Impact of Progesterone on Stem/Progenitor Cells in the Human Breast

Article

Abstract

The epithelium of the human breast is made up of a branching ductal-lobular system, which is lined by a single layer of luminal cells surrounded by a contractile basal cell layer. The co-ordinated development of stem/progenitor cells into these luminal and basal cells is fundamentally important for breast morphogenesis. The ovarian steroid hormone, progesterone, is critical in driving proliferation and normal breast development, yet progesterone analogues have also been shown to be a major driver of breast cancer risk. Studies in recent years have revealed an important role for progesterone in stimulating the mammary stem cell compartment in the mouse mammary gland, and growing evidence supports the notion that progesterone also stimulates progenitor cells in both the normal human breast and in breast cancer cells. As changes in cell type composition are one of the hallmark features of breast cancer progression, these observations have critical implications in discerning the mechanisms of how progesterone increases breast cancer risk. This review summarises recent work regarding the impact of progesterone action on the stem/progenitor cell compartment of the human breast.

Keywords

Progesterone Breast cancer Human breast Progenitor Stem cell 

Abbreviations

ALDH

Aldehyde dehydrogenase

CK5

Cytokeratin-5

CK8

Cytokeratin-8

CK14

Cytokeratin-14

CSC

Cancer stem cell

DLL-1

Delta-like 1

DLL-3

Delta-like 3

E

Estrogen

ER

Estrogen receptor

GH

Growth hormone

GHR

Growth hormone receptor

IF

Immunofluorescence

HRT

Hormone replacement therapy

LRECs

Label-retaining epithelial cells

miRNA

microRNA

MPA

Medroxyprogesterone acetate

P

Progesterone

PR

Progesterone receptor

RANKL

Receptor activator of nuclear factor-kB ligand

SMA

Smooth muscle actin

Notes

Acknowledgments

HNH is supported by a Postdoctoral Fellowship co-funded by the Cure Cancer Australia Foundation and the National Breast Cancer Foundation. CLC is a research fellow of the National Health and Medical Research Council of Australia.

