  8. Colbert, E. H. (1935). Distributional and phylogenetic studies on Indian fossil mammals. IV. The phylogeny of the Indian Suidae and the origin of the Hippopotamidae. Am. Mus. Novit. 799: 1–22.Google Scholar
  9. Fisher, D. C. (1992). Stratigraphic parsimony. In: MacClade 3.0 Manual, W. P. Maddison and D. R. Maddison, eds., pp. 124–129, Sinauer Associates, Sunderland, MA.Google Scholar
  10. Fisher, D. C. (1994). Stratocladistics: Morphological and temporal patterns and their relation to phylogenetic process. In: Interpreting the Hierarchy of Nature, L. Grande and O. Rieppel, eds., pp. 133–171, Academic Press, San Diego.Google Scholar
  11. Fox, D. L., Fisher, D. C., and Leighton, L. R. (1999). Reconstructing phylogeny with and without temporal data. Science 284: 1816–1819.CrossRefPubMedGoogle Scholar
  12. Gatesy, J. (1997). More DNA support for a Cetacea/Hippopotamidae clade: The blood-clotting protein gamma-fibrinogen. Mol. Biol. Evol. 14: 537–543.PubMedGoogle Scholar
  13. Gatesy, J. (1998). Molecular evidence for the phylogenetic affinities of Cetacea. In: The Emergence of Whales, J. G. M. Thewissen, ed., pp. 63–111, Plenum, New York.Google Scholar
  14. Gatesy, J., and O'Leary, M. A. (2001). Deciphering whale origins with molecules and fossils. Trends Ecol. Evol. 16: 562–570.Google Scholar
  15. Gatesy, J., Hayashi, C., Cronin, A., and Arctander, P. (1996). Evidence from milk casein genes that cetaceans are close relatives of hippopotamid artiodactyls. Mol. Biol. Evol. 13: 954–963.PubMedGoogle Scholar
  16. Gatesy, J., Milinkovitch, M., Waddell, V., and Stanhope, M. (1999). Stability of cladistic relationships between Cetacea and higher-level artiodactyl taxa. Syst. Biol. 48: 6–20.PubMedGoogle Scholar
  17. Gatesy, J., Matthee, C., DeSalle, R., and Hayashi, C. (2002). Resolution of the supertree/supermatrix paradox. Syst. Biol. 51: 652–664.CrossRefPubMedGoogle Scholar
  18. Geisler, J. H. (2001). New morphological evidence for the phylogeny of Artiodactyla, Cetacea, and Mesonychidae. Am. Mus. Novit. 3344: 1–53.Google Scholar
  19. Geisler, J. H., and Luo, Z. (1998). Relationships of Cetacea to terrestrial ungulates and the evolution of cranial vasculature in Cete. In: The Emergence of Whales, J. G. M. Thewissen, ed., pp. 163–212, Plenum, New York.Google Scholar
  20. Geisler, J. H., and Uhen, M. D. (2003). Morphological support for a close relationship between hippos and whales. J Vertebr. Paleontol. 23: 991–996.Google Scholar
  21. Gentry, A. W., and Hooker, J. J. (1988). The phylogeny of Artiodactyla. In: The Phylogeny and Classification of the Tetrapods, Mammals, vol. 2., M. J. Benton, ed., pp. 235–272, Clarendon Press, Oxford.Google Scholar
  22. Gingerich, P. D., Haq, M. U., Zalmout, I. S., Khan, I. H., and Malakani, M. S. (2001). Origin of whales from early artiodactyls: Hands and feet of Eocene Protocetidae from Pakistan. Science 293: 2239–2242.CrossRefPubMedGoogle Scholar
  23. Gregory, W. K. (1910). The orders of mammals. Bull. Am. Mus. Nat. Hist. 27: 1–524.Google Scholar
  24. Heller, F. (1934). Anthracobunodon weigelti n. gen. et n. sp., ein Artiodactyle aus dem Mitteleozän Geiseltales bei Halle a. S. Paläontologische Zeitschrift 16: 247–263.Google Scholar
  25. Hennig, W. (1966). Phylogenetic Systematics, University of Illinois Press, Urbana.Google Scholar
  26. Hooker, J. J., and Thomas, K. M. (2001). A new species of Amphirhagatherium (Choeropotamidae, Artiodactyla, Mammalia) from the Late Eocene Headon Hill Formation of Southern England and phylogeny of endemic European ‘anthracotherioids.’ Palaeontology 44: 827–853.Google Scholar
  27. Hulbert, R. C., Jr. (1998). Postcranial osteology of the North American Middle Eocene protocetid Georgiacetus. In: The Emergence of Whales, J. G. M. Thewissen, ed., pp. 235–267, Plenum, New York.Google Scholar
  28. Joeckel, R. M., and Stavas, J. M. (1996). Basicranial anatomy of Syndyoceras cooki (Artiodactyla, Protoceratidae) and the need for a reappraisal of tylopod relationships. J. Vertebr. Paleontol. 16: 320–327.Google Scholar
