Skip to main content

Advertisement

Log in

Attenuation of Mammary Gland Dysplasia and Feeding Difficulties in Tabby Mice by Fetal Therapy

Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Hypohidrotic ectodermal dysplasias (HED) are hereditary differentiation disorders of multiple ectodermal structures including the mammary gland. The X-linked form of HED (XLHED) is caused by a lack of the secreted signaling molecule ectodysplasin A1 (EDA1) which is encoded by the gene EDA and belongs to the tumor necrosis factor (TNF) superfamily. Although male patients (hemizygous) are usually more severely affected by XLHED, heterozygous female carriers of an EDA mutation may also suffer from a variety of symptoms, in particular from abnormal development of their breasts. In Tabby mice, a well-studied animal model of XLHED, EDA1 is absent. We investigated the effects of prenatal administration of Fc-EDA, a recombinant EDA1 replacement protein, on mammary gland development in female Tabby mice. Intra-amniotic delivery of Fc-EDA to fetal animals resulted later in improved breastfeeding and thus promoted the growth of their offspring. In detail, such treatment led to a normalization of the nipple shape (protrusion, tapering) that facilitated sucking. Mammary glands of treated female Tabby mice also showed internal changes, including enhanced branching morphogenesis and ductal elongation. Our findings indicate that EDA receptor stimulation during development has a stable impact on later stages of mammary gland differentiation, including lactation, but also show that intra-amniotic administration of an EDA1 replacement protein to fetal Tabby mice partially corrects the mammary gland phenotype in female adult animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Clarke A. Hypohidrotic ectodermal dysplasia. J Med Genet. 1987;24(11):659–63.

    Article  PubMed  CAS  Google Scholar 

  2. Visinoni AF, Lisboa-Costa T, Pagnan NA, Chautard-Freire-Maia EA. Ectodermal dysplasias: clinical and molecular review. Am J Med Genet A. 2009;149a(9):1980–2002.

    Article  PubMed  CAS  Google Scholar 

  3. Cluzeau C, Hadj-Rabia S, Jambou M, Mansour S, Guigue P, Masmoudi S, et al. Only four genes (EDA1, EDAR, EDARADD, and WNT10A) account for 90% of hypohidrotic/anhidrotic ectodermal dysplasia cases. Hum Mutat. 2011;32(1):70–2.

    Article  PubMed  CAS  Google Scholar 

  4. Kowalczyk-Quintas C, Schneider P. Ectodysplasin A (EDA) - EDA receptor signalling and its pharmacological modulation. Cytokine Growth Factor Rev. 2014;25(2):195–203.

    Article  PubMed  CAS  Google Scholar 

  5. Schmidt-Ullrich R, Tobin DJ, Lenhard D, Schneider P, Paus R, Scheidereit C. NF-kappaB transmits Eda A1/EdaR signalling to activate Shh and cyclin D1 expression, and controls post-initiation hair placode down growth. Development. 2006;133(6):1045–57.

    Article  PubMed  CAS  Google Scholar 

  6. Fliniaux I, Mikkola ML, Lefebvre S, Thesleff I. Identification of dkk4 as a target of Eda-A1/Edar pathway reveals an unexpected role of ectodysplasin as inhibitor of Wnt signalling in ectodermal placodes. Dev Biol. 2008;320(1):60–71.

    Article  PubMed  CAS  Google Scholar 

  7. Voutilainen M, Lindfors PH, Lefebvre S, Ahtiainen L, Fliniaux I, Rysti E, et al. Ectodysplasin regulates hormone-independent mammary ductal morphogenesis via NF-kappaB. Proc Natl Acad Sci U S A. 2012;109(15):5744–9.

    Article  PubMed  CAS  Google Scholar 

  8. Kere J, Srivastava AK, Montonen O, Zonana J, Thomas N, Ferguson B, et al. X-linked anhidrotic (hypohidrotic) ectodermal dysplasia is caused by mutation in a novel transmembrane protein. Nat Genet. 1996;13(4):409–16.

    Article  PubMed  CAS  Google Scholar 

  9. Headon DJ, Emmal SA, Ferguson BM, Tucker AS, Justice MJ, Sharpe PT, et al. Gene defect in ectodermal dysplasia implicates a death domain adapter in development. Nature. 2001;414(6866):913–6.

    Article  PubMed  CAS  Google Scholar 

  10. Monreal AW, Ferguson BM, Headon DJ, Street SL, Overbeek PA, Zonana J. Mutations in the human homologue of mouse dl cause autosomal recessive and dominant hypohidrotic ectodermal dysplasia. Nat Genet. 1999;22(4):366–9.

