Journal of Mammary Gland Biology and Neoplasia

, Volume 24, Issue 3, pp 257–270 | Cite as

BRCA1 Attenuates Progesterone Effects on Proliferation and NFκB Activation in Normal Human Mammary Epithelial Cells

  • H. N. Hilton
  • L. J. Patterson McDonald
  • N. Santucci
  • F. R. van der Bent
  • A. Silvestri
  • J. D. GrahamEmail author
  • C. L. Clarke


Germline mutations in the breast cancer susceptibility gene BRCA1, encoding a tumor suppressor protein, greatly enhance the risk of breast and ovarian cancer. This tissue-specificity implicates the role of ovarian hormones. Indeed, BRCA1 has been demonstrated to regulate the signalling axis of the hormone, progesterone, and its receptor, the progesterone receptor (PR), and progesterone action has been implicated in BRCA1-related tumorigenesis. BRCA1 also plays important roles in oxidative stress and activating nuclear factor kappaB (NFκB) signalling pathways. Like wildtype BRCA1 function, PR signalling has also been shown to inhibit NFκB activation. Although PR and BRCA1 networks are known to interact, their interaction at the level of NFκB activation in the human breast is not understood. This study investigates the effect of reduced BRCA1 expression on proliferation and NFκB activation in human breast cells, and the impact of progesterone on these effects. The major findings are that: 1) Reduced BRCA1 levels inhibit cell growth in normal human mammary cells and breast cancer cells; 2) Reduced BRCA1 levels stimulated inflammatory targets and NFκB activity in normal human mammary cells; 3) Wildtype BRCA1 inhibited the pro-proliferative effects of progesterone in normal mammary epithelial cells, and; 4) Progesterone attenuated BRCA1-mediated NFκB activation in normal human mammary cells. These data have important implications for our understanding of progesterone action in BRCA1 mutation carriers, and how inhibition of this action may potentially delay tumorigenesis or impart a more favourable prognosis.


Progesterone BRCA1 Breast cancer NFκB Proliferation 



This work was made possible by funding from the National Breast Cancer Foundation (HNH; Career Development Fellowship; Grant ID: ECF-16-007), Cure Cancer Australia Foundation/Cancer Australia (HNH; Grant ID: APP1098796). CLC is a National Health and Medical Research Council Principal Research Fellow (Grant ID: APP1081334). HNH, CLC and JDG are supported by a project grant from The Cancer Council NSW (Grant ID: RG-15-17).

Supplementary material

10911_2019_9431_MOESM1_ESM.pptx (361 kb)
ESM 1 a Relative levels of BRCA1 transcripts in T47D cells following transduction of 2 individual shRNAs. b Relative levels of BRCA1 transcripts in T47D cells following transduction of a pool of 2 individual BRCA1 shRNAs, without (V) or with (P) progesterone treatment. c Representative immunofluorescent images of T47D breast cancer cells stained with α-BRCA1 (red), treated with control shRNA (i and ii) or BRCA1 shRNA (iii and iv). Scale bar represents 25 μm. d Reduction in BRCA1 transcripts following transduction of BRCA1shRNA in AB32 cells (n = 3). Error bars indicate standard error (PPTX 360 kb)
10911_2019_9431_MOESM2_ESM.pptx (48 kb)
ESM 2 Decreased average signal intensity on microarray of selected cyclins following knockdown of BRCA1 in AB32 cells. Error bars indicate standard error from triplicate samples. (PPTX 48 kb)
10911_2019_9431_MOESM3_ESM.pptx (49 kb)
ESM 3 Decreased average signal intensity on microarray of selected cyclins following knockdown of BRCA1 in T47D breast cancer cells. Error bars indicate standard error from triplicate samples (PPTX 49 kb)
10911_2019_9431_MOESM4_ESM.pptx (43 kb)
ESM 4 Average fold change in mRNA levels after BRCA1 knockdown, relative to control shRNA, in (a) AB32 cells (n = 3) and in (b) MCF-10A cells (n = 4), as determined by qPCR. Charts are plotted on a logarithmic scale. Error bars indicate standard error. c Relative levels of BRCA1 transcripts in MCF10A cells compared with AB32 cells (PPTX 43 kb)
10911_2019_9431_MOESM5_ESM.pptx (459 kb)
ESM 5 Induction of PR transcripts (a) and PR protein (b) following transduction of BRCA1shRNA in AB32 cells, and treatment with progesterone or progestins, as indicated. Error bars indicate standard error (n = 2). c Relative densitometric intensities of PR-A and PR-B bands (PPTX 459 kb)
10911_2019_9431_MOESM6_ESM.pptx (56 kb)
ESM 6 a Effect of progestins on cell proliferation in control shRNA cells. Cell growth is expressed as an increase in percentage of confluence. b Fold change in confluency of cells (± BRCA1 shRNA ± progestin treatment), relative to vehicle control shRNA cells at 120 h. c Effect of progestins on cell proliferation in BRCA1 shRNA cells. Charts represent mean ± standard error (n = 4) (PPTX 56 kb)
10911_2019_9431_MOESM7_ESM.pptx (72 kb)
ESM 7 Volcano plot analysis (integrating p values and log2 fold changes) for progesterone-regulated targets in AB32 cells treated with control-shRNA. Blue and yellow dots indicate probes that showed a fold-change ≤2 or ≥ 2, respectively (PPTX 72 kb)
10911_2019_9431_MOESM8_ESM.docx (14 kb)
ESM 8 (DOCX 13 kb)
10911_2019_9431_MOESM9_ESM.docx (13 kb)
ESM 9 (DOCX 12 kb)
10911_2019_9431_MOESM10_ESM.docx (14 kb)
ESM 10 (DOCX 14 kb)
10911_2019_9431_MOESM11_ESM.docx (14 kb)
ESM 11 (DOCX 13 kb)


