Advertisement

Journal of Mammalian Evolution

, Volume 12, Issue 1–2, pp 247–264 | Cite as

Effects of Quaternary Climatic Change on Speciation in Mammals

  • Anthony D. BarnoskyEmail author
Article

Abstract

An ongoing controversy in evolutionary biology is the extent to which climatic changes drive evolutionary processes. On the one hand are “Red Queen” hypotheses, which maintain that climatic change is less important than biotic interactions in causing evolutionary change. On the other hand are “Court Jester” models, which recognize climatic change as a very important stimulus to speciation. The Quaternary Period (the last 1.8 million years), characterized by multiple climatic changes in the form of glacial–interglacial transitions, offers a fertile testing ground for ascertaining whether cyclical climatic changes that operate at the 100,000-year time scale appreciably influence evolutionary patterns in mammals. Despite the increased potential for isolation of populations that should occur with multiple advances and retreats of glaciers and rearrangement of climatic zones, empirical data suggests that speciation rates were neither appreciably elevated for Quaternary mammals, nor strongly correlated with glacial–interglacial transitions. Abundant evidence attests to population-level changes within the Quaternary, but these did not usually lead to the origin of new species. This suggests that if climatic change does influence speciation rates in mammals, it does so over time scales longer than a typical glacial–interglacial cycle.

Keywords

quaternary mammals speciation climatic change 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alley, R. B. (2000a). Ice-core evidence of abrupt climate changes. Proc. Natl. Acad. Sci. U.S.A. 97: 1331–1334.CrossRefGoogle Scholar
  2. Alley, R. B. (2000b). The Younger Dryas cold interval as viewed from central Greenland. Quaternary Sci. Rev. 19: 213–226.CrossRefGoogle Scholar
  3. Alroy, J. (1996). Constant extinction, constrained diversification, and uncoordinated stasis in North American mammals. Palaeogeogr. Palaeoclimatol. Palaeoecol. 127: 285–311.CrossRefGoogle Scholar
  4. Alroy, J. (1998). Equilibrial diversity dynamics in North American mammals. In: Biodiversity Dynamics: Turnover of Populations, Taxa and Communities, M. L. McKinney and J. A. Drake, eds., pp. 232–287, Columbia University Press, New York.Google Scholar
  5. Alroy, J. (2000). New methods for quantifying macroevolutionary patterns and processes. Paleobiology 26: 707–733.Google Scholar
  6. Alroy, J., Koch, P. L., and Zachos, J. C. (2000). Global climate change and North American mammalian evolution. In: Deep Time: Paleobiology's Perspective, D. H. Erwin and S. L. Wing, eds., pp. 259–288, Allen Press, Lawrence, Kansas.Google Scholar
  7. Avise, J. C., Walker, D., and Johns, G. C. (1998). Speciation durations and Pleistocene effects on vertebrate phylogeography. Proc. R. Soc. Lond. B 265: 1707–1712.Google Scholar
  8. Barnes, I., Matheus, P., Shapiro, B., Jensen, D., and Cooper, A. (2002). Dynamics of Pleistocene population extinctions in Beringian brown bears. Science 295: 2267–2270.CrossRefPubMedGoogle Scholar
  9. Barnosky, A. D. (1989). The late Pleistocene event as a paradigm for widespread mammal extinction. In: Mass Extinctions: Processes and Evidence, S. K. Donovan, ed., pp. 235–254, Belhaven Press, London.Google Scholar
  10. Barnosky, A. D. (1993). Mosaic evolution at the population level in Microtus pennsylvanicus. In: Morphological Change in Quaternary Mammals of North America, R. A. Martin and A. D. Barnosky, eds., pp. 24–59, Cambridge University Press, Cambridge.Google Scholar
  11. Barnosky, A. D. (2001). Distinguishing the effects of the Red Queen and Court Jester on Miocene mammal evolution in the northern Rocky Mountains. J. Vertebr. Paleontol. 21: 172–185.Google Scholar