    Article  PubMed  CAS  Google Scholar 

  11. Wahlbuhl-Becker M, Faschingbauer F, Beckmann MW, Schneider H. Hypohidrotic ectodermal dysplasia: breastfeeding complications due to impaired breast development. Geburtshilfe Frauenheilkd. 2017;77(4):377–82.

    Article  PubMed  Google Scholar 

  12. Heckmann U. Congenital bilateral amastia in a mother and a daughter. Geburtshilfe Frauenheilkd. 1982;42(4):318–20.

    Article  PubMed  CAS  Google Scholar 

  13. Al Marzouqi F, Michot C, Dos Santos S, Bonnefont JP, Bodemer C, Hadj-Rabia S. Bilateral amastia in a female with X-linked hypohidrotic ectodermal dysplasia. Br J Dermatol. 2014;171(3):671–3.

    Article  PubMed  Google Scholar 

  14. Wohlfart S, Soder S, Smahi A, Schneider H. A novel missense mutation in the gene EDARADD associated with an unusual phenotype of hypohidrotic ectodermal dysplasia. Am J Med Genet A. 2016;170a(1):249–53.

    Article  PubMed  Google Scholar 

  15. Haghighi A, Nikuei P, Haghighi-Kakhki H, Saleh-Gohari N, Baghestani S, Krawitz PM, et al. Whole-exome sequencing identifies a novel missense mutation in EDAR causing autosomal recessive hypohidrotic ectodermal dysplasia with bilateral amastia and palmoplantar hyperkeratosis. Br J Dermatol. 2013;168(6):1353–6.

    Article  PubMed  CAS  Google Scholar 

  16. Megarbane H, Cluzeau C, Bodemer C, Fraitag S, Chababi-Atallah M, Megarbane A, et al. Unusual presentation of a severe autosomal recessive anhydrotic ectodermal dysplasia with a novel mutation in the EDAR gene. Am J Med Genet A. 2008;146a(20):2657–62.

    Article  PubMed  CAS  Google Scholar 

  17. Hennighausen L, Robinson GW. Information networks in the mammary gland. Nat Rev Mol Cell Biol. 2005;6(9):715–25.

    Article  PubMed  CAS  Google Scholar 

  18. Falconer DS. A totally sex-linked gene in the house mouse. Nature. 1952;169(4303):664–5.

    Article  PubMed  CAS  Google Scholar 

  19. Srivastava AK, Montonen O, Saarialho-Kere U, Chen E, Baybayan P, Pispa J, et al. Fine mapping of the EDA gene: a translocation breakpoint is associated with a CpG island that is transcribed. Am J Hum Genet. 1996;58(1):126–32.

    PubMed  CAS  PubMed Central  Google Scholar 

  20. Srivastava AK, Pispa J, Hartung AJ, Du Y, Ezer S, Jenks T, et al. The Tabby phenotype is caused by mutation in a mouse homologue of the EDA gene that reveals novel mouse and human exons and encodes a protein (ectodysplasin-A) with collagenous domains. Proc Natl Acad Sci U S A. 1997;94(24):13069–74.

    Article  PubMed  CAS  Google Scholar 

  21. Gaide O, Schneider P. Permanent correction of an inherited ectodermal dysplasia with recombinant EDA. Nat Med. 2003;9(5):614–8.

    Article  PubMed  CAS  Google Scholar 

  22. Hermes K, Schneider P, Krieg P, Dang A, Huttner K, Schneider H. Prenatal therapy in developmental disorders: drug targeting via intra-amniotic injection to treat X-linked hypohidrotic ectodermal dysplasia. J Invest Dermatol. 2014;134(12):2985–7.

    Article  PubMed  CAS  Google Scholar 

  23. Dunphy KA, Tao L, Jerry DJ. Mammary epithelial transplant procedure. J Vis Exp 2010;(40) pii: 1849.

  24. Schindelin J, Rueden CT, Hiner MC, Eliceiri KW. The ImageJ ecosystem: an open platform for biomedical image analysis. Mol Reprod Dev. 2015;82(7–8):518–29.

    Article  PubMed  CAS  Google Scholar 

  25. Beinder L, Faehrmann N, Wachtveitl R, Winterfeld I, Hartner A, Menendez-Castro C, et al. Detection of expressional changes induced by intrauterine growth restriction in the developing rat mammary gland via exploratory pathways analysis. PLoS One. 2014;9(6):e100504.

    Article  PubMed  Google Scholar 

  26. Podzus J, Kowalczyk-Quintas C, Schuepbach-Mallepell S, Willen L, Staehlin G, Vigolo M, et al. Ectodysplasin A in biological fluids and diagnosis of ectodermal dysplasia. J Dent Res. 2017;96(2):217–24.