  29. Kluge, A. G. (1989). A concern for evidence and a phylogenetic hypothesis of relationships among Epicrates (Boidae, Serepentes). Syst. Zool. 38: 7–25.Google Scholar
  30. Kluge, A. G., and Wolf, A. J. (1993). Cladistics: What's in a word? Cladistics 9: 183–199.Google Scholar
  31. Krishtalka, L., and Stucky, R. K. (1985). Revision of the Wind River faunas, early, Eocene of Central Wyoming. Part 7. Revision of Diacodexis (Mammalia, Artiodactyla). Ann. Carnegie Mus. 54: 413–486.Google Scholar
  32. Kumar, K., and Sahni, A. (1985). Eocene mammals from the Upper Subathu Group, Kashmir Himalaya, India. J. Vertebr. Paleontol. 5: 153–168.CrossRefGoogle Scholar
  33. Langer, P. (2001). Evidence form the digestive tract on phylogenetic relationships in ungulates and whales. J. Zool. Syst. Evol. Res. 39: 77–90.CrossRefGoogle Scholar
  34. Luo, Z., and Gingerich, P. D. (1999). Terrestrial Mesonychia to aquatic Cetacea: Transformation of the basicranium and evolution of hearing in whales. Univ. Michigan Pap. Paleontol. 31: 1–98.Google Scholar
  35. Maddison, W. P., and Maddison, D. R. (2000). MacClade, Version 4.0, Sinauer Associates, Sunderland. Available at
  36. Madsen, O., Scally, M., Douady, C. J., Kao, D. J., DeBry, R. W., Adkins, R., Amrine, H. M., Stanhope, M. J., de Jong, W. W., and Springer, M. S. (2001). Parallel adaptive radiations in two major clades of placental mammals. Nature 409: 610–614.CrossRefPubMedGoogle Scholar
  37. Matthee, C. A., Burzlaff, J. D., Taylor, J. F., and Davis, S. K. (2001). Mining the mammalian genome for artiodactyl systematics. Syst. Biol. 50: 367–390.CrossRefPubMedGoogle Scholar
  38. Matthew, W. D. (1905). Notice of two new genera of mammals from the Oligocene of South Dakota. Bull. Am. Mus. Nat. Hist. 21: 21–26.Google Scholar
  39. Matthew, W. D. (1929) Reclassification of the artiodactyl families. Bull. Geol. Soc. Am. 40: 403–408.Google Scholar
  40. Matthew, W. D. (1934). A phylogenetic chart of the Artiodactyla. J. Mammal. 15: 207–209.Google Scholar
  41. McKenna, M. C., and Bell, S. K. (1997). Classification of Mammals Above the Species Level, Columbia University Press, New York.Google Scholar
  42. Montgelard, C., Catzeflis, F. M., and Douzery, E. (1997). Phylogenetic relationships of artiodactyls and cetaceans as deduced from the comparison of cytochrome b and 12S RNA mitochondrial sequences. Mol. Biol. Evol. 14: 550–559.PubMedGoogle Scholar
  43. Murphy, W. J., Eizirik, E., Johnson, W. E., Zhang, Y., Ryder, O. A., and O'Brien, S. J. (2001). Molecular phylogenetics and the origins of placental mammals. Nature 409: 614–618.CrossRefPubMedGoogle Scholar
  44. Nikaido, M., Rooney, A. P., and Okada, N. (1999). Phylogenetic relationships among cetartiodactyls based on insertions of short and long interspersed elements: Hippopotamuses are the closest extant relatives of whales. Proc. Natl. Acad. Sci. U.S.A. 96: 10261–10266.CrossRefPubMedGoogle Scholar
  45. Nixon, K. C., and Carpenter, J. M. (1996). On simultaneous analysis. Cladistics 12: 221–241.Google Scholar
  46. O'Leary, M. A. (1999). Parsimony analysis of total evidence from extinct and extant taxa and the cetacean-artiodactyl question (Mammalia, Ungulata). Cladistics 15: 315–330.CrossRefGoogle Scholar
  47. O'Leary, M. A. (2001). The phylogenetic position of cetaceans: Further combined data analyses, comparisons with the stratigraphic record and a discussion of character optimization. Am. Zool. 41: 487–506.Google Scholar
  48. O'Leary, M. A., and Geisler, J. H. (1999). The position of Cetacea within Mammalia: Phylogenetic analysis of morphological data from extinct and extant taxa. Syst. Biol. 48: 455–490.PubMedGoogle Scholar
  49. O'Leary, M. A., and Uhen, M. D. (1999). The time of origin of whales and the role of behavioral changes in the terrestrial-aquatic transition. Paleobiology 25: 534–556.Google Scholar
  50. Patton, T. H., and Taylor, B. E. (1973). The Protoceratinae (Mammalia, Tylopoda, Protoceratidae) and the systematics of the Protoceratidae. Bull. Am. Mus. Nat. Hist. 150: 351–413.Google Scholar
  51. Pickford, M. (1983). On the origins of Hippopotamidae together with descriptions of two new species, a new genus and a new subfamily from the Miocene of Kenya. Geobios 16: 193–217.Google Scholar