  12. Barnosky, A. D. (2004). Faunal dynamics of small mammals through the Pit Sequence. In: Biodiversity Response to Climate Change in the Middle Pleistocene: The Porcupine Cave Fauna from Colorado, A. D. Barnosky, ed., pp. 318–326, University of California Press, Berkeley.Google Scholar
  13. Barnosky, A. D., and Bell, C. J. (2003). Evolution, climatic change and species boundaries: Perspectives from tracing Lemmiscus curtatus populations through time and space. Proc. R. Soc. Lond. B 270: 2585–2590.CrossRefGoogle Scholar
  14. Barnosky, A. D., and Bell, C. J. (2004). Age and correlation of key fossil sites in Porcupine Cave. In: Biodiversity Response to Climate Change in the Middle Pleistocene: The Porcupine Cave Fauna from Colorado, A. D. Barnosky, ed., pp. 64–73, University of California Press, Berkeley.Google Scholar
  15. Barnosky, A. D., and Carrasco, M. A. (2002). Effects of Oligo–Miocene global climate changes on mammalian species richness in the northwestern quarter of the USA. Evol. Ecol. Res. 4: 811–841.Google Scholar
  16. Barnosky, A. D., Bell, C. J., Emslie, S. D., Goodwin, H. T., Mead, J. I., Repenning, C. A., Scott, E., and Shabel, A. B. (2004a). Exceptional record of mid-Pleistocene vertebrates helps differentiate climatic from anthropogenic ecosystem perturbations. Proc. Natl. Acad. Sci. U.S.A. 101: 9297–9302.CrossRefGoogle Scholar
  17. Barnosky, A. D., Kaplan, M. H., and Carrasco, M. A. (2004b). Assessing the effect of middle Pleistocene climate change on Marmota populations from the pit locality. In: Biodiversity Response to Climate Change in the Middle Pleistocene: The Porcupine Cave Fauna from Colorado, A. D. Barnosky, ed., pp. 332–340, University of California Press, Berkeley.Google Scholar
  18. Barraclough, T. G., and Vogler, A. P. (2002). Recent diversification rates in North American tiger beetles estimated from a dated mtDNA phylogenetic tree. Mol. Biol. Evol. 19: 1706–1716.PubMedGoogle Scholar
  19. Barton, N. H. (2001). Speciation. Trends Ecol. Evol. 16: 325.Google Scholar
  20. Bell, C. J., Lundelius, E. L., Jr., Barnosky, A. D., Graham, R. W., Lindsay, E. H., Ruez, D. R., Jr., Semken, H. A., Jr., Webb, S. D., and Zakrzewski, R. J. (2004). The Blancan, Irvingtonian, and Rancholabrean mammal ages. In: Late Cretaceous and Cenozoic Mammals of North America: Biostratigraphy and Geochronology, M. O. Woodburne, ed., pp. 232–314, Columbia University Press, New York.Google Scholar
  21. Bennett, K. D. (1990). Milankovitch cycles and their effects on species in ecological and evolutionary time. Paleobiology 16: 11–21.Google Scholar
  22. Bennett, K. D. (1997). Evolution and Ecology, the Pace of Life, Cambridge University Press, Cambridge.Google Scholar
  23. Bennett, K. D. (2004). Continuing the debate on the role of Quaternary environmental change for macroevolution. Philos. Trans. R. Soc. Lond. B 359: 295–303.CrossRefGoogle Scholar
  24. Brett, C. E., and Baird, G. C. (1995). Coordinated stasis and evolutionary ecology of Silurian to Middle Devonian faunas in the Appalachian Basin. In: New Approaches to Speciation in the Fossil Record, D. H. E. a. R. L. Anstey, eds., pp. 285–315, Columbia University Press, New York.Google Scholar
  25. Brown, J. H. (1995). Macroecology, University of Chicago Press, Chicago.Google Scholar
  26. Capanna, E., Bekele, A., Capula, M., Castilia, R., Civitelli, M. V., Codjia, J. T. C., Corti, M., and Fadda, C. (1996). A multidisciplinary approach to the systematics of the genus Arvicanthis Lesson, 1842 (Rodentia, Murinae). Mammalia 60: 677–696.CrossRefGoogle Scholar
  27. Carrasco, M. A., Kraatz, B. P., Davis, E. B., and Barnosky, A. D. (2005). Miocene Mammal Mapping Project (MIOMAP), University of California Museum of Paleontology.http://www.ucmp.berkeley.edu/miomap/.