    Article  PubMed  CAS  Google Scholar 

  27. Blecher SR. Anhidrosis and absence of sweat glands in mice hemizygous for the Tabby gene: supportive evidence for the hypothesis of homology between Tabby and human anhidrotic (hypohidrotic) ectodermal dysplasia (Christ-Siemens-Touraine syndrome). J Invest Dermatol. 1986;87(6):720–2.

    Article  PubMed  CAS  Google Scholar 

  28. Toyoshima Y, Ohsako S, Nagano R, Matsumoto M, Hidaka S, Nishinakagawa H. Histological changes in mouse nipple tissue during the reproductive cycle. J Vet Med Sci. 1998;60(4):405–11.

    Article  PubMed  CAS  Google Scholar 

  29. Affolter M, Bellusci S, Itoh N, Shilo B, Thiery JP, Werb Z. Tube or not tube: remodeling epithelial tissues by branching morphogenesis. Dev Cell. 2003;4(1):11–8.

    Article  PubMed  CAS  Google Scholar 

  30. Oakes SR, Hilton HN, Ormandy CJ. The alveolar switch: coordinating the proliferative cues and cell fate decisions that drive the formation of lobuloalveoli from ductal epithelium. Breast Cancer Res. 2006;8(2):207.

    Article  PubMed  Google Scholar 

  31. Palmer CA, Neville MC, Anderson SM, Mcmanaman JL. Analysis of lactation defects in transgenic mice. J Mammary Gland Biol Neoplasia. 2006;11(3–4):269–82.

    Article  PubMed  Google Scholar 

  32. Schwertfeger KL, Mcmanaman JL, Palmer CA, Neville MC, Anderson SM. Expression of constitutively activated Akt in the mammary gland leads to excess lipid synthesis during pregnancy and lactation. J Lipid Res. 2003;44(6):1100–12.

    Article  PubMed  CAS  Google Scholar 

  33. Paine IS, Lewis MT. The terminal end bud: the little engine that could. J Mammary Gland Biol Neoplasia. 2017;22:93–108.

    Article  PubMed  Google Scholar 

  34. Boussadia O, Kutsch S, Hierholzer A, Delmas V, Kemler R. E-cadherin is a survival factor for the lactating mouse mammary gland. Mech Dev. 2002;115(1–2):53–62.

    Article  PubMed  CAS  Google Scholar 

  35. Mikaelian I, Hovick M, Silva KA, Burzenski LM, Shultz LD, Ackert-Bicknell CL, et al. Expression of terminal differentiation proteins defines stages of mouse mammary gland development. Vet Pathol. 2006;43(1):36–49.

    Article  PubMed  CAS  Google Scholar 

  36. Sun P, Yuan Y, Li A, Li B, Dai X. Cytokeratin expression during mouse embryonic and early postnatal mammary gland development. Histochem Cell Biol. 2010;133(2):213–21.

    Article  PubMed  CAS  Google Scholar 

  37. Deugnier MA, Moiseyeva EP, Thiery JP, Glukhova M. Myoepithelial cell differentiation in the developing mammary gland: progressive acquisition of smooth muscle phenotype. Dev Dyn. 1995;204(2):107–17.

    Article  PubMed  CAS  Google Scholar 

  38. Zhou J, Chehab R, Tkalcevic J, Naylor MJ, Harris J, Wilson TJ, et al. Elf5 is essential for early embryogenesis and mammary gland development during pregnancy and lactation. EMBO J. 2005;24(3):635–44.

    Article  PubMed  CAS  Google Scholar 

  39. Hennighausen L, Westphal C, Sankaran L, Pittius CW. Regulation of expression of genes for milk proteins. Biotechnology. 1991;16:65–74.

    PubMed  CAS  Google Scholar 

  40. Lindfors PH, Voutilainen M, Mikkola ML. Ectodysplasin/NF-kappaB signaling in embryonic mammary gland development. J Mammary Gland Biol Neoplasia. 2013;18(2):165–9.

    Article  PubMed  Google Scholar 

  41. Mikkola ML. TNF superfamily in skin appendage development. Cytokine Growth Factor Rev. 2008;19(3–4):219–30.

    Article  PubMed  CAS  Google Scholar 

  42. Mustonen T, Pispa J, Mikkola ML, Pummila M, Kangas AT, Pakkasjarvi L, et al. Stimulation of ectodermal organ development by Ectodysplasin-A1. Dev Biol. 2003;259(1):123–36.