References

  1. 1.
    Lydon JP, Ge G, Kittrell FS, Medina D, O’Malley BW. Murine mammary gland carcinogenesis is critically dependent on progesterone receptor function. Cancer Res. 1999;59(17):4276–84.PubMedGoogle Scholar
  2. 2.
    Feinleib M. Breast cancer and artificial menopause: a cohort study. J Natl Cancer Inst. 1968;41(2):315–29.PubMedGoogle Scholar
  3. 3.
    Trichopoulos D, MacMahon B, Cole P. Menopause and breast cancer risk. J Natl Cancer Inst. 1972;48(3):605–13.PubMedGoogle Scholar
  4. 4.
    Brisken C. Progesterone signalling in breast cancer: a neglected hormone coming into the limelight. Nat Rev Cancer. 2013;13(6):385–96.CrossRefPubMedGoogle Scholar
  5. 5.
    Collaborative Group on Hormonal Factors in Breast Cancer. Menarche, menopause, and breast cancer risk: individual participant meta-analysis, including 118 964 women with breast cancer from 117 epidemiological studies. Lancet Oncol. 2012;13(11):1141–51.PubMedCentralCrossRefGoogle Scholar
  6. 6.
    Hunter DJ, Colditz GA, Hankinson SE, Malspeis S, Spiegelman D, Chen W, et al. Oral contraceptive use and breast cancer: a prospective study of young women. Cancer Epidemiol Biomarkers Prev. 2010;19(10):2496–502.PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Beral V, Reeves G, Bull D, Green J. Breast cancer risk in relation to the interval between menopause and starting hormone therapy. J Natl Cancer Inst. 2011;103(4):296–305.PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Chlebowski RT, Manson JE, Anderson GL, Cauley JA, Aragaki AK, Stefanick ML, et al. Estrogen plus progestin and breast cancer incidence and mortality in the women’s health initiative observational study. J Natl Cancer Inst. 2013;105(8):526–35.PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Charlton BM, Rich-Edwards JW, Colditz GA, Missmer SA, Rosner BA, Hankinson SE, et al. Oral contraceptive use and mortality after 36 years of follow-up in the Nurses’ Health Study: prospective cohort study. BMJ. 2014;349.Google Scholar
  10. 10.
    Fernandez-Valdivia R, Mukherjee A, Mulac-Jericevic B, Conneely OM, DeMayo FJ, Amato P, et al. Revealing progesterone’s role in uterine and mammary gland biology: insights from the mouse. Semin Reprod Med. 2005;23(1):22–37.CrossRefPubMedGoogle Scholar
  11. 11.
    Pan H, Deng Y, Pollard JW. Progesterone blocks estrogen-induced DNA synthesis through the inhibition of replication licensing. Proc Natl Acad Sci U S A. 2006;103(38):14021–6.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Lydon JP, DeMayo FJ, Funk CR, Mani SK, Hughes AR, Montgomery CAJ, et al. Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Dev. 1995;9(18):2266–78.CrossRefPubMedGoogle Scholar
  13. 13.
    Brisken C, O’Malley B. Hormone action in the mammary gland. Cold Spring Harb Perspect Biol. 2010;2(12):a003178.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Howard BA, Gusterson BA. Human breast development. J Mammary Gland Biol Neoplasia. 2000;5(2):119–37.CrossRefPubMedGoogle Scholar
  15. 15.
    Visvader JE. Keeping abreast of the mammary epithelial hierarchy and breast tumorigenesis. Genes Dev. 2009;23(22):2563–77.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Polyak K, Hu M. Do myoepithelial cells hold the key for breast tumor progression? J Mammary Gland Biol Neoplasia. 2005;10(3):231–47.CrossRefPubMedGoogle Scholar
  17. 17.
    Abd El-Rehim DM, Pinder SE, Paish CE, Bell J, Blamey RW, Robertson JF, et al. Expression of luminal and basal cytokeratins in human breast carcinoma. J Pathol. 2004;203(2):661–71.CrossRefPubMedGoogle Scholar
  18. 18.
    Taylor-Papadimitriou J, Stampfer M, Bartek J, Lewis A, Boshell M, Lane EB, et al. Keratin expression in human mammary epithelial cells cultured from normal and malignant tissue: relation to in vivo phenotypes and influence of medium. J Cell Sci. 1989;94(Pt 3):403–13.PubMedGoogle Scholar
  19. 19.
    Petersen OW, Polyak K. Stem cells in the human breast. Cold Spring Harb Perspect Biol. 2010;2(5):a003160.PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Hilton HN, Kantimm S, Graham JD, Clarke CL. Changed lineage composition is an early event in breast carcinogenesis. Histol Histopathol. 2013;28(9):1197–204.PubMedGoogle Scholar
  21. 21.
    Visvader JE. Cells of origin in cancer. Nature. 2011;469(7330):314–22.CrossRefPubMedGoogle Scholar
  22. 22.
    Skibinski A, Kuperwasser C. The origin of breast tumor heterogeneity. Oncogene. 2015. doi: 10.1038/onc.2014.475
  23. 23.
    Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105–11.CrossRefPubMedGoogle Scholar
  24. 24.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100(7):3983–8.PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, et al. ALDH1 Is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1(5):555–67.PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Ghebeh H, Sleiman G, Manogaran P, Al-Mazrou A, Barhoush E, Al-Mohanna F, et al. Profiling of normal and malignant breast tissue show CD44high/CD24low phenotype as a predominant stem/progenitor marker when used in combination with Ep-CAM/CD49f markers. BMC Cancer. 2013;13(1):289.PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Villadsen R, Fridriksdottir AJ, Rønnov-Jessen L, Gudjonsson T, Rank F, LaBarge MA, et al. Evidence for a stem cell hierarchy in the adult human breast. J Cell Biol. 2007;177(1):87–101.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Raouf A, Zhao Y, To K, Stingl J, Delaney A, Barbara M, et al. Transcriptome analysis of the normal human mammary cell commitment and differentiation process. Cell Stem Cell. 2008;3(1):109–18.CrossRefPubMedGoogle Scholar
  29. 29.
    Nakshatri H, Srour EF, Badve S. Breast cancer stem cells and intrinsic subtypes: controversies rage on. Curr Stem Cell Res Ther. 2009;4(1):50–60.CrossRefPubMedGoogle Scholar
  30. 30.
    Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML, et al. Generation of a functional mammary gland from a single stem cell. Nature. 2006;439(7072):84–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Stingl J, Eirew P, Ricketson I, Shackleton M, Vaillant F, Choi D, et al. Purification and unique properties of mammary epithelial stem cells. Nature. 2006;439(7079):993–7.PubMedGoogle Scholar
  32. 32.
    Eirew P, Stingl J, Raouf A, Turashvili G, Aparicio S, Emerman JT, et al. A method for quantifying normal human mammary epithelial stem cells with in vivo regenerative ability. Nat Med. 2008;14(12):1384–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Van Keymeulen A, Blanpain C. Tracing epithelial stem cells during development, homeostasis, and repair. J Cell Biol. 2012;197(5):575–84.PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    van Amerongen R, Bowman Angela N, Nusse R. Developmental stage and time dictate the fate of wnt/β-catenin-responsive stem cells in the mammary gland. Cell Stem Cell. 2012;11(3):387–400.CrossRefPubMedGoogle Scholar
  35. 35.
    Van Keymeulen A, Rocha AS, Ousset M, Beck B, Bouvencourt G, Rock J, et al. Distinct stem cells contribute to mammary gland development and maintenance. Nature. 2011;479(7372):189–93.CrossRefPubMedGoogle Scholar
  36. 36.
    Rios AC, Fu NY, Lindeman GJ, Visvader JE. In situ identification of bipotent stem cells in the mammary gland. Nature. 2014;506(7488):322–7.CrossRefPubMedGoogle Scholar
  37. 37.
    Sutherland RL, Prall OW, Watts CK, Musgrove EA. Estrogen and progestin regulation of cell cycle progression. J Mammary Gland Biol Neoplasia. 1998;3(1):63–72.CrossRefPubMedGoogle Scholar
  38. 38.
    Asselin-Labat ML, Vaillant F, Sheridan JM, Pal B, Wu D, Simpson ER, et al. Control of mammary stem cell function by steroid hormone signalling. Nature. 2010;465(7299):798–802.CrossRefPubMedGoogle Scholar
  39. 39.
    Joshi PA, Jackson HW, Beristain AG, Di Grappa MA, Mote P, Clarke C, et al. Progesterone induces adult mammary stem cell expansion. Nature. 2010;465(7299):803–7.CrossRefPubMedGoogle Scholar
  40. 40.
    Fata JE, Kong Y-Y, Li J, Sasaki T, Irie-Sasaki J, Moorehead RA, et al. The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development. Cell. 2000;103(1):41–50.CrossRefPubMedGoogle Scholar
  41. 41.
    Brisken C, Heineman A, Chavarria T, Elenbaas B, Tan J, Dey SK, et al. Essential function of Wnt-4 in mammary gland development downstream of progesterone signaling. Genes Dev. 2000;14(6):650–4.PubMedCentralPubMedGoogle Scholar
  42. 42.
    Rajaram RD, Buric D, Caikovski M, Ayyanan A, Rougemont J, Shan J, et al. Progesterone and Wnt4 control mammary stem cells via myoepithelial crosstalk. EMBO J. 2015;34(5):641–52.CrossRefPubMedGoogle Scholar
  43. 43.
    Shiah Y-J, Tharmapalan P, Casey Alison E, Joshi Purna A, McKee Trevor D, Jackson Hartland W, et al. A progesterone-CXCR4 axis controls mammary progenitor cell fate in the adult gland CXCR4 function in mammary progenitors. Stem Cell Rep. 2015;4(3):313–22.CrossRefGoogle Scholar
  44. 44.
    Pike MC, Spicer DV, Dahmoush L, Press MF. Estrogens, progestogens, normal breast cell proliferation, and breast cancer risk. Epidemiol Rev. 1993;15(1):17–35.PubMedGoogle Scholar
  45. 45.
    Barnes DM, Newman LA. Pregnancy-associated breast cancer: a literature review. Surg Clin North Am. 2007;87(2):417–30.CrossRefPubMedGoogle Scholar
  46. 46.
    Graham JD, Mote PA, Salagame U, van Dijk JH, Balleine RL, Huschtscha LI, et al. DNA replication licensing and progenitor numbers are increased by progesterone in normal human breast. Endocrinology. 2009;150(7):3318–26.PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 2003;17(10):1253–70.PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Arendt LM, St. Laurent J, Wronski A, Caballero S, Lyle SR, Naber SP, et al. Human breast progenitor cell numbers are regulated by WNT and TBX3. PLoS One. 2014;9(10), e111442.PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    Hilton HN, Santucci N, Silvestri A, Kantimm S, Huschtscha LI, Graham JD, et al. Progesterone stimulates progenitor cells in normal human breast and breast cancer cells. Breast Cancer Res Treat. 2014;143(3):423–33.CrossRefPubMedGoogle Scholar
  50. 50.
    Bachelard-Cascales E, Chapellier M, Delay E, Pochon G, Voeltzel T, Puisieux A, et al. The CD10 enzyme is a key player to identify and regulate human mammary stem cells. Stem Cells. 2010;28(6):1081–8.CrossRefPubMedGoogle Scholar
  51. 51.
    Keller PJ, Arendt LM, Skibinski A, Logvinenko T, Klebba I, Dong S, et al. Defining the cellular precursors to human breast cancer. Proc Natl Acad Sci U S A. 2012;109(8):2772–7.PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    Garbe JC, Pepin F, Pelissier FA, Sputova K, Fridriksdottir AJ, Guo DE, et al. Accumulation of multipotent progenitors with a basal differentiation bias during aging of human mammary epithelia. Cancer Res. 2012;72(14):3687–701.PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    Stingl J, Eaves CJ, Kuusk U, Emerman JT. Phenotypic and functional characterization in vitro of a multipotent epithelial cell present in the normal adult human breast. Differentiation. 1998;63(4):201–13.CrossRefPubMedGoogle Scholar
  54. 54.
    Palafox M, Ferrer I, Pellegrini P, Vila S, Hernandez-Ortega S, Urruticoechea A, et al. RANK induces epithelial–mesenchymal transition and stemness in human mammary epithelial cells and promotes tumorigenesis and metastasis. Cancer Res. 2012;72(11):2879–88.CrossRefPubMedGoogle Scholar
  55. 55.
    Tanos T, Sflomos G, Echeverria PC, Ayyanan A, Gutierrez M, Delaloye J-F, et al. Progesterone/RANKL is a major regulatory axis in the human breast. Sci Transl Med. 2013;5(182):182ra155.Google Scholar
  56. 56.
    Pardo I, Lillemoe H, Blosser R, Choi M, Sauder C, Doxey D, et al. Next-generation transcriptome sequencing of the premenopausal breast epithelium using specimens from a normal human breast tissue bank. Breast Cancer Res. 2014;16(2):R26.PubMedCentralCrossRefPubMedGoogle Scholar
  57. 57.
    Hu H, Wang J, Gupta A, Shidfar A, Branstetter D, Lee O, et al. RANKL expression in normal and malignant breast tissue responds to progesterone and is up-regulated during the luteal phase. Breast Cancer Res Treat. 2014;146(3):515–23.CrossRefPubMedGoogle Scholar
  58. 58.
    Wang J, Gupta A, Hu H, Chatterton RT, Clevenger CV, Khan SA. Comment on “Progesterone/RANKL is a major regulatory axis in the human breast”. Sci Transl Med. 2013;5(215):215le214.Google Scholar
  59. 59.
    Lombardi S, Honeth G, Ginestier C, Shinomiya I, Marlow R, Buchupalli B, et al. Growth hormone is secreted by normal breast epithelium upon progesterone stimulation and increases proliferation of stem/progenitor cells. Stem Cell Rep. 2014;2(6):780–93.CrossRefGoogle Scholar
  60. 60.
    Dontu G, Jackson KW, McNicholas E, Kawamura MJ, Abdallah WM, Wicha MS. Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res. 2004;6(6):R605–15.PubMedCentralCrossRefPubMedGoogle Scholar
  61. 61.
    Ghatge R, Jacobsen B, Schittone S, Horwitz K. The progestational and androgenic properties of medroxyprogesterone acetate: gene regulatory overlap with dihydrotestosterone in breast cancer cells. Breast Cancer Res. 2005;7(6):R1036–50.PubMedCentralCrossRefPubMedGoogle Scholar
  62. 62.
    Horwitz KB, Dye WW, Harrell JC, Kabos P, Sartorius CA. Rare steroid receptor-negative basal-like tumorigenic cells in luminal subtype human breast cancer xenografts. Proc Natl Acad Sci U S A. 2008;105(15):5774–9.PubMedCentralCrossRefPubMedGoogle Scholar
  63. 63.
    Meier-Abt F, Milani E, Roloff T, Brinkhaus H, Duss S, Meyer D, et al. Parity induces differentiation and reduces Wnt/Notch signaling ratio and proliferation potential of basal stem/progenitor cells isolated from mouse mammary epithelium. Breast Cancer Res. 2013;15(2):R36.PubMedCentralCrossRefPubMedGoogle Scholar
  64. 64.
    Meier-Abt F, Brinkhaus H, Bentires-Alj M. Early but not late pregnancy induces lifelong reductions in the proportion of mammary progesterone sensing cells and epithelial Wnt signaling. Breast Cancer Res. 2014;16(2):402.PubMedCentralCrossRefPubMedGoogle Scholar
  65. 65.
    Meier-Abt F, Bentires-Alj M. How pregnancy at early age protects against breast cancer. Trends Mol Med. 2014;20(3):143–53.CrossRefPubMedGoogle Scholar
  66. 66.
    Sartorius CA, Harvell DM, Shen T, Horwitz KB. Progestins initiate a luminal to myoepithelial switch in estrogen-dependent human breast tumors without altering growth. Cancer Res. 2005;65(21):9779–88.CrossRefPubMedGoogle Scholar
  67. 67.