  28. Clark, P. U., Alley, R. B., and Pollard, D. (1999). Northern hemisphere ice-sheet influences on global climate change. Science 286: 1104–1111.CrossRefGoogle Scholar
  29. Coope, G. R. (2004). Several million years of stability among insect species because of, or in spite of, Ice Age climatic instability? Philos. Trans. R. Soc. Lond. B 359: 209–214.CrossRefGoogle Scholar
  30. Coyne, J. A., and Orr, H. A. (1998). The evolutionary genetics of speciation. Philos. Trans. R. Soc. Lond. B 353: 287–305.CrossRefGoogle Scholar
  31. Dansgaard, W., Johnson, S. J., Clausen, H. B., Dahljensen, D., Gundestrup, N. S., Hammer, C. U., Hvidberg, C. C., Steffensen, J. P., Sveinbjornsdottir, A. E., Jouzel, J., and Bond, G. (1993). Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364: 218–220.CrossRefGoogle Scholar
  32. Dynesius, M., and Jansson, R. (2000). Evolutionary consequences of changes in species' geographical ranges driven by Milankovitch climate oscillations. Proc. Natl. Acad. Sci. U.S.A. 97: 9115–9120.CrossRefPubMedGoogle Scholar
  33. ETE. (2004). Evolution of Terrestrial Ecosystems Database, http://www.nmnh.si.edu/ete/.
  34. FAUNMAP Working Group. (1994). FAUNMAP: A database documenting late Quaternary distributions of mammal species in the United States. Illinois Mus. Sci. Pap. 25: 1–690.Google Scholar
  35. FAUNMAP Working Group. (1996). Spatial response of mammals to the late Quaternary environmental fluctuations. Science 272: 1601–1606.Google Scholar
  36. Foote, M. (1999). Morphological diversity in the volutionary radiation of Paleozoic and Post-Paleozoic crinoids. Paleobiology 25: 1–15.Google Scholar
  37. Foote, M. (2000a). Origination and extinction components of taxonomic diversity: General problems. In: Deep Time: Paleobiology's Perspective, D. H. Erwin and S. L. Wing, eds., Allen Press, Lawrence, Kansas.Google Scholar
  38. Foote, M. (2000b). Origination and extinction components of taxonomic diversity: Paleozoic and post-Paleozoic dynamics. Paleobiology 26: 578–605.Google Scholar
  39. Foote, M., and Raup, D. M. (1996). Fossil preservation and the stratigraphic ranges of taxa. Paleobiology 22: 121–140.PubMedGoogle Scholar
  40. Freitag, R. (1979). Reclassification, phylogeny, and zoogeography of the Australian species of Cincindela (Coleoptera, Cincindelidae). Aust. J. Zool. 66 (Suppl. Ser.): 1–99.Google Scholar
  41. Gavrilets, S., Li, H., and Vose, M. D. (1998). Rapid parapatric speciation on holey adaptive landscapes. Proc. R. Soc. Lond. B 265: 1483–1489.Google Scholar
  42. Gingerich, P. D. (1984). Pleistocene extinctions in the context of origination–extinction equilibria in Cenozoic mammals. In: Quaternary Extinctions: A Prehistoric Revolution, P. S. Martin and R. G. Klein, eds., pp. 211–222, University of Arizona Press, Tucson.Google Scholar
  43. Gingerich, P. D. (1985). Species in the fossil record: Concepts, trends, and transitions. Paleobiology 11: 27–41.Google Scholar
  44. Goodwin, H. T. (2004). Systematics and faunal dynamics of fossil squirrels from Porcupine Cave. In: Biodiversity Response to Climate Change in the Middle Pleistocene: The Porcupine Cave Fauna from Colorado, A. D. Barnosky, ed., pp. 172–192, University of California Press, Berkeley.Google Scholar
  45. Graham, R. W., and Grimm, E. C. (1990). Effects of global climate change on the patterns of terrestrial biological communities. Trends Ecol. Evol. 5: 289–292.CrossRefGoogle Scholar
  46. Graham, R. W., and Lundelieus, E. L., Jr. (1984). Coevolutionary disequilibrium and Pleistocene extinctions. In: Quaternary Extinctions: A Prehistoric Revolution, P. S. Martin and R. G. Klein, eds., pp. 223–249, University of Arizona Press, Tucson.Google Scholar
  47. Hadly, E. A. (2003). The interface of paleontology and mammalogy: Past, present, and future. J. Mammal. 84: 347–353.Google Scholar
  48. Hadly, E. A., Kohn, M. H., Leonard, J. A., and Wayne, R. K. (1998). A genetic record of population isolation in pocket gophers during Holocene climatic change. Proc. Natl. Acad. Sci. U.S.A. 95: 6893–6896.CrossRefPubMedGoogle Scholar
  49. Hadly, E. A., van Tuinen, M., Chan, Y. L., and Heiman, K. (2003). Ancient DNA evidence of prolonged population persistence with negligible genetic diversity in an endemic tuco-tuco (Ctenomys sociabilis). J. Mammal. 84: 403–417.Google Scholar