    Article  PubMed  CAS  Google Scholar 

  43. Barham W, Chen L, Tikhomirov O, Onishko H, Gleaves L, Stricker TP, et al. Aberrant activation of NF-kappaB signaling in mammary epithelium leads to abnormal growth and ductal carcinoma in situ. BMC Cancer. 2015;15:647.

    Article  PubMed  Google Scholar 

  44. Mikkola ML, Millar SE. The mammary bud as a skin appendage: unique and shared aspects of development. J Mammary Gland Biol Neoplasia. 2006;11(3–4):187–203.

    Article  PubMed  Google Scholar 

  45. Veltmaat JM, Mailleux AA, Thiery JP, Bellusci S. Mouse embryonic mammogenesis as a model for the molecular regulation of pattern formation. Differentiation. 2003;71(1):1–17.

    Article  PubMed  CAS  Google Scholar 

  46. Hinck L, Silberstein GB. Key stages in mammary gland development: the mammary end bud as a motile organ. Breast Cancer Res. 2005;7(6):245–51.

    Article  PubMed  CAS  Google Scholar 

  47. Inman JL, Robertson C, Mott JD, Bissell MJ. Mammary gland development: cell fate specification, stem cells and the microenvironment. Development. 2015;142(6):1028–42.

    Article  PubMed  CAS  Google Scholar 

  48. Owens MB, Hill AD, Hopkins AM. Ductal barriers in mammary epithelium. Tissue Barriers. 2013;1(4):e25933.

    Article  PubMed  Google Scholar 

  49. Nagaoka K, Udagawa T, Richter JD. CPEB-mediated ZO-1 mRNA localization is required for epithelial tight-junction assembly and cell polarity. Nat Commun. 2012;3:675.

    Article  PubMed  Google Scholar 

  50. Hurd TW, Gao L, Roh MH, Macara IG, Margolis B. Direct interaction of two polarity complexes implicated in epithelial tight junction assembly. Nat Cell Biol. 2003;5(2):137–42.

    Article  PubMed  CAS  Google Scholar 

  51. Adriance MC, Inman JL, Petersen OW, Bissell MJ. Myoepithelial cells: good fences make good neighbors. Breast Cancer Res. 2005;7(5):190–7.

    Article  PubMed  CAS  Google Scholar 

  52. Ma TY, Iwamoto GK, Hoa NT, Akotia V, Pedram A, Boivin MA, et al. TNF-alpha-induced increase in intestinal epithelial tight junction permeability requires NF-kappa B activation. Am J Physiol Gastrointest Liver Physiol. 2004;286(3):G367–76.

    Article  PubMed  CAS  Google Scholar 

  53. Abdalkhani A, Sellers R, Gent J, Wulitich H, Childress S, Stein B, et al. Nipple connective tissue and its development: insights from the K14-PTHrP mouse. Mech Dev. 2002;115(1–2):63–77.

    Article  PubMed  CAS  Google Scholar 

  54. Foley J, Dann P, Hong J, Cosgrove J, Dreyer B, Rimm D, et al. Parathyroid hormone-related protein maintains mammary epithelial fate and triggers nipple skin differentiation during embryonic breast development. Development. 2001;128(4):513–25.

    PubMed  CAS  Google Scholar 

  55. Wysolmerski JJ, Philbrick WM, Dunbar ME, Lanske B, Kronenberg H, Broadus AE. Rescue of the parathyroid hormone-related protein knockout mouse demonstrates that parathyroid hormone-related protein is essential for mammary gland development. Development. 1998;125(7):1285–94.

    PubMed  CAS  Google Scholar 

  56. Manavathi B, Samanthapudi VS, Gajulapalli VN. Estrogen receptor coregulators and pioneer factors: the orchestrators of mammary gland cell fate and development. Front Cell Dev Biol. 2014;2:34.

    Article  PubMed  Google Scholar 

  57. Fantl V, Edwards PA, Steel JH, Vonderhaar BK, Dickson C. Impaired mammary gland development in Cyl-1(−/−) mice during pregnancy and lactation is epithelial cell autonomous. Dev Biol. 1999;212(1):1–11.

    Article  PubMed  CAS  Google Scholar 

  58. Fantl V, Stamp G, Andrews A, Rosewell I, Dickson C. Mice lacking cyclin D1 are small and show defects in eye and mammary gland development. Genes Dev. 1995;9(19):2364–72.

    Article  PubMed  CAS  Google Scholar 

  59. Sicinski P, Donaher JL, Parker SB, Li T, Fazeli A, Gardner H, et al. Cyclin D1 provides a link between development and oncogenesis in the retina and breast. Cell. 1995;82(4):621–30.