    Kabos P, Haughian J, Wang X, Dye W, Finlayson C, Elias A, et al. Cytokeratin 5 positive cells represent a steroid receptor negative and therapy resistant subpopulation in luminal breast cancers. Breast Cancer Res Treat. 2011;128(1):45–55.CrossRefPubMedGoogle Scholar
  68. 68.
    Cittelly DM, Finlay-Schultz J, Howe EN, Spoelstra NS, Axlund SD, Hendricks P, et al. Progestin suppression of miR-29 potentiates dedifferentiation of breast cancer cells via KLF4. Oncogene. 2013;32(20):2555–64.PubMedCentralCrossRefPubMedGoogle Scholar
  69. 69.
    Li M, Zhao D, Ma G, Zhang B, Fu X, Zhu Z, et al. Upregulation of ATBF1 by progesterone-PR signaling and its functional implication in mammary epithelial cells. Biochem Biophys Res Commun. 2013;430(1):358–63.CrossRefPubMedGoogle Scholar
  70. 70.
    Axlund S, Yoo B, Rosen R, Schaack J, Kabos P, LaBarbera D, et al. Progesterone-inducible cytokeratin 5-positive cells in luminal breast cancer exhibit progenitor properties. Horm Cancer. 2013;4(1):36–49.PubMedCentralCrossRefPubMedGoogle Scholar
  71. 71.
    Vares G, Cui X, Wang B, Nakajima T, Nenoi M. Generation of breast cancer stem cells by steroid hormones in irradiated human mammary cell lines. PLoS One. 2013;8(10), e77124.PubMedCentralCrossRefPubMedGoogle Scholar
  72. 72.
    Finlay-Schultz J, Cittelly DM, Hendricks P, Patel P, Kabos P, Jacobsen BM, et al. Progesterone downregulation of miR-141 contributes to expansion of stem-like breast cancer cells through maintenance of progesterone receptor and Stat5a. Oncogene. 2014;0.Google Scholar
  73. 73.
    Choudhury S, Almendro V, Merino Vanessa F, Wu Z, Maruyama R, Su Y, et al. Molecular profiling of human mammary gland links breast cancer risk to a p27+ cell population with progenitor characteristics. Cell Stem Cell. 2013;13(1):117–30.PubMedCentralCrossRefPubMedGoogle Scholar
  74. 74.
    Horwitz KB, Sartorius CA. Progestins in hormone replacement therapies reactivate cancer stem cells in women with preexisting breast cancers: a hypothesis. J Clin Endocrinol Metab. 2008;93(9):3295–8.PubMedCentralCrossRefPubMedGoogle Scholar
  75. 75.
    Lambrinoudaki I. Progestogens in postmenopausal hormone therapy and the risk of breast cancer. Maturitas. 2014;77(4):311–7.CrossRefPubMedGoogle Scholar
  76. 76.
    Chlebowski RT, Rohan TE, Manson JE, et al. Breast cancer after use of estrogen plus progestin and estrogen alone: analyses of data from 2 women’s health initiative randomized clinical trials. JAMA Oncol. 2015;1(3):296–305.CrossRefPubMedGoogle Scholar
  77. 77.
    Joshi PA, Goodwin PJ, Khokha R. Progesterone exposure and breast cancer risk: understanding the biological roots. JAMA Oncol. 2015;1(3):283–5.CrossRefPubMedGoogle Scholar
  78. 78.
    Gonzalez-Suarez E, Jacob AP, Jones J, Miller R, Roudier-Meyer MP, Erwert R, et al. RANK ligand mediates progestin-induced mammary epithelial proliferation and carcinogenesis. Nature. 2010;468(7320):103–7.CrossRefPubMedGoogle Scholar
  79. 79.
    Schramek D, Leibbrandt A, Sigl V, Kenner L, Pospisilik JA, Lee HJ, et al. Osteoclast differentiation factor RANKL controls development of progestin-driven mammary cancer. Nature. 2010;468(7320):98–102.PubMedCentralCrossRefPubMedGoogle Scholar
  80. 80.
    Cochrane DR, Spoelstra NS, Richer JK. The role of miRNAs in progesterone action. Mol Cell Endocrinol. 2012;357(1–2):50–9.CrossRefPubMedGoogle Scholar
  81. 81.
    Cochrane DR, Jacobsen BM, Connaghan KD, Howe EN, Bain DL, Richer JK. Progestin regulated miRNAs that mediate progesterone receptor action in breast cancer. Mol Cell Endocrinol. 2012;355(1):15–24.CrossRefPubMedGoogle Scholar