  52. Radinsky, L. B. (1966). The adaptive radiation of the phenacodontid condylarths and the origin of the Perissodactyla. Evolution 20: 408–417.Google Scholar
  53. Rose, K. D. (1985). Comparative osteology of North American dichobunid artiodactyls. J. Paleontol. 59: 1203–1226.Google Scholar
  54. Scott, W. B. (1898). Preliminary note on the selenodont artiodactyls of the Uinta Formation. Proc. Am. Philos. Soc. 37: 1–9.Google Scholar
  55. Scott, W. B. (1940). The mammalian fauna of the White River Oligocene, Part IV. Artiodactyla. Trans. Am. Philos. Soc. 28: 363–746.Google Scholar
  56. Shimamura, M., Yasue, H., Ohshima, K., Abe, H., Kato, H., Kishiro, T., Goto, M., Munechika, I., and Okada, N. (1997). Molecular evidence from retroposons that whales form a clade within even-toed ungulates. Nature 388: 666–670.PubMedGoogle Scholar
  57. Shimamura, M., Abe, H., Nikaido, M., Ohshima, K., and Okada, N. (1999). Genealogy of families of SINEs in cetaceans and artiodactyls: the presence of a huge superfamily of tRNAGlu-derived families of SINEs. Mol. Biol. Evol. 16: 1046–1060.PubMedGoogle Scholar
  58. Sorenson, M. D. (1996). TreeRot, University of Michigan, Ann Arbor. Available at
  59. Sumrall, C. D., and Brochu, C. A. (2003). Resolution, sampling, higher taxa and assumptions in stratocladistic analysis. J. Paleontol. 77: 189–194.Google Scholar
  60. Swofford, D. L. (2002). PAUP, Phylogenetic Analysis Using Parsimony ( and Other Methods), Version 4.0b10, Sinauer Associates, Sunderland, MA. Available at
  61. Theodor, M. J., and Foss, S. E. (2005). Deciduous dentitions of Eocene cebochoerid artiodactyls and cetartiodactyl relationships. J. Mamm. Evol. 12 (in press).Google Scholar
  62. Thewissen, J. G. M., and Domning, D. P. (1992). The role of phenacodontids in the origin of the modern orders of ungulate mammals. J. Vertebr. Paleontol. 12: 494–504.CrossRefGoogle Scholar
  63. Thewissen, J. G. M., Williams, E. M., and Hussain, S. T. (2001a). Eocene mammal faunas from Northern Indo-Pakistan. J. Vertebr. Paleontol. 21: 347–366.Google Scholar
  64. Thewissen, J. G. M., Williams, E. M., Roe, L. J. and Hussain, S. T. (2001b). Skeletons of terrestrial cetaceans and the relationship of whales to artiodactyls. Nature 413: 277–281.CrossRefGoogle Scholar
  65. Uhen, M. D. (1999). New species of protocetid archaeocete whale, Eocetus wardii (Mammalia: Cetacea) from the Middle Eocene of North Carolina. J. Paleontol. 73: 512–528.Google Scholar
  66. Uhen, M. D. (2001). New material of Eocetus wardii (Mammalia, Cetacea), from the Middle Eocene of North Carolina. Southeastern Geol. 40: 135–148.Google Scholar
  67. Viret, J. (1961). Artiodactyla. In: Traité de paléontologie, tome 6, J. Piveteau, ed., pp. 887–1021, Masson et Cie, Paris.Google Scholar
  68. Waddell, P. J., and Shelley, S. (2003). Evaluating placental inter-ordinal phylogenies with novel sequences including RAG1, γ-fibrinogen, ND6, and mt-tRNA, plus MCMC-driven nucleotide, amino acid, and codon models. Mol. Phylogenet. Evol. 28: 197–224.PubMedGoogle Scholar
  69. Webb, S. D., and Taylor, B. E. (1980). The phylogeny of hornless ruminants and a description of the cranium of Archaeomeryx. Bull. Am. Mus. Nat. Hist. 167: 121–157.Google Scholar
  70. Williams, E. M. (1998). Synopsis of the earliest cetaceans: Pakicetidae, Ambulocetidae, Remingtonocetidae, and Protocetidae. In: The Emergence of Whales, J. G. M. Thewissen, ed., pp. 1–28, Plenum, New York.Google Scholar
  71. Wilkinson, M. (1992). Ordered versus unordered characters. Cladistics 8: 375–385.CrossRefGoogle Scholar
  72. Wortman, J. L. (1898). The extinct Camelidae of North America and some associated forms. Bull. Am. Mus. Nat. Hist. 9: 93–142.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department Geology/Geography and Georgia Southern MuseumGeorgia Southern UniversityStatesboroUSA
  2. 2.Cranbrook Institute of ScienceBloomfield HillsUSA
  3. 3.Department of Geology and GeographyGeorgia Southern UniversityStatesboroUSA

Personalised recommendations