  50. Hadly, E. A., Ramakrishnan, U., Chan, Y. L., van Tuinen, M., O'Keefel, K., Spaeth, P. A., and Conroy, C. J. (2004). Genetic response to climatic change: Insights from ancient DNA and phylochronology. Public Libr. Sci. 2: e290.Google Scholar
  51. Hewitt, G. M. (2000). The genetic legacy of the Quaternary ice ages. Nature 405: 907–913.CrossRefPubMedGoogle Scholar
  52. Hewitt, G. M. (2004). Genetic consequences of climatic oscillations in the Quaternary. Philos. Trans. R. Soc. Lond. B 359: 183–195.CrossRefGoogle Scholar
  53. Hosey, G. R. (1982). The Bosporous land bridge and mammal distributions in Asia-Minor and the Balkans East Europe. Saeugetierkundliche Mitteilungen 30: 53–62.Google Scholar
  54. Janis, C. M. (1989). A climatic explanation for patterns of evolutionary diversity in ungulate mammals. Palaeontology 32: 463–481.Google Scholar
  55. Janis, C. M. (1993). Tertiary mammal evolution in the context of changing climates, vegetation, and tectonic events. Annu. Rev. Ecol. Syst. 24: 467–500.CrossRefGoogle Scholar
  56. Janis, C. M. (1997). Ungulate teeth, diets, and climatic changes at the Eocene/Oligocene boundary. Zoology 100: 203–220.Google Scholar
  57. Janis, C. M., and Wilhelm, P. B. (1993). Were there mammalian pursuit predators in the Tertiary? Dances with wolf avatars. J. Mammal. Evol. 1: 103–125.CrossRefGoogle Scholar
  58. Janis, C. M., Damuth, J., and Theodor, J. M. (2000). Miocene ungulates and terrestrial primary productivity: Where have all the browsers gone? Proc. Natl. Acad. Sci. U.S.A. 97: 7899–7904.CrossRefPubMedGoogle Scholar
  59. Jansson, R., and Dynesius, M. (2002). The fate of clades in a world of recurrent climatic change: Milankovitch oscillations and evolution. Annu. Rev. Ecol. Syst. 33: 741–777.CrossRefGoogle Scholar
  60. Kadereit, J. W., Griebeler, E. M., and Comes, H. P. (2004). Quaternary diversification in European alpine plants: Pattern and process. Philos. Trans. R. Soc. Lond. B 359: 265–274.CrossRefGoogle Scholar
  61. Katz, M. E., Pak, D. K., Dickens, G. R., and Miller, K. G. (1999). The source and fate of massive carbon input during the latest Paleocene thermal maximum. Science 286: 1531–1533.CrossRefPubMedGoogle Scholar
  62. Klicka, J., and Zink, R. M. (1999). Pleistocene effects on North American songbird evolution. Proc. R. Soc. Lond. B 266: 695–700.CrossRefGoogle Scholar
  63. Klicka, J., Zink, R. M., Barlow, J. C., McGillivray, W. B., and Doyle, T. J. (1999). Evidence supporting the recent origin and species status of the Timberline Sparrow. Condor 101: 577–588.Google Scholar
  64. Knowles, L. L. (2000). Tests of Pleistocene speciation in montane grasshoppers (genus Melanoplus) from the sky islands of western North America. Evolution 54: 1337–1348.PubMedGoogle Scholar
  65. Kutzbach, J., Gallimore, R., Harrison, S., Behling, P. R., and Laarif, F. (1998). Climate and biome simulations for the past 21,000 years. Quaternary Sci. Rev. 17: 473–506.CrossRefGoogle Scholar
  66. Lessa, E. P., Cook, J. A., and Patton, J. L. (2003). Genetic footprints of demographic expansion in North America, but not Amazonia, during the Late Quaternary. Proc. Natl. Acad. Sci. U.S.A. 100: 10331–10334.CrossRefPubMedGoogle Scholar
  67. Lister, A. M. (1993). Evolution of mammoths and moose: The Holarctic perspective. In: Morphological Change in Quaternary Mammals of North America, R. A. Martin and A. D. Barnosky, eds., pp. 178–204, Cambridge University Press, Cambridge.Google Scholar
  68. Lister, A. M. (2004). The impact of Quaternary Ice Ages on mammalian evolution. Philos. Trans. R. Soc. Lond. B 359: 221–241.CrossRefGoogle Scholar
  69. Lister, A. M., and Sher, A. V. (2001). The origin and evolution of the woolly mammoth. Science 294: 1094–1097.CrossRefPubMedGoogle Scholar
  70. Mallet, J. (2001). The speciation revolution. J. Evol. Biol. 14: 887–888.CrossRefGoogle Scholar
  71. Martin, R. A. (1993). Patterns of variation and speciation in Quaternary rodents. In: Morphological Change in Quaternary Mammals of North America, R. A. Martin and A. D. Barnosky, eds., pp. 226–280, Cambridge University Press, Cambridge.Google Scholar
  72. McDonald, J. N. (1981). North American Bison—Their Classification and Evolution, University of California Press, Berkeley.Google Scholar
  73. McKinnon, G. E., Jordan, G. J., Vaillancourt, R. E., Steane, D. A., and Potts, B. M. (2004). Glacial refugia and reticulate evolution: The case of the Tasmanian eucalypts. Philos. Trans. R. Soc. Lond. B 359: 275–284.CrossRefGoogle Scholar
