Dispersion effect of velocities on the evaluation of material elasticity

  • Yu. I. KolesnikovEmail author


The author employs the Kjartansson absorption model to prove that intrinsic dispersion of seismic wave velocities in absorbing media is a basic factor responsible for the differences between elastic rock parameters measured dynamically and statically. Dispersion of Young’s modulus predicted by this model for a frequency range from millihertz to tens of kilohertz matches well the experimental data obtained for polyvinyl chloride plastic used as a test material in the study case.


Static and dynamic elasticity moduli Kjartansson absorption model intrinsic dispersion of velocities 


  1. 1.
    V. N. Nikitin, Relationship between Dynamic E d and Static E s Moduli for Hard Rocks. Exploration and Development Geophysics [in Russian], Issue 45, Gostoptekhizdat, Moscow (1962).Google Scholar
  2. 2.
    G. Simmons and W. F. Brace, “Comparison of static and dynamic measurements of compressibility of rocks,” J. Geophys. Res., 70, No. 22 (1965).Google Scholar
  3. 3.
    A. I. Savich and Z. G. Yashchenko, Investigation of Elasticity and Deformability of Rocks by Seismic and Acoustic Methods [in Russian], Nedra, Moscow (1979).Google Scholar
  4. 4.
    C. H. Cheng and D. H. Johnston, “Dynamic and static moduli,” Geophys. Res. Lett., 8, No. 1 (1981).Google Scholar
  5. 5.
    A. N. Tutuncu, A. L. Podio, A. R. Gregory, and M. M. Sharma, “Nonlinear viscoelastic behavior of sedimentary rocks, Part I: Effect of frequency and strain amplitude,” Geophysics, 63, No. 1 (1998).Google Scholar
  6. 6.
    E. M. Averko, Yu. I. Kolesnikov, and A. I. Sherubnev, “Some differences in properties of continuum in statics and seismology (model investigations),” in: Multiwave Seismic Investigations within Geoacoustic Frequency Range, Collected Works [in Russian], IGiG, Novosibirsk (1987).Google Scholar
  7. 7.
    Seismic Exploration: Geophysicist Handbook [in Russian], Nedra, Moscow (1981).Google Scholar
  8. 8.
    Yu. I. Vasil’ev, Two summaries of constants for attenuation of elastic oscillations,” Izv. AN SSSR, Geofiz., No. 5 (1962).Google Scholar
  9. 9.
    L. Knopoff, “Q,” Rev. Geophysics, 2, No. 4 (1964).Google Scholar
  10. 10.
    P. B. Attewell and Y. V. Ramana, “Wave attenuation and internal friction as functions of frequency in rocks,” Geophysics, 31, No. 6 (1966).Google Scholar
  11. 11.
    P. C. Wuenschel, “Dispersive body waves — an experimental study,” Geophysics, 30, No. 4 (1965).Google Scholar
  12. 12.
    L. V. Molotova, “On dispersion of bulk-wave velocities in rocks,” Izv. AN SSSR, Geofiz., No. 8 (1966).Google Scholar
  13. 13.
    D. C. Ganley and E. R. Kanasewich, “Measurement of absorption and dispersion from check shot surveys,” J. Geophys. Res., 85, No. B10 (1980).Google Scholar
  14. 14.
    B. J. Brennan and F. D. Stacey, “Frequency dependence of elasticity of rock — test of seismic velocity dispersion,” Nature, 268, No. 5617 (1977).Google Scholar
  15. 15.
    W. F. Murphy, “Seismic to ultrasonic velocity drift: intrinsic absorption and dispersion in crystalline rocks,” Geophys. Res. Lett., 11, No. 12 (1984).Google Scholar
  16. 16.
    S. Ya. Kogan, “Brief review on theories of seismic wave absorption,” Izv. AN SSSR: Fiz. Zemli, No. 11 (1966).Google Scholar
  17. 17.
    E. Kjartansson. “Constant Q — wave propagation and attenuation,” J. Geophys. Res., 84, No. B9 (1979).Google Scholar
  18. 18.
    E. M. Averko and Yu. I. Kolesnikov, “A model of seismic wave absorption,” in: Geoacoustic Studies in Multiwave Seismic Exploration. Collected Works [in Russian], IGiG, Novosibirsk (1987).Google Scholar
  19. 19.
    K. Winkler and A. Nur, “Seismic attenuation: Effects of pore fluids and frictional sliding,” Geophysics, 47, No. 1 (1982).Google Scholar
  20. 20.
    D. H. Johnston and M. N. Toksoz, “Ultrasonic P- and S-wave attenuation in dry and saturated rocks under pressure,” J. Geophys. Res., 85, No. B2 (1980).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.A. A. Trofimuk Institute of Petroleum Geology and Geophysics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations