Steroid Hormones, Steroid Receptors, and Breast Cancer Stem Cells

  • Jessica Finlay-Schultz
  • Carol A. Sartorius


The ovarian hormones progesterone and estrogen play important roles in breast cancer etiology, proliferation, and treatment. Androgens may also contribute to breast cancer risk and progression. In recent years, significant advances have been made in defining the roles of these steroid hormones in stem cell homeostasis in the breast. Stem cells are potential origins of breast cancer and may dictate tumor phenotype. At least a portion of breast cancers are proposed to be driven by cancer stem cells (CSCs), cells that mimic the self-renewing and repopulating properties of normal stem cells, and can confer drug resistance. Progesterone has been identified as the critical hormone regulating normal murine mammary stem cell (MaSC) populations and normal human breast stem cells. Synthetic progestins increase human breast cancer risk; one theory speculates that this occurs through increased stem cells. Progesterone treatment also increases breast CSCs in established breast cancer cell lines. This is mediated in part through progesterone regulation of transcription factors, signal transduction pathways, and microRNAs. There is also emerging evidence that estrogens and androgens can regulate breast CSC numbers. The evolving concept that a breast CSC phenotype is dynamic and can be influenced by cell signaling and external cues emphasizes that steroid hormones could be crucial players in controlling CSC number and function. Here we review recent studies on steroid hormone regulation of breast CSCs, and discuss mechanisms by which this occurs.


Progesterone Progesterone receptor Cancer stem cells Hormone replacement therapy Breast cancer Steroid hormone 



Androgen receptor


Aldehyde dehydrogenase


Cytokeratin 5


Cancer stem cell






Epidermal growth factor receptor


Estrogen receptor (alpha)


Fluorescent activated cell sorting


Fibroblast growth factor


Hormone replacement therapy


Mammary stem cell


Mouse mammary tumor virus


Medroxyprogesterone acetate


Mucin 1


Progesterone receptor


Progesterone receptor knockout


Receptor activator of nuclear factor kappa-B


receptor activator of nuclear factor kappa-B ligand


triple negative breast cancer



This work was supported in part by grants NIH R01 CA140985 (CAS) and NIH 1F32CA177081 (JFS). The authors wish to apologize to those whose work was not referenced due to space limitations.


  1. 1.
    Beatson G. On the treatment of inoperable cases of carcinoma of the mamma: suggestions for a new method of treatment, with illustrative cases. Lancet. 1896;148(3803):162–5. doi: 10.1016/S0140-6736(01)72384-7.CrossRefGoogle Scholar
  2. 2.
    Boyd S. On oophorectomy in the treatment of cancer. Br Med J. 1897;2(1918):890–6. doi: 10.1136/bmj.2.1918.890.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Jordan VC. Tamoxifen as the first targeted long-term adjuvant therapy for breast cancer. Endocrinol Relat Cancer. 2014;21(3):R235–46. doi: 10.1530/erc-14-0092.CrossRefGoogle Scholar
  4. 4.
    Pike MC, Spicer DV, Dahmoush L, Press MF. Estrogens, progestogens, normal breast cell proliferation, and breast cancer risk. Epidemiol Rev. 1993;15(1):17–35.PubMedGoogle Scholar
  5. 5.
    Schedin P. Pregnancy-associated breast cancer and metastasis. Nat Rev Cancer. 2006;6(4):281–91. doi: 10.1038/nrc1839.PubMedCrossRefGoogle Scholar
  6. 6.
    Bernstein L. Epidemiology of endocrine-related risk factors for breast cancer. J Mammary Gland Biol Neoplasia. 2002;7(1):3–15. doi: 10.1023/A:1015714305420.PubMedCrossRefGoogle Scholar
  7. 7.
    Hankinson SE, Colditz GA, Willett WC. Towards an integrated model for breast cancer etiology: the lifelong interplay of genes, lifestyle, and hormones. Breast Cancer Res. 2004;6(5):213–8. doi: 10.1186/bcr921.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Gierisch JM, Coeytaux RR, Urrutia RP, Havrilesky LJ, Moorman PG, Lowery WJ, et al. Oral contraceptive use and risk of breast, cervical, colorectal, and endometrial cancers: a systematic review. Cancer Epidemiol Biomarkers Prev. 2013;22(11):1931–43. doi: 10.1158/1055-9965.epi-13-0298.PubMedCrossRefGoogle Scholar
  9. 9.
    Suzuki R, Orsini N, Saji S, Key TJ, Wolk A. Body weight and incidence of breast cancer defined by estrogen and progesterone receptor status--a meta-analysis. Int J Cancer. 2009;124(3):698–712. doi: 10.1002/ijc.23943.PubMedCrossRefGoogle Scholar
  10. 10.
    Joshi PA, Jackson HW, Beristain AG, Di Grappa MA, Mote PA, Clarke CL, et al. Progesterone induces adult mammary stem cell expansion. Nature. 2010;465(7299):803–7. doi: 10.1038/nature09091.PubMedCrossRefGoogle Scholar
  11. 11.
    Asselin-Labat ML, Vaillant F, Sheridan JM, Pal B, Wu D, Simpson ER, et al. Control of mammary stem cell function by steroid hormone signalling. Nature. 2010;465(7299):798–802. doi: 10.1038/nature09027.PubMedCrossRefGoogle Scholar
  12. 12.
    Graham JD, Mote PA, Salagame U, van Dijk JH, Balleine RL, Huschtscha LI, et al. DNA replication licensing and progenitor numbers are increased by progesterone in normal human breast. Endocrinology. 2009;150(7):3318–26. doi: 10.1210/en.2008-1630.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105–11. doi: 10.1038/35102167.PubMedCrossRefGoogle Scholar
  14. 14.
    Elliott A, Adams J, Al-Hajj M. The ABCs of cancer stem cell drug resistance. IDrugs. 2010;13(9):632–5.PubMedGoogle Scholar
  15. 15.
    Moore N, Lyle S. Quiescent, slow-cycling stem cell populations in cancer: a review of the evidence and discussion of significance. J Oncol. 2011;2011. doi: 10.1155/2011/396076.
  16. 16.
    Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature. 2009;458(7239):780–3. doi: 10.1038/nature07733.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Kabos P, Haughian JM, Wang X, Dye WW, Finlayson C, Elias A, et al. Cytokeratin 5 positive cells represent a steroid receptor negative and therapy resistant subpopulation in luminal breast cancers. Breast Cancer Res Treat. 2011;128(1):45–55. doi: 10.1007/s10549-010-1078-6.PubMedCrossRefGoogle Scholar
  18. 18.
    Creighton CJ, Li X, Landis M, Dixon JM, Neumeister VM, Sjolund A, et al. Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci U S A. 2009;106(33):13820–5. doi: 10.1073/pnas.0905718106.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Fillmore CM, Kuperwasser C. Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res. 2008;10(2):R25. doi: 10.1186/bcr1982.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Chaffer CL, Brueckmann I, Scheel C, Kaestli AJ, Wiggins PA, Rodrigues LO, et al. Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc Natl Acad Sci U S A. 2011;108(19):7950–5. doi: 10.1073/pnas.1102454108.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Iliopoulos D, Hirsch HA, Wang G, Struhl K. Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion. Proc Natl Acad Sci U S A. 2011;108(4):1397–402. doi: 10.1073/pnas.1018898108.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Li Y, Laterra J. Cancer stem cells: distinct entities or dynamically regulated phenotypes? Cancer Res. 2012;72(3):576–80. doi: 10.1158/0008-5472.can-11-3070.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Magee JA, Piskounova E, Morrison SJ. Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell. 2012;21(3):283–96. doi: 10.1016/j.ccr.2012.03.003.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Nguyen LV, Vanner R, Dirks P, Eaves CJ. Cancer stem cells: an evolving concept. Nat Rev Cancer. 2012;12(2):133–43. doi: 10.1038/nrc3184.PubMedGoogle Scholar
  25. 25.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100(7):3983–8. doi: 10.1073/pnas.0530291100.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Charafe-Jauffret E, Ginestier C, Iovino F, Wicinski J, Cervera N, Finetti P, et al. Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res. 2009;69(4):1302–13. doi: 10.1158/0008-5472.CAN-08-2741.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Honeth G, Bendahl PO, Ringner M, Saal LH, Gruvberger-Saal SK, Lovgren K, et al. The CD44+/CD24- phenotype is enriched in basal-like breast tumors. Breast Cancer Res. 2008;10(3):R53. doi: 10.1186/bcr2108.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Shipitsin M, Campbell LL, Argani P, Weremowicz S, Bloushtain-Qimron N, Yao J, et al. Molecular definition of breast tumor heterogeneity. Cancer Cell. 2007;11(3):259–73. doi: 10.1016/j.ccr.2007.01.013.PubMedCrossRefGoogle Scholar
  29. 29.
    Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1(5):555–67. doi: 10.1016/j.stem.2007.08.014.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Morimoto K, Kim SJ, Tanei T, Shimazu K, Tanji Y, Taguchi T, et al. Stem cell marker aldehyde dehydrogenase 1-positive breast cancers are characterized by negative estrogen receptor, positive human epidermal growth factor receptor type 2, and high Ki67 expression. Cancer Sci. 2009;100(6):1062–8. doi: 10.1111/j.1349-7006.2009.01151.x.PubMedCrossRefGoogle Scholar
  31. 31.
    Liu S, Cong Y, Wang D, Sun Y, Deng L, Liu Y, et al. Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem Cell Rep. 2014;2(1):78–91. doi: 10.1016/j.stemcr.2013.11.009.CrossRefGoogle Scholar
  32. 32.
    Lim E, Vaillant F, Wu D, Forrest NC, Pal B, Hart AH, et al. Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med. 2009;15(8):907–13. doi: 10.1038/nm.2000.PubMedCrossRefGoogle Scholar
  33. 33.
    Bocker W, Moll R, Poremba C, Holland R, Van Diest PJ, Dervan P, et al. Common adult stem cells in the human breast give rise to glandular and myoepithelial cell lineages: a new cell biological concept. Lab Invest. 2002;82(6):737–46. doi: 10.1097/01.LAB.0000017371.72714.C5.PubMedCrossRefGoogle Scholar
  34. 34.
    Boecker W, Buerger H. Evidence of progenitor cells of glandular and myoepithelial cell lineages in the human adult female breast epithelium: a new progenitor (adult stem) cell concept. Cell Prolif. 2003;36 Suppl 1:73–84. doi: 10.1046/j.1365-2184.36.s.1.7.x.PubMedCrossRefGoogle Scholar
  35. 35.
    Villadsen R, Fridriksdottir AJ, Ronnov-Jessen L, Gudjonsson T, Rank F, LaBarge MA, et al. Evidence for a stem cell hierarchy in the adult human breast. J Cell Biol. 2007;177(1):87–101. doi: 10.1083/jcb.200611114.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Sartorius CA, Harvell DM, Shen T, Horwitz KB. Progestins initiate a luminal to myoepithelial switch in estrogen-dependent human breast tumors without altering growth. Cancer Res. 2005;65(21):9779–88. doi: 10.1158/0008-5472.can-05-0505.PubMedCrossRefGoogle Scholar
  37. 37.
    Horwitz KB, Dye WW, Harrell JC, Kabos P, Sartorius CA. Rare steroid receptor-negative basal-like tumorigenic cells in luminal subtype human breast cancer xenografts. Proc Natl Acad Sci U S A. 2008;105(15):5774–9. doi: 10.1073/pnas.0706216105.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Axlund SD, Yoo BH, Rosen RB, Schaack J, Kabos P, Labarbera DV, et al. Progesterone-inducible cytokeratin 5-positive cells in luminal breast cancer exhibit progenitor properties. Horm Cancer. 2013;4(1):36–49. doi: 10.1007/s12672-012-0127-5.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Horwitz KB, McGuire WL. Specific progesterone receptors in human breast cancer. Steroids. 1975;25(4):497–505. doi: 10.1016/0039-128X(75)90027-6.PubMedCrossRefGoogle Scholar
  40. 40.
    Cui X, Schiff R, Arpino G, Osborne CK, Lee AV. Biology of progesterone receptor loss in breast cancer and its implications for endocrine therapy. J Clin Oncol. 2005;23(30):7721–35. doi: 10.1200/jco.2005.09.004.PubMedCrossRefGoogle Scholar
  41. 41.
    Knutson TP, Lange CA. Tracking progesterone receptor-mediated actions in breast cancer. Pharmacol Ther. 2013;142(1):114–25. doi: 10.1016/j.pharmthera.2013.11.010.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Kastner P, Krust A, Turcotte B, Stropp U, Tora L, Gronemeyer H, et al. Two distinct estrogen-regulated promoters generate transcripts encoding the two functionally different human progesterone receptor forms A and B. EMBO J. 1990;9(5):1603–14.PubMedCentralPubMedGoogle Scholar
  43. 43.
    Mote PA, Bartow S, Tran N, Clarke CL. Loss of co-ordinate expression of progesterone receptors A and B is an early event in breast carcinogenesis. Breast Cancer Res Treat. 2002;72(2):163–72. doi: 10.1023/A:1014820500738.PubMedCrossRefGoogle Scholar
  44. 44.
    Graham JD, Yeates C, Balleine RL, Harvey SS, Milliken JS, Bilous AM, et al. Characterization of progesterone receptor A and B expression in human breast cancer. Cancer Res. 1995;55(21):5063–8.PubMedGoogle Scholar
  45. 45.
    Beral V, Reeves G, Bull D, Green J. Breast cancer risk in relation to the interval between menopause and starting hormone therapy. J Natl Cancer Inst. 2011;103(4):296–305. doi: 10.1093/jnci/djq527.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Chlebowski RT, Anderson GL, Gass M, Lane DS, Aragaki AK, Kuller LH, et al. Estrogen plus progestin and breast cancer incidence and mortality in postmenopausal women. JAMA. 2010;304(15):1684–92. doi: 10.1001/jama.2010.1500.PubMedCrossRefGoogle Scholar
  47. 47.
    Wood CE, Branstetter D, Jacob AP, Cline JM, Register TC, Rohrbach K, et al. Progestin effects on cell proliferation pathways in the postmenopausal mammary gland. Breast Cancer Res. 2013;15(4):R62. doi: 10.1186/bcr3456.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Narod SA. Hormone replacement therapy and the risk of breast cancer. Nat Rev Clin Oncol. 2011;8(11):669–76. doi: 10.1038/nrclinonc.2011.110.PubMedCrossRefGoogle Scholar
  49. 49.
    Horwitz KB, Sartorius CA. Progestins in hormone replacement therapies reactivate cancer stem cells in women with preexisting breast cancers: a hypothesis. J Clin Endocrinol Metab. 2008;93(9):3295–8. doi: 10.1210/jc.2008-0938.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Huggins C, Moon RC, Morii S. Extinction of experimental mammary cancer. I. Estradiol-17beta and progesterone. Proc Natl Acad Sci U S A. 1962;48:379–86. doi: 10.1073/pnas.48.3.379.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Lydon JP, Ge G, Kittrell FS, Medina D, O’Malley BW. Murine mammary gland carcinogenesis is critically dependent on progesterone receptor function. Cancer Res. 1999;59(17):4276–84.PubMedGoogle Scholar
  52. 52.
    Santen RJ, Song Y, Yue W, Wang JP, Heitjan DF. Effects of menopausal hormonal therapy on occult breast tumors. J Steroid Biochem Mol Biol. 2013;137:150–6. doi: 10.1016/j.jsbmb.2013.05.008.PubMedCrossRefGoogle Scholar
  53. 53.
    Cittelly DM, Finlay-Schultz J, Howe EN, Spoelstra NS, Axlund SD, Hendricks P, et al. Progestin suppression of miR-29 potentiates dedifferentiation of breast cancer cells via KLF4. Oncogene. 2013;32(20):2555–64. doi: 10.1038/onc.2012.275.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Finlay-Schultz J, Cittelly DM, Hendricks P, Patel P, Kabos P, Jacobsen BM, et al. Progesterone downregulation of miR-141 contributes to expansion of stem-like breast cancer cells through maintenance of progesterone receptor and Stat5a. Oncogene. 2014. doi: 10.1038/onc.2014.298.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Hilton HN, Santucci N, Silvestri A, Kantimm S, Huschtscha LI, Graham JD, et al. Progesterone stimulates progenitor cells in normal human breast and breast cancer cells. Breast Cancer Res Treat. 2014. doi: 10.1007/s10549-013-2817-2.PubMedCentralGoogle Scholar
  56. 56.
    Vares G, Cui X, Wang B, Nakajima T, Nenoi M. Generation of breast cancer stem cells by steroid hormones in irradiated human mammary cell lines. PLoS One. 2013;8(10), e77124. doi: 10.1371/journal.pone.0077124.PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Jambal P, Badtke MM, Harrell JC, Borges VF, Post MD, Sollender GE, et al. Estrogen switches pure mucinous breast cancer to invasive lobular carcinoma with mucinous features. Breast Cancer Res Treat. 2013;137(2):431–48. doi: 10.1007/s10549-012-2377-x.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Kabos P, Finlay-Schultz J, Li C, Kline E, Finlayson C, Wisell J, et al. Patient-derived luminal breast cancer xenografts retain hormone receptor heterogeneity and help define unique estrogen-dependent gene signatures. Breast Cancer Res Treat. 2012;135(2):415–32. doi: 10.1007/s10549-012-2164-8.PubMedCrossRefGoogle Scholar
  59. 59.
    Yoo BH, Axlund SD, Kabos P, Reid BG, Schaack J, Sartorius CA, et al. A high-content assay to identify small-molecule modulators of a cancer stem cell population in luminal breast cancer. J Biomol Screen. 2012;17(9):1211–20. doi: 10.1177/1087057112452138.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Fournier A, Berrino F, Clavel-Chapelon F. Unequal risks for breast cancer associated with different hormone replacement therapies: results from the E3N cohort study. Breast Cancer Res Treat. 2008;107(1):103–11. doi: 10.1007/s10549-007-9523-x.PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Ghatge RP, Jacobsen BM, Schittone SA, Horwitz KB. The progestational and androgenic properties of medroxyprogesterone acetate: gene regulatory overlap with dihydrotestosterone in breast cancer cells. Breast Cancer Res. 2005;7(6):R1036–50. doi: 10.1186/bcr1340.PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    DeSombre ER, Smith S, Block GE, Ferguson DJ, Jensen EV. Prediction of breast cancer response to endocrine therapy. Cancer Chemother Rep. 1974;58(4):513–9.PubMedGoogle Scholar
  63. 63.
    Osborne CK, Schiff R. Estrogen-receptor biology: continuing progress and therapeutic implications. J Clin Oncol. 2005;23(8):1616–22. doi: 10.1200/jco.2005.10.036.PubMedCrossRefGoogle Scholar
  64. 64.
    Osborne CK, Schiff R. Mechanisms of endocrine resistance in breast cancer. Annu Rev Med. 2011;62:233–47. doi: 10.1146/annurev-med-070909-182917.PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747–52. doi: 10.1038/35021093.PubMedCrossRefGoogle Scholar
  66. 66.
    Clarke RB, Howell A, Potten CS, Anderson E. Dissociation between steroid receptor expression and cell proliferation in the human breast. Cancer Res. 1997;57(22):4987–91.PubMedGoogle Scholar
  67. 67.
    Goodman CR, Sato T, Peck AR, Girondo MA, Yang N, Liu C, et al. Steroid induction of therapy-resistant cytokeratin-5-positive cells in estrogen receptor-positive breast cancer through a BCL6-dependent mechanism. Oncogene. 2015. doi: 10.1038/onc.2015.193.PubMedGoogle Scholar
  68. 68.
    Fillmore CM, Gupta PB, Rudnick JA, Caballero S, Keller PJ, Lander ES, et al. Estrogen expands breast cancer stem-like cells through paracrine FGF/Tbx3 signaling. Proc Natl Acad Sci U S A. 2010;107(50):21737–42. doi: 10.1073/pnas.1007863107.PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Zhou X, Wang S, Wang Z, Feng X, Liu P, Lv XB, et al. Estrogen regulates Hippo signaling via GPER in breast cancer. J Clin Invest. 2015;125(5):2123–35. doi: 10.1172/jci79573.PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Wei W, Chen ZJ, Zhang KS, Yang XL, Wu YM, Chen XH, et al. The activation of G protein-coupled receptor 30 (GPR30) inhibits proliferation of estrogen receptor-negative breast cancer cells in vitro and in vivo. Cell Death Dis. 2014;5, e1428. doi: 10.1038/cddis.2014.398.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Cordenonsi M, Zanconato F, Azzolin L, Forcato M, Rosato A, Frasson C, et al. The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell. 2011;147(4):759–72. doi: 10.1016/j.cell.2011.09.048.PubMedCrossRefGoogle Scholar
  72. 72.
    Bartucci M, Dattilo R, Moriconi C, Pagliuca A, Mottolese M, Federici G, et al. TAZ is required for metastatic activity and chemoresistance of breast cancer stem cells. Oncogene. 2015;34(6):681–90. doi: 10.1038/onc.2014.5.PubMedCrossRefGoogle Scholar
  73. 73.
    Wang Z, Zhang X, Shen P, Loggie BW, Chang Y, Deuel TF. Identification, cloning, and expression of human estrogen receptor-alpha36, a novel variant of human estrogen receptor-alpha66. Biochem Biophys Res Commun. 2005;336(4):1023–7. doi: 10.1016/j.bbrc.2005.08.226.PubMedCrossRefGoogle Scholar
  74. 74.
    Deng H, Yin L, Zhang XT, Liu LJ, Wang ML, Wang ZY. ER-alpha variant ER-alpha36 mediates antiestrogen resistance in ER-positive breast cancer stem/progenitor cells. J Steroid Biochem Mol Biol. 2014;144 Pt B:417–26. doi: 10.1016/j.jsbmb.2014.08.017.PubMedCrossRefGoogle Scholar
  75. 75.
    Deng H, Zhang XT, Wang ML, Zheng HY, Liu LJ, Wang ZY. ER-alpha36-mediated rapid estrogen signaling positively regulates ER-positive breast cancer stem/progenitor cells. PLoS One. 2014;9(2), e88034. doi: 10.1371/journal.pone.0088034.PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Kang L, Guo Y, Zhang X, Meng J, Wang ZY. A positive cross-regulation of HER2 and ER-alpha36 controls ALDH1 positive breast cancer cells. J Steroid Biochem Mol Biol. 2011;127(3–5):262–8. doi: 10.1016/j.jsbmb.2011.08.011.PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Ithimakin S, Day KC, Malik F, Zen Q, Dawsey SJ, Bersano-Begey TF, et al. HER2 drives luminal breast cancer stem cells in the absence of HER2 amplification: implications for efficacy of adjuvant trastuzumab. Cancer Res. 2013;73(5):1635–46. doi: 10.1158/0008-5472.can-12-3349.PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Piva M, Domenici G, Iriondo O, Rabano M, Simoes BM, Comaills V, et al. Sox2 promotes tamoxifen resistance in breast cancer cells. EMBO Mol Med. 2014;6(1):66–79. doi: 10.1002/emmm.201303411.PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Collins LC, Cole KS, Marotti JD, Hu R, Schnitt SJ, Tamimi RM. Androgen receptor expression in breast cancer in relation to molecular phenotype: results from the Nurses’ Health Study. Mod Pathol. 2011;24(7):924–31. doi: 10.1038/modpathol.2011.54.PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Niemeier LA, Dabbs DJ, Beriwal S, Striebel JM, Bhargava R. Androgen receptor in breast cancer: expression in estrogen receptor-positive tumors and in estrogen receptor-negative tumors with apocrine differentiation. Mod Pathol. 2010;23(2):205–12. doi: 10.1038/modpathol.2009.159.PubMedCrossRefGoogle Scholar
  81. 81.
    Guedj M, Marisa L, de Reynies A, Orsetti B, Schiappa R, Bibeau F, et al. A refined molecular taxonomy of breast cancer. Oncogene. 2012;31(9):1196–206. doi: 10.1038/onc.2011.301.PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Park S, Koo JS, Kim MS, Park HS, Lee JS, Kim SI, et al. Androgen receptor expression is significantly associated with better outcomes in estrogen receptor-positive breast cancers. Ann Oncol. 2011;22(8):1755–62. doi: 10.1093/annonc/mdq678.PubMedCrossRefGoogle Scholar
  83. 83.
    Tsang JY, Ni YB, Chan SK, Shao MM, Law BK, Tan PH, et al. Androgen receptor expression shows distinctive significance in ER positive and negative breast cancers. Ann Surg Oncol. 2014;21(7):2218–28. doi: 10.1245/s10434-014-3629-2.PubMedCrossRefGoogle Scholar
  84. 84.
    Hu R, Dawood S, Holmes MD, Collins LC, Schnitt SJ, Cole K, et al. Androgen receptor expression and breast cancer survival in postmenopausal women. Clin Cancer Res. 2011;17(7):1867–74. doi: 10.1158/1078-0432.ccr-10-2021.PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.
    Kuenen-Boumeester V, Van der Kwast TH, Claassen CC, Look MP, Liem GS, Klijn JG, et al. The clinical significance of androgen receptors in breast cancer and their relation to histological and cell biological parameters. Eur J Cancer. 1996;32A(9):1560–5. doi: 10.1016/0959-8049(96)00112-8.PubMedCrossRefGoogle Scholar
  86. 86.
    Panet-Raymond V, Gottlieb B, Beitel LK, Pinsky L, Trifiro MA. Interactions between androgen and estrogen receptors and the effects on their transactivational properties. Mol Cell Endocrinol. 2000;167(1–2):139–50. doi: 10.1016/S0303-7207(00)00279-3.PubMedCrossRefGoogle Scholar
  87. 87.
    Rechoum Y, Rovito D, Iacopetta D, Barone I, Ando S, Weigel NL, et al. AR collaborates with ERalpha in aromatase inhibitor-resistant breast cancer. Breast Cancer Res Treat. 2014. doi: 10.1007/s10549-014-3082-8.Google Scholar
  88. 88.
    Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011. doi: 10.1172/jci45014.PubMedCentralPubMedGoogle Scholar
  89. 89.
    Cochrane DR, Bernales S, Jacobsen BM, Cittelly DM, Howe EN, D’Amato NC, et al. Role of the androgen receptor in breast cancer and preclinical analysis of enzalutamide. Breast Cancer Res. 2014;16(1):R7. doi: 10.1186/bcr3599.PubMedCentralPubMedCrossRefGoogle Scholar
  90. 90.
    Barton VN, D’Amato NC, Gordon MA, Lind HT, Spoelstra NS, Babbs BL, et al. Multiple molecular subtypes of triple-negative breast cancer critically rely on androgen receptor and respond to enzalutamide in vivo. Mol Cancer Ther. 2015. doi: 10.1158/1535-7163.mct-14-0926.PubMedCentralPubMedGoogle Scholar
  91. 91.
    Chia K, O’Brien M, Brown M, Lim E. Targeting the androgen receptor in breast cancer. Curr Oncol Rep. 2015;17(2):427. doi: 10.1007/s11912-014-0427-8.CrossRefGoogle Scholar
  92. 92.
    Nordeen SK, Kuhnel B, Lawler-Heavner J, Barber DA, Edwards DP. A quantitative comparison of dual control of a hormone response element by progestins and glucocorticoids in the same cell line. Mol Endocrinol. 1989;3(8):1270–8. doi: 10.1210/mend-3-8-1270.PubMedCrossRefGoogle Scholar
  93. 93.
    Barton VN, Richer JK. Androgen Receptor Biology in Triple Negative Breast Cancer: a Case for Classification as AR+ or Quadruple Negative Disease. 2015.Google Scholar
  94. 94.
    Bentel JM, Birrell SN, Pickering MA, Holds DJ, Horsfall DJ, Tilley WD. Androgen receptor agonist activity of the synthetic progestin, medroxyprogesterone acetate, in human breast cancer cells. Mol Cell Endocrinol. 1999;154(1–2):11–20. doi: 10.1016/S0303-7207(99)00109-4.PubMedCrossRefGoogle Scholar
  95. 95.
    Bullock LP, Bardin CW, Sherman MR. Androgenic, antiandrogenic, and synandrogenic actions of progestins: role of steric and allosteric interactions with androgen receptors. Endocrinology. 1978;103(5):1768–82. doi: 10.1210/endo-103-5-1768.PubMedCrossRefGoogle Scholar
  96. 96.
    Fournier A, Berrino F, Riboli E, Avenel V, Clavel-Chapelon F. Breast cancer risk in relation to different types of hormone replacement therapy in the E3N-EPIC cohort. Int J Cancer. 2005;114(3):448–54. doi: 10.1002/ijc.20710.PubMedCrossRefGoogle Scholar
  97. 97.
    Fournier A, Fabre A, Mesrine S, Boutron-Ruault MC, Berrino F, Clavel-Chapelon F. Use of different postmenopausal hormone therapies and risk of histology- and hormone receptor-defined invasive breast cancer. J Clin Oncol. 2008;26(8):1260–8. doi: 10.1200/jco.2007.13.4338.PubMedCentralPubMedCrossRefGoogle Scholar
  98. 98.
    Peters AA, Buchanan G, Ricciardelli C, Bianco-Miotto T, Centenera MM, Harris JM, et al. Androgen receptor inhibits estrogen receptor-alpha activity and is prognostic in breast cancer. Cancer Res. 2009;69(15):6131–40. doi: 10.1158/0008-5472.can-09-0452.PubMedCrossRefGoogle Scholar
  99. 99.
    McNamara KM, Moore NL, Hickey TE, Sasano H, Tilley WD. Complexities of androgen receptor signalling in breast cancer. Endocrinol Relat Cancer. 2014;21(4):T161–81. doi: 10.1530/erc-14-0243.CrossRefGoogle Scholar
  100. 100.
    Clarke CL, Graham JD. Non-overlapping progesterone receptor cistromes contribute to cell-specific transcriptional outcomes. PLoS One. 2012;7(4), e35859. doi: 10.1371/journal.pone.0035859.PubMedCentralPubMedCrossRefGoogle Scholar
  101. 101.
    Haughian JM, Pinto MP, Harrell JC, Bliesner BS, Joensuu KM, Dye WW, et al. Maintenance of hormone responsiveness in luminal breast cancers by suppression of Notch. Proc Natl Acad Sci U S A. 2012;109(8):2742–7. doi: 10.1073/pnas.1106509108.PubMedCentralPubMedCrossRefGoogle Scholar
  102. 102.
    Faivre EJ, Lange CA. Progesterone receptors upregulate Wnt-1 to induce epidermal growth factor receptor transactivation and c-Src-dependent sustained activation of Erk1/2 mitogen-activated protein kinase in breast cancer cells. Mol Cell Biol. 2007;27(2):466–80. doi: 10.1128/mcb.01539-06.PubMedCentralPubMedCrossRefGoogle Scholar
  103. 103.
    Daniel AR, Qiu M, Faivre EJ, Ostrander JH, Skildum A, Lange CA. Linkage of progestin and epidermal growth factor signaling: phosphorylation of progesterone receptors mediates transcriptional hypersensitivity and increased ligand-independent breast cancer cell growth. Steroids. 2007;72(2):188–201. doi: 10.1016/j.steroids.2006.11.009.PubMedCentralPubMedCrossRefGoogle Scholar
  104. 104.
    Cheang MC, Voduc D, Bajdik C, Leung S, McKinney S, Chia SK, et al. Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype. Clin Cancer Res. 2008;14(5):1368–76. doi: 10.1158/1078-0432.ccr-07-1658.PubMedCrossRefGoogle Scholar
  105. 105.
    Korkaya H, Paulson A, Iovino F, Wicha MS. HER2 regulates the mammary stem/progenitor cell population driving tumorigenesis and invasion. Oncogene. 2008;27(47):6120–30. doi: 10.1038/onc.2008.207.PubMedCentralPubMedCrossRefGoogle Scholar
  106. 106.
    Knutson TP, Daniel AR, Fan D, Silverstein KA, Covington KR, Fuqua SA, et al. Phosphorylated and sumoylation-deficient progesterone receptors drive proliferative gene signatures during breast cancer progression. Breast Cancer Res. 2012;14(3):R95. doi: 10.1186/bcr3211.PubMedCentralPubMedCrossRefGoogle Scholar
  107. 107.
    Sato T, Tran TH, Peck AR, Girondo MA, Liu C, Goodman CR, et al. Prolactin suppresses a progestin-induced CK5-positive cell population in luminal breast cancer through inhibition of progestin-driven BCL6 expression. Oncogene. 2014;33(17):2215–24. doi: 10.1038/onc.2013.172.PubMedCentralPubMedCrossRefGoogle Scholar
  108. 108.
    Tran TH, Utama FE, Lin J, Yang N, Sjolund AB, Ryder A, et al. Prolactin inhibits BCL6 expression in breast cancer through a Stat5a-dependent mechanism. Cancer Res. 2010;70(4):1711–21. doi: 10.1158/0008-5472.can-09-2314.PubMedCentralPubMedCrossRefGoogle Scholar
  109. 109.
    Liu R, Zhou Z, Zhao D, Chen C. The induction of KLF5 transcription factor by progesterone contributes to progesterone-induced breast cancer cell proliferation and dedifferentiation. Mol Endocrinol. 2011;25(7):1137–44. doi: 10.1210/me.2010-0497.PubMedCrossRefGoogle Scholar
  110. 110.
    Izzo F, Mercogliano F, Venturutti L, Tkach M, Inurrigarro G, Schillaci R, et al. Progesterone receptor activation downregulates GATA3 by transcriptional repression and increased protein turnover promoting breast tumor growth. Breast Cancer Res. 2014;16(6):491. doi: 10.1186/s13058-014-0491-x.PubMedCentralPubMedCrossRefGoogle Scholar
  111. 111.
    Anzano MA, Byers SW, Smith JM, Peer CW, Mullen LT, Brown CC, et al. Prevention of breast cancer in the rat with 9-cis-retinoic acid as a single agent and in combination with tamoxifen. Cancer Res. 1994;54(17):4614–7.PubMedGoogle Scholar
  112. 112.
    Clarke CL, Graham J, Roman SD, Sutherland RL. Direct transcriptional regulation of the progesterone receptor by retinoic acid diminishes progestin responsiveness in the breast cancer cell line T-47D. J Biol Chem. 1991;266(28):18969–75.PubMedGoogle Scholar
  113. 113.
    Clarke CL, Roman SD, Graham J, Koga M, Sutherland RL. Progesterone receptor regulation by retinoic acid in the human breast cancer cell line T-47D. J Biol Chem. 1990;265(21):12694–700.PubMedGoogle Scholar
  114. 114.
    Klinge CM. miRNAs regulated by estrogens, tamoxifen, and endocrine disruptors and their downstream gene targets. Mol Cell Endocrinol. 2015. doi: 10.1016/j.mce.2015.01.035.PubMedGoogle Scholar
  115. 115.
    Cochrane DR, Jacobsen BM, Connaghan KD, Howe EN, Bain DL, Richer JK. Progestin regulated miRNAs that mediate progesterone receptor action in breast cancer. Mol Cell Endocrinol. 2012;355(1):15–24. doi: 10.1016/j.mce.2011.12.020.PubMedCrossRefGoogle Scholar
  116. 116.
    Tessel MA, Krett NL, Rosen ST. Steroid receptor and microRNA regulation in cancer. Curr Opin Oncol. 2010;22(6):592–7. doi: 10.1097/CCO.0b013e32833ea80c.PubMedCrossRefGoogle Scholar
  117. 117.
    Fletcher CE, Dart DA, Bevan CL. Interplay between steroid signalling and microRNAs: implications for hormone-dependent cancers. Endocrinol Relat Cancer. 2014;21(5):R409–29. doi: 10.1530/erc-14-0208.CrossRefGoogle Scholar
  118. 118.
