Form and Function: how Estrogen and Progesterone Regulate the Mammary Epithelial Hierarchy

Article

Abstract

The mammary gland undergoes dramatic post-natal growth beginning at puberty, followed by full development occurring during pregnancy and lactation. Following lactation, the alveoli undergo apoptosis, and the mammary gland reverses back to resemble the nonparous gland. This process of growth and regression occurs for multiple pregnancies, suggesting the presence of a hierarchy of stem and progenitor cells that are able to regenerate specialized populations of mammary epithelial cells. Expansion of epithelial cell populations in the mammary gland is regulated by ovarian steroids, in particular estrogen acting through its receptor estrogen receptor alpha (ERα) and progesterone signaling through progesterone receptor (PR). A diverse number of stem and progenitor cells have been identified based on expression of cell surface markers and functional assays. Here we review the current understanding of how estrogen and progesterone act together and separately to regulate stem and progenitor cells within the human and mouse mammary tissues. Better understanding of the hierarchal organization of epithelial cell populations in the mammary gland and how the hormonal milieu affects its regulation may provide important insights into the origins of different subtypes of breast cancer.

Keywords

Mammary epithelial cells Breast Progenitor cells Estrogen Progesterone 

Abbreviations

ALDH

Aldehyde dehydrogenase

CK

Cytokeratin

EGF

Epidermal growth factor

Elf5

E74-like factor

ERα

Estrogen receptor alpha

FACS

Fluorescence-activated cell sorting

GH

Growth hormone

H2BGFP

Histone H2B fused to eGFP

ME

Myoepithelial

MMTV

Mouse mammary tumor virus

MRU

Mammary repopulating units

PI-MEC

Pregnancy-induced mammary epithelial cells

PR

Progesterone receptor

sca-1

Stem cell antigen-1

SMA

Smooth muscle actin

TDLU

Terminal ductal lobule unit

TGFα

Transforming growth factor alpha

References

  1. 1.
    Potten CS, Watson RJ, Williams GT, Tickle S, Roberts SA, Harris M, et al. The effect of age and menstrual cycle upon proliferative activity of the normal human breast. Br J Cancer. 1988;58:163–70.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Navarrete MA, Maier CM, Falzoni R, Quadros LG, Lima GR, Baracat EC, et al. Assessment of the proliferative, apoptotic and cellular renovation indices of the human mammary epithelium during the follicular and luteal phases of the menstrual cycle. Breast Cancer Res. 2005;7:R306–13.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Ferguson DJ, Anderson TJ. Morphological evaluation of cell turnover in relation to the menstrual cycle in the “resting” human breast. Br J Cancer. 1981;44:177–81.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Anderson TJ, Ferguson DJ, Raab GM. Cell turnover in the “resting” human breast: influence of parity, contraceptive pill, age and laterality. Br J Cancer. 1982;46:376–82.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Jindal S, Gao D, Bell P, Albrektsen G, Edgerton SM, Ambrosone CB, et al. Postpartum breast involution reveals regression of secretory lobules mediated by tissue-remodeling. Breast Cancer Res. 2014;16:R31.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    van der Flier LG, Clevers H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol. 2009;71:241–60.PubMedCrossRefGoogle Scholar
  7. 7.
    Perez-Losada J, Balmain A. Stem-cell hierarchy in skin cancer. Nat Rev Cancer. 2003;3:434–43.PubMedCrossRefGoogle Scholar
  8. 8.
    Ramakrishnan R, Khan SA, Badve S. Morphological changes in breast tissue with menstrual cycle. Mod Pathol. 2002;15:1348–56.PubMedCrossRefGoogle Scholar
  9. 9.
    Vogel PM, Georgiade NG, Fetter BF, Vogel FS, McCarty Jr KS. The correlation of histologic changes in the human breast with the menstrual cycle. Am J Pathol. 1981;104:23–34.PubMedCentralPubMedGoogle Scholar
  10. 10.
    Russo J, Ao X, Grill C, Russo IH. Pattern of distribution of cells positive for estrogen receptor alpha and progesterone receptor in relation to proliferating cells in the mammary gland. Breast Cancer Res Treat. 1999;53:217–27.PubMedCrossRefGoogle Scholar
  11. 11.
    Zeps N, Bentel JM, Papadimitriou JM, D’Antuono MF, Dawkins HJ. Estrogen receptor-negative epithelial cells in mouse mammary gland development and growth. Differentiation. 1998;62:221–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Clarke RB, Howell A, Potten CS, Anderson E. Dissociation between steroid receptor expression and cell proliferation in the human breast. Cancer Res. 1997;57:4987–91.PubMedGoogle Scholar
  13. 13.
    Petz LN, Ziegler YS, Schultz JR, Kim H, Kemper JK, Nardulli AM. Differential regulation of the human progesterone receptor gene through an estrogen response element half site and Sp1 sites. J Steroid Biochem Mol Biol. 2004;88:113–22.PubMedCrossRefGoogle Scholar
  14. 14.
    Schultz JR, Petz LN, Nardulli AM. Estrogen receptor alpha and Sp1 regulate progesterone receptor gene expression. Mol Cell Endocrinol. 2003;201:165–75.PubMedCrossRefGoogle Scholar
  15. 15.
    Schultz JR, Petz LN, Nardulli AM. Cell- and ligand-specific regulation of promoters containing activator protein-1 and Sp1 sites by estrogen receptors alpha and beta. J Biol Chem. 2005;280:347–54.PubMedCrossRefGoogle Scholar
  16. 16.
    Hilton HN, Santucci N, Silvestri A, Kantimm S, Huschtscha LI, Graham JD, et al. Progesterone stimulates progenitor cells in normal human breast and breast cancer cells. Breast Cancer Res Treat. 2014;143:423–33.PubMedCrossRefGoogle Scholar
  17. 17.
    Hilton HN, Graham JD, Kantimm S, Santucci N, Cloosterman D, Huschtscha LI, et al. Progesterone and estrogen receptors segregate into different cell subpopulations in the normal human breast. Mol Cell Endocrinol. 2012;361:191–201.PubMedCrossRefGoogle Scholar
  18. 18.
    Hilton HN, Doan TB, Graham JD, Oakes SR, Silvestri A, Santucci N, et al. Acquired convergence of hormone signaling in breast cancer: ER and PR transition from functionally distinct in normal breast to predictors of metastatic disease. Oncotarget. 2014;5:8651–64.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Arendt LM, St Laurent J, Wronski A, Caballero S, Lyle SR, Naber SP, et al. Human breast progenitor cell numbers are regulated by WNT and TBX3. PLoS One. 2014;9:e111442.Google Scholar
  20. 20.
    Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A. 2003;100:8418–23.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 2001;98:10869–74.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406:747–52.PubMedCrossRefGoogle Scholar
  23. 23.
    Phipps AI, Malone KE, Porter PL, Daling JR, Li CI. Body size and risk of luminal, HER2-overexpressing, and triple-negative breast cancer in postmenopausal women. Cancer Epidemiol Biomarkers Prev. 2008;17:2078–86.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Phipps AI, Buist DS, Malone KE, Barlow WE, Porter PL, Kerlikowske K, et al. Breast density, body mass index, and risk of tumor marker-defined subtypes of breast cancer. Ann Epidemiol. 2012;22:340–8.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Biglia N, Peano E, Sgandurra P, Moggio G, Pecchio S, Maggiorotto F, et al. Body mass index (BMI) and breast cancer: impact on tumor histopathologic features, cancer subtypes and recurrence rate in pre and postmenopausal women. Gynecol Endocrinol. 2013;29:263–7.PubMedCrossRefGoogle Scholar
  26. 26.
    McGuire WL. Hormone receptors: their role in predicting prognosis and response to endocrine therapy. Semin Oncol. 1978;5:428–33.PubMedGoogle Scholar
  27. 27.
    Cui X, Schiff R, Arpino G, Osborne CK, Lee AV. Biology of progesterone receptor loss in breast cancer and its implications for endocrine therapy. J Clin Oncol. 2005;23:7721–35.PubMedCrossRefGoogle Scholar
  28. 28.
    Haslam SZ. Acquisition of estrogen-dependent progesterone receptors by normal mouse mammary gland. Ontogeny of mammary progesterone receptors. J Steroid Biochem. 1988;31:9–13.PubMedCrossRefGoogle Scholar
  29. 29.
    Hovey RC, Trott JF, Vonderhaar BK. Establishing a framework for the functional mammary gland: from endocrinology to morphology. J Mammary Gland Biol Neoplasia. 2002;7:17–38.PubMedCrossRefGoogle Scholar
  30. 30.
    Hennighausen L, Robinson GW. Think globally, act locally: the making of a mouse mammary gland. Genes Dev. 1998;12:449–55.PubMedCrossRefGoogle Scholar
  31. 31.
    Keeling JW, Ozer E, King G, Walker F. Oestrogen receptor alpha in female fetal, infant, and child mammary tissue. J Pathol. 2000;191:449–51.PubMedCrossRefGoogle Scholar
  32. 32.
    Howard BA, Gusterson BA. Human breast development. J Mammary Gland Biol Neoplasia. 2000;5:119–37.PubMedCrossRefGoogle Scholar
  33. 33.
    Russo J, Russo IH. Development of the human breast. Maturitas. 2004;49:2–15.PubMedCrossRefGoogle Scholar
  34. 34.
    Mallepell S, Krust A, Chambon P, Brisken C. Paracrine signaling through the epithelial estrogen receptor alpha is required for proliferation and morphogenesis in the mammary gland. Proc Natl Acad Sci U S A. 2006;103:2196–201.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Feng Y, Manka D, Wagner KU, Khan SA. Estrogen receptor-alpha expression in the mammary epithelium is required for ductal and alveolar morphogenesis in mice. Proc Natl Acad Sci U S A. 2007;104:14718–23.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Mueller SO, Clark JA, Myers PH, Korach KS. Mammary gland development in adult mice requires epithelial and stromal estrogen receptor alpha. Endocrinology. 2002;143:2357–65.PubMedGoogle Scholar
  37. 37.
    Luetteke NC, Qiu TH, Fenton SE, Troyer KL, Riedel RF, Chang A, et al. Targeted inactivation of the EGF and amphiregulin genes reveals distinct roles for EGF receptor ligands in mouse mammary gland development. Development. 1999;126:2739–50.PubMedGoogle Scholar
  38. 38.
    Ciarloni L, Mallepell S, Brisken C. Amphiregulin is an essential mediator of estrogen receptor alpha function in mammary gland development. Proc Natl Acad Sci U S A. 2007;104:5455–60.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Kenney NJ, Smith GH, Rosenberg K, Cutler ML, Dickson RB. Induction of ductal morphogenesis and lobular hyperplasia by amphiregulin in the mouse mammary gland. Cell Growth Differ. 1996;7:1769–81.PubMedGoogle Scholar
  40. 40.
    Kenney NJ, Bowman A, Korach KS, Barrett JC, Salomon DS. Effect of exogenous epidermal-like growth factors on mammary gland development and differentiation in the estrogen receptor-alpha knockout (ERKO) mouse. Breast Cancer Res Treat. 2003;79:161–73.PubMedCrossRefGoogle Scholar
  41. 41.
    Brisken C, Park S, Vass T, Lydon JP, O’Malley BW, Weinberg RA. A paracrine role for the epithelial progesterone receptor in mammary gland development. Proc Natl Acad Sci U S A. 1998;95:5076–81.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Lydon JP, Demayo FJ, Funk CR, Mani SK, Hughes AR, Montgomery Jr CA, et al. Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Dev. 1995;9:2266–78.PubMedCrossRefGoogle Scholar
  43. 43.
    Beleut M, Rajaram RD, Caikovski M, Ayyanan A, Germano D, Choi Y, et al. Two distinct mechanisms underlie progesterone-induced proliferation in the mammary gland. Proc Natl Acad Sci U S A. 2010;107:2989–94.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Fernandez-Valdivia R, Mukherjee A, Ying Y, Li J, Paquet M, Demayo FJ, et al. The RANKL signaling axis is sufficient to elicit ductal side-branching and alveologenesis in the mammary gland of the virgin mouse. Dev Biol. 1999;328:127–39.CrossRefGoogle Scholar
  45. 45.
    Brisken C, Heineman A, Chavarria T, Elenbaas B, Tan J, Dey SK, et al. Essential function of Wnt-4 in mammary gland development downstream of progesterone signaling. Genes Dev. 2000;14:650–4.PubMedCentralPubMedGoogle Scholar
  46. 46.
    Sicinski P, Donaher JL, Parker SB, Li T, Fazeli A, Gardner H, et al. Cyclin D1 provides a link between development and oncogenesis in the retina and breast. Cell. 1995;82:621–30.PubMedCrossRefGoogle Scholar
  47. 47.
    Fantl V, Stamp G, Andrews A, Rosewell I, Dickson C. Mice lacking cyclin D1 are small and show defects in eye and mammary gland development. Genes Dev. 1995;9:2364–72.PubMedCrossRefGoogle Scholar
  48. 48.
    Going JJ, Moffat DF. Escaping from Flatland: clinical and biological aspects of human mammary duct anatomy in three dimensions. J Pathol. 2004;203:538–44.PubMedCrossRefGoogle Scholar
  49. 49.