    Article  PubMed  CAS  Google Scholar 

  60. Cordero A, Pellegrini P, Sanz-Moreno A, Trinidad EM, Serra-Musach J, Deshpande C, et al. RankL impairs lactogenic differentiation through inhibition of the prolactin/Stat5 pathway at midgestation. Stem Cells. 2016;34(4):1027–39.

    Article  PubMed  CAS  Google Scholar 

  61. Sternlicht MD, Kouros-Mehr H, Lu P, Werb Z. Hormonal and local control of mammary branching morphogenesis. Differentiation. 2006;74(7):365–81.

    Article  PubMed  CAS  Google Scholar 

  62. Zeps N, Bentel JM, Papadimitriou JM, Dawkins HJ. Murine progesterone receptor expression in proliferating mammary epithelial cells during normal pubertal development and adult estrous cycle. Association with eralpha and erbeta status. J Histochem Cytochem. 1999;47(10):1323–30.

    Article  PubMed  CAS  Google Scholar 

  63. Beleut M, Rajaram RD, Caikovski M, Ayyanan A, Germano D, Choi Y, et al. Two distinct mechanisms underlie progesterone-induced proliferation in the mammary gland. Proc Natl Acad Sci U S A. 2010;107(7):2989–94.

    Article  PubMed  CAS  Google Scholar 

  64. Lee HJ, Gallego-Ortega D, Ledger A, Schramek D, Joshi P, Szwarc MM, et al. Progesterone drives mammary secretory differentiation via RankL-mediated induction of Elf5 in luminal progenitor cells. Development. 2013;140(7):1397–401.

    Article  PubMed  CAS  Google Scholar 

  65. Oakes SR, Rogers RL, Naylor MJ, Ormandy CJ. Prolactin regulation of mammary gland development. J Mammary Gland Biol Neoplasia. 2008;13(1):13–28.

    Article  PubMed  Google Scholar 

  66. Shyamala G, Chou YC, Louie SG, Guzman RC, Smith GH, Nandi S. Cellular expression of estrogen and progesterone receptors in mammary glands: regulation by hormones, development and aging. J Steroid Biochem Mol Biol. 2002;80(2):137–48.

    Article  PubMed  CAS  Google Scholar 

  67. Aupperlee MD, Smith KT, Kariagina A, Haslam SZ. Progesterone receptor isoforms A and B: temporal and spatial differences in expression during murine mammary gland development. Endocrinology. 2005;146(8):3577–88.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Elisabeth Koppmann and Ida Allabauer for excellent technical assistance.

Funding

This work was supported by a grant from the ELAN program of the University Hospital Erlangen (13–12–02-1), grants of the Swiss National Science Foundation and by project funding from Edimer Pharmaceuticals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mandy Wahlbuhl.

Ethics declarations

Conflict of Interest

P.S. is a shareholder of Edimer Pharmaceuticals. P.S. and H.S. hold patents relevant to this publication. The other authors declare that they have no conflict of interest.

Electronic supplementary material

Supplementary Fig. 1

Hormone-related alterations in Tabby mammary glands. Relative gene expression of RANKL, its receptor RANK, and the hormone receptors for progesterone (PGR), estrogen (ESR1) and prolactin (PRLR) in Tabby (black bars), Fc-EDA-treated Tabby (white bars) and wild-type (striped bars) mammary gland tissue at day L1, as measured by quantitative RT-PCR. Data are shown as mean ± SEM; P-values: not significant (p > 0.05). (PNG 57 kb)

High Resolution Image (TIF 3104 kb)

Supplementary Fig. 2

Nipple morphology scores. Representative example of (a) flat (score 1) (b) cubical (score 2) and (c) cylindrical nipples (score 3) of female mice on day 1 of lactation (L1). (PNG 450 kb)

High Resolution Image (TIF 1385 kb)

Supplementary Fig. 3

Epithelial tight junction barrier. (a-c) Immunostaining for the tight junction protein occludin (red) in mammary glands from untreated Tabby, Fc-EDA-treated Tabby and wild-type mice on day L1. Cell nuclei were stained blue with DAPI. The scale bar in a-c represents 50 μm. (PNG 644 kb)

High Resolution Image (TIF 2992 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wahlbuhl, M., Schuepbach-Mallepell, S., Kowalczyk-Quintas, C. et al. Attenuation of Mammary Gland Dysplasia and Feeding Difficulties in Tabby Mice by Fetal Therapy. J Mammary Gland Biol Neoplasia 23, 125–138 (2018). https://doi.org/10.1007/s10911-018-9399-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-018-9399-x

Keywords

Navigation