    Chou J, Lin JH, Brenot A, Kim JW, Provot S, Werb Z. GATA3 suppresses metastasis and modulates the tumour microenvironment by regulating microRNA-29b expression. Nat Cell Biol. 2013;15(2):201–13. doi: 10.1038/ncb2672.PubMedCentralPubMedCrossRefGoogle Scholar
  119. 119.
    Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P, Qian D, et al. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell. 2009;138(3):592–603. doi: 10.1016/j.cell.2009.07.011.PubMedCentralPubMedCrossRefGoogle Scholar
  120. 120.
    Bussing I, Slack FJ, Grosshans H. let-7 microRNAs in development, stem cells and cancer. Trends Mol Med. 2008;14(9):400–9. doi: 10.1016/j.molmed.2008.07.001.PubMedCrossRefGoogle Scholar
  121. 121.
    Di Leva G, Gasparini P, Piovan C, Ngankeu A, Garofalo M, Taccioli C, et al. MicroRNA cluster 221–222 and estrogen receptor alpha interactions in breast cancer. J Natl Cancer Inst. 2010;102(10):706–21. doi: 10.1093/jnci/djq102.PubMedCentralPubMedCrossRefGoogle Scholar
  122. 122.
    Cochrane DR, Howe EN, Spoelstra NS, Richer JK. Loss of miR-200c: a marker of aggressiveness and chemoresistance in female reproductive cancers. J Oncol. 2010;2010:821717. doi: 10.1155/2010/821717.PubMedCentralPubMedCrossRefGoogle Scholar
  123. 123.
    Lyu S, Yu Q, Ying G, Wang S, Wang Y, Zhang J, et al. Androgen receptor decreases CMYC and KRAS expression by upregulating let-7a expression in ER-, PR-, AR+ breast cancer. Int J Oncol. 2014;44(1):229–37. doi: 10.3892/ijo.2013.2151.PubMedCrossRefGoogle Scholar
  124. 124.
    Nakano K, Miki Y, Hata S, Ebata A, Takagi K, McNamara KM, et al. Identification of androgen-responsive microRNAs and androgen-related genes in breast cancer. Anticancer Res. 2013;33(11):4811–9.PubMedGoogle Scholar
  125. 125.
    Reid BG, Jerjian T, Patel P, Zhou Q, Yoo BH, Kabos P, et al. Live multicellular tumor spheroid models for high-content imaging and screening in cancer drug discovery. Curr Chem Genomics Transl Med. 2014;8 Suppl 1:27–35. doi: 10.2174/2213988501408010027.PubMedCentralPubMedCrossRefGoogle Scholar
  126. 126.
    Schramek D, Leibbrandt A, Sigl V, Kenner L, Pospisilik JA, Lee HJ, et al. Osteoclast differentiation factor RANKL controls development of progestin-driven mammary cancer. Nature. 2010;468(7320):98–102. doi: 10.1038/nature09387.PubMedCentralPubMedCrossRefGoogle Scholar
  127. 127.
    Gonzalez-Suarez E, Jacob AP, Jones J, Miller R, Roudier-Meyer MP, Erwert R, et al. RANK ligand mediates progestin-induced mammary epithelial proliferation and carcinogenesis. Nature. 2010;468(7320):103–7. doi: 10.1038/nature09495.PubMedCrossRefGoogle Scholar
  128. 128.
    Rajaram RD, Buric D, Caikovski M, Ayyanan A, Rougemont J, Shan J, et al. Progesterone and Wnt4 control mammary stem cells via myoepithelial crosstalk. EMBO J. 2015;34(5):641–52. doi: 10.15252/embj.201490434.PubMedCrossRefGoogle Scholar
  129. 129.
    Shiah YJ, Tharmapalan P, Casey AE, Joshi PA, McKee TD, Jackson HW, et al. A progesterone-CXCR4 axis controls mammary progenitor cell fate in the adult gland. Stem Cell Rep. 2015;4(3):313–22. doi: 10.1016/j.stemcr.2015.01.011.CrossRefGoogle Scholar
  130. 130.
    Tanos T, Sflomos G, Echeverria PC, Ayyanan A, Gutierrez M, Delaloye JF, et al. Progesterone/RANKL is a major regulatory axis in the human breast. Sci Transl Med. 2013;5(182):182ra55. doi: 10.1126/scitranslmed.3005654.PubMedCrossRefGoogle Scholar
  131. 131.
    Richer JK, Jacobsen BM, Manning NG, Abel MG, Wolf DM, Horwitz KB. Differential gene regulation by the two progesterone receptor isoforms in human breast cancer cells. J Biol Chem. 2002;277(7):5209–18. doi: 10.1074/jbc.M110090200.PubMedCrossRefGoogle Scholar
  132. 132.
    Jacobsen BM, Schittone SA, Richer JK, Horwitz KB. Progesterone-independent effects of human progesterone receptors (PRs) in estrogen receptor-positive breast cancer: PR isoform-specific gene regulation and tumor biology. Mol Endocrinol. 2005;19(3):574–87. doi: 10.1210/me.2004-0287.PubMedCrossRefGoogle Scholar
  133. 133.
    Palafox M, Ferrer I, Pellegrini P, Vila S, Hernandez-Ortega S, Urruticoechea A, et al. RANK induces epithelial-mesenchymal transition and stemness in human mammary epithelial cells and promotes tumorigenesis and metastasis. Cancer Res. 2012;72(11):2879–88. doi: 10.1158/0008-5472.can-12-0044.PubMedCrossRefGoogle Scholar
  134. 134.
    Lombardi S, Honeth G, Ginestier C, Shinomiya I, Marlow R, Buchupalli B, et al. Growth hormone is secreted by normal breast epithelium upon progesterone stimulation and increases proliferation of stem/progenitor cells. Stem Cell Rep. 2014;2(6):780–93. doi: 10.1016/j.stemcr.2014.05.005.CrossRefGoogle Scholar
  135. 135.
    Ablett MP, O’Brien CS, Sims AH, Farnie G, Clarke RB. A differential role for CXCR4 in the regulation of normal versus malignant breast stem cell activity. Oncotarget. 2014;5(3):599–612.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of PathologyUniversity of Colorado Anschutz Medical CampusAuroraUSA

Personalised recommendations