  74. NOW. (2004). Neogene of the Old World Database, http://www.helsinki.fi/science/now/.
  75. PBD. (2004). The Paleobiology Database, http://paleodb.org.
  76. Peters, J., Gautier, A., Brink, J. S., and Haenen, W. (1994). Late Quaternary extinction of ungulates in sub-Saharan Africa: A reductionist's approach. J. Archaeol. Sci. 21: 17–28.Google Scholar
  77. Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J.-M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pépin, L., Ritz, C., Saltzman, E., and Stievenard, M. (1999). Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399: 429–436.CrossRefGoogle Scholar
  78. Polly, P. D. (2003). Paleophylogeography: The tempo of geographic differentiation in marmots (Marmota). J. Mammal. 84: 369–384.CrossRefGoogle Scholar
  79. Preston, F. W. (1962a). The canonical distribution of commonness and rarity, Part II. Ecology 43: 410–432.Google Scholar
  80. Preston, F. W. (1962b). The canonical distribution of commonness and rarity, Part II. Ecology 43: 185–215.Google Scholar
  81. Prothero, D. R. (1999). Does climatic change drive mammalian evolution? GSA Today: 1–7.Google Scholar
  82. Prothero, D. R., and Heaton, T. H. (1996). Faunal stability during the early Oligocene climatic crash. Palaeogeogr. Palaeoclimatol. Palaeoecol. 127: 239–256.CrossRefGoogle Scholar
  83. Raymo, M. E. (1997). The timing of major climate terminations. Paleoceanography 12: 577–585.Google Scholar
  84. Raymo, M. E. (1998). Glacial puzzles. Science 281: 1467–1468.CrossRefGoogle Scholar
  85. Raymo, M. E., Oppo, D. W., and Curry, W. (1997). The mid-Pleistocene climate transition: A deep-sea carbon isotopic perspective. Paleoceanography 12: 546–559.Google Scholar
  86. Raymo, M. E., Ganley, K., Carter, S., Oppo, D. W., and McManus, J. (1998). Millennial-scale climate instability during the early Pleistocene epoch. Nature 392: 699–702.CrossRefGoogle Scholar
  87. Rodbell, D. T. (2000). The Younger Dryas: Cold, cold everywhere? Science 290: 285–286.CrossRefPubMedGoogle Scholar
  88. Romer, A. S. (1966). Vertebrate Paleontology, University of Chicago Press, Chicago.Google Scholar
  89. Root, T. L., Price, J. T., Hall, K. R., Schneider, S. H., Rosenzweig, C., and Pounds, J. A. (2003). Fingerprints of global warming on wild animals and plants. Nature 421: 57–60.CrossRefPubMedGoogle Scholar
  90. Rosenzweig, M. L. (2001). Loss of speciation rate will impoverish future diversity. Proc. Natl. Acad. Sci. U.S.A. 98: 5404–5410.CrossRefPubMedGoogle Scholar
  91. Ruddiman, W. F. (2001). Earth's Climate, Past and Future, W. H. Freeman, New York.Google Scholar
  92. Ruddiman, W. F., Raymo, M. E., Martinson, D. G., Clement, B. M., and Backman, J. (1989). Pleistocene evolution: Northern hemisphere ice sheets and North Atlantic Ocean. Paleoceanography 4: 353–412.Google Scholar
  93. Schluter, D. (2001). Ecology and the origin of species. Trends Ecol. Evol. 16: 372–380.PubMedGoogle Scholar
  94. Schmieder, F., Von Dobeneck, T., and Bleil, U. (2000). The mid-Pleistocene climate transition as documented in the deep South Atlantic Ocean: Initiation, interim state and terminal event. Earth Planet. Sci. Lett. 179: 539–549.CrossRefGoogle Scholar
  95. Seehausen, O. (2002). Patterns in fish radiation are compatible with Pleistocene desiccation of Lake Victoria and 14,600 year history for its cichlid species flock. Proc. R. Soc. Lond. B 269: 491–497.CrossRefGoogle Scholar