  82. 82.
    Yu F, Li J, Chen H, Fu J, Ray S, Huang S, et al. Kruppel-like factor 4 (KLF4) is required for maintenance of breast cancer stem cells and for cell migration and invasion. Oncogene. 2011;30(18):2161–72.PubMedCentralCrossRefPubMedGoogle Scholar
  83. 83.
    Richer JK, Jacobsen BM, Manning NG, Abel MG, Wolf DM, Horwitz KB. Differential gene regulation by the two progesterone receptor isoforms in human breast cancer cells. J Biol Chem. 2002;277(7):5209–18.CrossRefPubMedGoogle Scholar
  84. 84.
    Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008;10(5):593–601.CrossRefPubMedGoogle Scholar
  85. 85.
    Asselin-Labat ML, Shackleton M, Stingl J, Vaillant F, Forrest NC, Eaves CJ, et al. Steroid hormone receptor status of mouse mammary stem cells. J Natl Cancer Inst. 2006;98(14):1011–4.CrossRefPubMedGoogle Scholar
  86. 86.
    Booth BW, Smith GH. Estrogen receptor-α and progesterone receptor are expressed in label-retaining mammary epithelial cells that divide asymmetrically and retain their template DNA strands. Breast Cancer Res. 2006;8:R49.PubMedCentralCrossRefPubMedGoogle Scholar
  87. 87.
    Smith GH. Label-retaining epithelial cells in mouse mammary gland divide asymmetrically and retain their template DNA strands. Development. 2005;132(4):681–7.CrossRefPubMedGoogle Scholar
  88. 88.
    Clarke RB, Spence K, Anderson E, Howell A, Okano H, Potten CS. A putative human breast stem cell population is enriched for steroid receptor-positive cells. Dev Biol. 2005;277(2):443–56.CrossRefPubMedGoogle Scholar
  89. 89.
    Hilton HN, Graham JD, Kantimm S, Santucci N, Cloosterman D, Huschtscha LI, et al. Progesterone and estrogen receptors segregate into different cell subpopulations in the normal human breast. Mol Cell Endocrinol. 2012;361(1–2):191–201.CrossRefPubMedGoogle Scholar
  90. 90.
    Taylor D, Pearce CL, Hovanessian-Larsen L, Downey S, Spicer DV, Bartow S, et al. Progesterone and estrogen receptors in pregnant and premenopausal non-pregnant normal human breast. Breast Cancer Res Treat. 2009;118(1):161–8.CrossRefPubMedGoogle Scholar
  91. 91.
    McKeon F. p63 and the epithelial stem cell: more than status quo? Genes Dev. 2004;18(5):465–9.CrossRefPubMedGoogle Scholar
  92. 92.
    Yalcin-Ozuysal O, Fiche M, Guitierrez M, Wagner KU, Raffoul W, Brisken C. Antagonistic roles of Notch and p63 in controlling mammary epithelial cell fates. Cell Death Differ. 2010;17(10):1600–12.CrossRefPubMedGoogle Scholar
  93. 93.
    Honeth G, Lombardi S, Ginestier C, Hur M, Marlow R, Buchupalli B, et al. Aldehyde dehydrogenase and estrogen receptor define a hierarchy of cellular differentiation in the normal human mammary epithelium. Breast Cancer Res. 2014;16(3):R52.PubMedCentralCrossRefPubMedGoogle Scholar
  94. 94.
    Stingl J, Eaves CJ, Zandieh I, Emerman JT. Characterization of bipotent mammary epithelial progenitor cells in normal adult human breast tissue. Breast Cancer Res Treat. 2001;67(2):93–109.CrossRefPubMedGoogle Scholar
  95. 95.
    Shipitsin M, Campbell LL, Argani P, Weremowicz S, Bloushtain-Qimron N, Yao J, et al. Molecular definition of breast tumor heterogeneity. Cancer Cell. 2007;11(3):259–73.CrossRefPubMedGoogle Scholar
  96. 96.
    Beleut M, Rajaram RD, Caikovski M, Ayyanan A, Germano D, Choi Y, et al. Two distinct mechanisms underlie progesterone-induced proliferation in the mammary gland. Proc Natl Acad Sci U S A. 2010;107(7):2989–94.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Centre for Cancer Research, Westmead Millennium InstituteUniversity of Sydney Medical SchoolWestmeadAustralia

Personalised recommendations