  1. 1.
    Turner N, Tutt A, Ashworth A. Hallmarks of 'BRCAness’ in sporadic cancers. Nat Rev Cancer. 2004;4(10):814–9.Google Scholar
  2. 2.
    Venkitaraman AR. Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell. 2002;108(2):171–82.PubMedGoogle Scholar
  3. 3.
    Hu Y. BRCA1, hormone, and tissue-specific tumor suppression. Int J Biol Sci. 2009;5(1):20–7.PubMedGoogle Scholar
  4. 4.
    Hilton HN, Graham JD, Clarke CL. Minireview: progesterone regulation of proliferation in the normal human breast and in breast cancer: a tale of two scenarios? Mol Endocrinol. 2015;29(9):1230–42.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Ma Y, Katiyar P, Jones LP, Fan S, Zhang Y, Furth PA, et al. The breast cancer susceptibility gene BRCA1 regulates progesterone receptor signaling in mammary epithelial cells. Mol Endocrinol. 2006;20(1):14–34.PubMedGoogle Scholar
  6. 6.
    Poole AJ, Li Y, Kim Y, Lin SC, Lee WH, Lee EY. Prevention of Brca1-mediated mammary tumorigenesis in mice by a progesterone antagonist. Science. 2006;314(5804):1467–70.PubMedGoogle Scholar
  7. 7.
    Widschwendter M, Rosenthal AN, Philpott S, Rizzuto I, Fraser L, Hayward J, et al. The sex hormone system in carriers of BRCA1/2 mutations: a case-control study. Lancet Oncol. 2013;14(12):1226–32.PubMedGoogle Scholar
  8. 8.
    Mote PA, Leary JA, Avery KA, Sandelin K, Chenevix-Trench G, Kirk JA, et al. Germ-line mutations in BRCA1 or BRCA2 in the normal breast are associated with altered expression of estrogen-responsive proteins and the predominance of progesterone receptor a. Genes Chromosomes Cancer. 2004;39(3):236–48.PubMedGoogle Scholar
  9. 9.
    King TA, Gemignani ML, Li W, Giri DD, Panageas KS, Bogomolniy F, et al. Increased progesterone receptor expression in benign epithelium of BRCA1-related breast cancers. Cancer Res. 2004;64(15):5051–3.PubMedGoogle Scholar
  10. 10.
    Lim E, Vaillant F, Wu D, Forrest N, Pal B, Hart A. Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med. 2009;15:907–13.PubMedGoogle Scholar
  11. 11.
    Proia TA, Keller PJ, Gupta PB, Klebba I, Jones AD, Sedic M, et al. Genetic predisposition directs breast cancer phenotype by dictating progenitor cell fate. Cell Stem Cell. 2011;8(2):149–63.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Furuta S, Jiang X, Gu B, Cheng E, Chen P-L, Lee W-H. Depletion of BRCA1 impairs differentiation but enhances proliferation of mammary epithelial cells. Proc Natl Acad Sci U S A. 2005;102(26):9176–81.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Burga LN, Tung NM, Troyan SL, Bostina M, Konstantinopoulos PA, Fountzilas H, et al. Altered proliferation and differentiation properties of primary mammary epithelial cells from BRCA1 mutation carriers. Cancer Res. 2009;69(4):1273–8.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Cao L, Li W, Kim S, Brodie SG, Deng C-X. Senescence, aging, and malignant transformation mediated by p53 in mice lacking the Brca1 full-length isoform. Genes Dev. 2003;17(2):201–13.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Bai F, Smith MD, Chan HL, Pei XH. Germline mutation of Brca1 alters the fate of mammary luminal cells and causes luminal-to-basal mammary tumor transformation. Oncogene. 2012;32:2715–25.PubMedGoogle Scholar
  16. 16.
    Sedic M, Skibinski A, Brown N, Gallardo M, Mulligan P, Martinez P, et al. Haploinsufficiency for BRCA1 leads to cell-type-specific genomic instability and premature senescence. Nat Commun. 2015;6:7505.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Scott A, Bai F, Chan HL, Liu S, Slingerland JM, Robbins DJ, et al. p16 loss rescues functional decline of Brca1-deficient mammary stem cells. Cell Cycle. 2017;16(8):759–64.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Lydon JP, DeMayo FJ, Funk CR, Mani SK, Hughes AR, Montgomery CAJ, et al. Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Dev. 1995;9(18):2266–78.PubMedGoogle Scholar
  19. 19.