  96. Seymour, K. (1993). Size change in North American Quaternary jaguars. In: Morphological Change in Quaternary Mammals of North America, R. A. Martin and A. D. Barnosky, eds., pp. 343–373, Cambridge University Press, Cambridge.Google Scholar
  97. Stenseth, N. C., and Maynard Smith, J. (1984). Coevolution in ecosystems: Red Queen evolution or stasis? Evolution 38: 870–880.Google Scholar
  98. Stucky, R. K. (1990). Evolution of land mammal diversity in North America during the Cenozoic. Curr. Mammal. 2: 375–432.Google Scholar
  99. Van Valen, L. (1973). A new evolutionary law. Evol. Theory 1: 1–30.Google Scholar
  100. Via, S. (2001). Sympatric speciation in animals: The ugly duckling grows up. Trends Ecol. Evol. 16: 381–390.CrossRefPubMedGoogle Scholar
  101. Vrba, E. S. (1992). Mammals as a key to evolutionary theory. J. Mammal. 73: 1–28.Google Scholar
  102. Vrba, E. S. (1993). Turnover-pulses, the Red Queen, and related topics. Am. J. Sci. 293-A: 418–452.Google Scholar
  103. Vrba, E. S. (1995a). The fossil record of African antelopes (Mammalia, Bovidae) in relation to human evolution and paleoclimate. In: Paleoclimate and Evolution, With Emphasis on Human Origins, E. S. Vrba, G. H. Denton, T. C. Partridge, and L. H. Burckle, eds., pp. 385–424, Yale University Press, New Haven, Connecticut.Google Scholar
  104. Vrba, E. S. (1995b). On the connections between paleoclimate and evolution. In: Paleoclimate and Evolution, With Emphasis on Human Origins, E. S. Vrba, G. H. Denton, T. C. Partridge, and L. H. Burckle, eds., pp. 24–45, Yale University Press, New Haven, Connecticut.Google Scholar
  105. Vrba, E. S., and DeGusta, D. (2004). Do species populations really start small? New perspectives from the Late Neogene fossil record of African mammals. Philos. Trans. R. Soc. Lond. B 359: 285–293.CrossRefGoogle Scholar
  106. Walther, G.-R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J. C., Fromentin, J.-M., Hoegh-Guldberg, O., and Bairllein, F. (2002). Ecological responses to recent climate change. Nature 416: 389–395.CrossRefPubMedGoogle Scholar
  107. Webb III, T., Shuman, B., and Williams, J. W. (2004). Climatically forced vegetation dynamics in eastern North America during the late Quaternary Period. In: The Quaternary Period in the United States, A. R. Gillespie, S. C. Porter, and B. F. Atwater, eds., pp. 459–478, Elsevier, Amsterdam.Google Scholar
  108. Willis, K. J., and Niklas, K. J. (2004). The role of Quaternary environmental change in plant macroevolution: The exception or the rule? Philos. Trans. R. Soc. Lond. B 359: 159–172.Google Scholar
  109. Wilson, M. C. (1996). Late Quaternary vertebrates and the opening of the ice-free corridor, with special reference to the genus Bison. Quaternary Int. 32: 97–105.Google Scholar
  110. Wu, C.-I. (2001). The genic view of the process of speciation. J. Evol. Biol. 14: 851–865.Google Scholar
  111. Zachos, J. C., Pagani, M., Sloan, L., Thomas, E., and Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292: 686–693.PubMedGoogle Scholar
  112. Zink, R. M., Klicka, J., and Barber, B. R. (2004). The tempo of avian diversification during the Quaternary. Philos. Trans. R. Soc. Lond. B 359: 215–220.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Integrative Biology and Museums of Paleontology and Vertebrate ZoologyUniversity of CaliforniaBerkeleyUSA

Personalised recommendations