    Graham JD, Mote PA, Salagame U, van Dijk JH, Balleine RL, Huschtscha LI, et al. DNA replication licensing and progenitor numbers are increased by progesterone in normal human breast. Endocrinology. 2009;150(7):3318–26.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Musgrove EA, Lee CS, Sutherland RL. Progestins both stimulate and inhibit breast cancer cell cycle progression while increasing expression of transforming growth factor alpha, epidermal growth factor receptor, c-fos, and c-myc genes. Mol Cell Biol. 1991;11(10):5032–43.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Groshong SD, Owen GI, Grimison B, Schauer IE, Todd MC, Langan TA, et al. Biphasic regulation of breast cancer cell growth by progesterone: role of the cyclin-dependent kinase inhibitors, p21 and p27(Kip1). Mol Endocrinol. 1997;11(11):1593–607.PubMedGoogle Scholar
  22. 22.
    Lange CA, Richer JK, Horwitz KB. Hypothesis: progesterone primes breast cancer cells for cross-talk with proliferative or antiproliferative signals. Mol Endocrinol. 1999;13(6):829–36.PubMedGoogle Scholar
  23. 23.
    Bae I, Fan S, Meng Q, Rih JK, Kim HJ, Kang HJ, et al. BRCA1 induces antioxidant gene expression and resistance to oxidative stress. Cancer Res. 2004;64(21):7893–909.PubMedGoogle Scholar
  24. 24.
    Esteve JM, Armengod ME, Knecht E. BRCA1 negatively regulates formation of autophagic vacuoles in MCF-7 breast cancer cells. Exp Cell Res. 2010;316(16):2618–29.PubMedGoogle Scholar
  25. 25.
    Martinez-Outschoorn UE, Balliet R, Lin Z, Whitaker-Menezes D, Birbe RC, Bombonati A, et al. BRCA1 mutations drive oxidative stress and glycolysis in the tumor microenvironment. Cell Cycle. 2012;11(23):4402–13.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med. 2010;49(11):1603–16.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Sau A, Lau R, Cabrita Miguel A, Nolan E, Crooks Peter A, Visvader Jane E, et al. Persistent activation of NF-κB in BRCA1-deficient mammary progenitors drives aberrant proliferation and accumulation of DNA damage. Cell Stem Cell. 2016;19(1):52–65.PubMedGoogle Scholar
  28. 28.
    Buckley NE, Haddock P, Simoes RDM, Parkes E, Irwin G, Emmert-Streib F, et al. A BRCA1 deficient, NFκB driven immune signal predicts good outcome in triple negative breast cancer. Oncotarget. 2016;7(15):19884–96.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Hardy DB, Janowski BA, Chen C-C, Mendelson CR. Progesterone receptor inhibits aromatase and inflammatory response pathways in breast cancer cells via ligand-dependent and ligand-independent mechanisms. Mol Endocrinol. 2008;22(8):1812–24.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Kobayashi S, Stice JP, Kazmin D, Wittmann BM, Kimbrel EA, Edwards DP, et al. Mechanisms of progesterone receptor inhibition of inflammatory responses in cellular models of breast cancer. Mol Endocrinol. 2010;24(12):2292–302.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Clarke CL, Graham JD. Non-overlapping progesterone receptor cistromes contribute to cell-specific transcriptional outcomes. PLoS One. 2012;7(4):e35859.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2008;4(1):44–57.Google Scholar
  33. 33.
    Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37(1):1–13.Google Scholar
  34. 34.
    Cogswell PC, Guttridge DC, Funkhouser WK, Baldwin AS. Selective activation of NF-κB subunits in human breast cancer: potential roles for NF-κB2/p52 and for Bcl-3. Oncogene. 2000;19:1123–31.PubMedGoogle Scholar
  35. 35.
    Bae I, Rih JK, Kim HJ, Kang HJ, Hassan B, Kirilyuk A, et al. BRCA1 regulates gene expression for orderly mitotic progression. Cell Cycle. 2005;4(11):1641–66.PubMedGoogle Scholar
  36. 36.
    Calvo V, Beato M. BRCA1 counteracts progesterone action by ubiquitination leading to progesterone receptor degradation and epigenetic silencing of target promoters. Cancer Res. 2011;71(9):3422–31.PubMedGoogle Scholar
  37. 37.
    Mockus MB, Horwitz KB. Progesterone receptors in human breast cancer. Stoichiometric translocation and nuclear receptor processing. J Biol Chem. 1983;258(8):4778–83.PubMedGoogle Scholar
  38. 38.
    Booth BW, Smith GH. Estrogen receptor-α and progesterone receptor are expressed in label-retaining mammary epithelial cells that divide asymmetrically and retain their template DNA strands. Breast Cancer Res. 2006;8:R49.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Fernandez-Valdivia R, Mukherjee A, Mulac-Jericevic B, Conneely OM, DeMayo FJ, Amato P, et al. Revealing progesterone's role in uterine and mammary gland biology: insights from the mouse. Semin Reprod Med. 2005;23(1):22–37.PubMedGoogle Scholar
  40. 40.
    Pan H, Deng Y, Pollard JW. Progesterone blocks estrogen-induced DNA synthesis through the inhibition of replication licensing. Proc Natl Acad Sci U S A. 2006;103(38):14021–6.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Liu S, Ginestier C, Charafe-Jauffret E, Foco H, Kleer CG, Merajver SD, et al. BRCA1 regulates human mammary stem/progenitor cell fate. Proc Natl Acad Sci U S A. 2008;105(5):1680–5.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Pathania S, Bade S, Le Guillou M, Burke K, Reed R, Bowman-Colin C, et al. BRCA1 haploinsufficiency for replication stress suppression in primary cells. Nat Commun. 2014;5:5496.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Sedic M, Kuperwasser C. BRCA1-hapoinsufficiency: unraveling the molecular and cellular basis for tissue-specific cancer. Cell Cycle. 2016;15(5):621–7.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Baud V, Karin M. Is NF-κB a good target for cancer therapy? Hopes and pitfalls. Nat Rev Drug Discov. 2009;8(1):33–40.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Hayden MS, Ghosh S. Shared principles in NFκB signaling. Cell. 2008;132(3):344–62.PubMedGoogle Scholar
  46. 46.
    Bassères DS, Baldwin AS. Nuclear factor-κB and inhibitor of κB kinase pathways in oncogenic initiation and progression. Oncogene. 2006;25(51):6817–30.PubMedGoogle Scholar
  47. 47.
    Cao Y. Luo J-l, Karin M. IκB kinase α kinase activity is required for self-renewal of ErbB2/Her2-transformed mammary tumor-initiating cells. Proc Natl Acad Sci U S A. 2007;104(40):15852–7.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Gardini A, Baillat D, Cesaroni M, Shiekhattar R. Genome-wide analysis reveals a role for BRCA1 and PALB2 in transcriptional co-activation. EMBO J. 2014;33(8):890–905.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Nolan E, Vaillant F, Branstetter D, Pal B, Giner G, Whitehead L, et al. RANK ligand as a potential target for breast cancer prevention in BRCA1-mutation carriers. Nat Med. 2016;22(8):933–9.PubMedGoogle Scholar
  50. 50.
    Hunter DJ, Colditz GA, Hankinson SE, Malspeis S, Spiegelman D, Chen W, et al. Oral contraceptive use and breast cancer: a prospective study of young women. Cancer Epidemiol Biomark Prev. 2010;19(10):2496–502.Google Scholar
  51. 51.
    Beral V, Reeves G, Bull D, Green J. Million women study collaborators. Breast cancer risk in relation to the interval between menopause and starting hormone therapy. J Natl Cancer Inst. 2011;103(4):296–305.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Chlebowski RT, Manson JE, Anderson GL, Cauley JA, Aragaki AK, Stefanick ML, et al. Estrogen plus progestin and breast cancer incidence and mortality in the women’s health initiative observational study. J Natl Cancer Inst. 2013;105(8):526–35.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Nolan E, Lindeman GJ, Visvader JE. Out-RANKing BRCA1 in mutation carriers. Cancer Res. 2017;77(3):595–600.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • H. N. Hilton
    • 1
  • L. J. Patterson McDonald
    • 1
  • N. Santucci
    • 1
  • F. R. van der Bent
    • 2
  • A. Silvestri
    • 1
  • J. D. Graham
    • 1
    Email author
  • C. L. Clarke
    • 1
  1. 1.Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney Medical School – WestmeadThe University of SydneyWestmeadAustralia
  2. 2.Department of Medicine, Academic Medical CenterUniversity of GroningenGroningenThe Netherlands

Personalised recommendations