    Russo J, Lynch H, Russo IH. Mammary gland architecture as a determining factor in the susceptibility of the human breast to cancer. Breast J. 2001;7:278–91.PubMedCrossRefGoogle Scholar
  50. 50.
    Russo J, Mills MJ, Moussalli MJ, Russo IH. Influence of human breast development on the growth properties of primary cultures. In Vitro Cell Dev Biol. 1998;25:643–9.CrossRefGoogle Scholar
  51. 51.
    Russo J, Rivera R, Russo IH. Influence of age and parity on the development of the human breast. Breast Cancer Res Treat. 1992;23:211–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Arendt LM, Keller PJ, Skibinski A, Goncalves K, Naber SP, Buchsbaum RJ, et al. Anatomical localization of progenitor cells in human breast tissue reveals enrichment of uncommitted cells within immature lobules. Breast Cancer Res. 2014;16:453.PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Mishell Jr DR, Nakamura RM, Crosignani PG, Stone S, Kharma K, Nagata Y, et al. Serum gonadotropin and steroid patterns during the normal menstrual cycle. Am J Obstet Gynecol. 1971;111:60–5.PubMedGoogle Scholar
  54. 54.
    Uehara J, Nazario AC, Rodrigues de Lima G, Simoes MJ, Juliano Y, Gebrim LH. Effects of tamoxifen on the breast in the luteal phase of the menstrual cycle. Int J Gynaecol Obstet. 1998;62:77–82.PubMedCrossRefGoogle Scholar
  55. 55.
    Ramakrishnan R, Gann PH, Wiley EL, Khurana KK, Khan SA. Normal breast lobular architecture in breast biopsy samples from breast cancer cases and benign disease controls. Breast Cancer Res Treat. 2004;86:259–68.PubMedCrossRefGoogle Scholar
  56. 56.
    Asselin-Labat ML, Sutherland KD, Barker H, Thomas R, Shackleton M, Forrest NC, et al. Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nat Cell Biol. 2007;9:201–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Kouros-Mehr H, Slorach EM, Sternlicht MD, Werb Z. GATA-3 maintains the differentiation of the luminal cell fate in the mammary gland. Cell. 2006;127:1041–55.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Bernardo GM, Lozada KL, Miedler JD, Harburg G, Hewitt SC, Mosley JD, et al. FOXA1 is an essential determinant of ERalpha expression and mammary ductal morphogenesis. Development. 2010;137:2045–54.PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Grimm SL, Seagroves TN, Kabotyanski EB, Hovey RC, Vonderhaar BK, Lydon JP, et al. Disruption of steroid and prolactin receptor patterning in the mammary gland correlates with a block in lobuloalveolar development. Mol Endocrinol. 2002;16:2675–91.PubMedCrossRefGoogle Scholar
  60. 60.
    Seagroves TN, Lydon JP, Hovey RC, Vonderhaar BK, Rosen JM. C/EBPbeta (CCAAT/enhancer binding protein) controls cell fate determination during mammary gland development. Mol Endocrinol. 2000;14:359–68.PubMedGoogle Scholar
  61. 61.
    LaMarca HL, Visbal AP, Creighton CJ, Liu H, Zhang Y, Behbod F, et al. CCAAT/enhancer binding protein beta regulates stem cell activity and specifies luminal cell fate in the mammary gland. Stem Cells. 2010;28:535–44.PubMedCentralPubMedGoogle Scholar
  62. 62.
    Yamaji D, Na R, Feuermann Y, Pechhold S, Chen W, Robinson GW, et al. Development of mammary luminal progenitor cells is controlled by the transcription factor STAT5A. Genes Dev. 2009;23:2382–7.PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Miyoshi K, Shillingford JM, Smith GH, Grimm SL, Wagner KU, Oka T, et al. Signal transducer and activator of transcription (Stat) 5 controls the proliferation and differentiation of mammary alveolar epithelium. J Cell Biol. 2001;155:531–42.PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Liu X, Robinson GW, Wagner KU, Garrett L, Wynshaw-Boris A, Hennighausen L. Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Dev. 1997;11:179–86.PubMedCrossRefGoogle Scholar
  65. 65.
    Santos SJ, Haslam SZ, Conrad SE. Signal transducer and activator of transcription 5a mediates mammary ductal branching and proliferation in the nulliparous mouse. Endocrinology. 2010;151:2876–85.PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Santos SJ, Haslam SZ, Conrad SE. Estrogen and progesterone are critical regulators of Stat5a expression in the mouse mammary gland. Endocrinology. 2008;149:329–38.PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Oakes SR, Naylor MJ, Asselin-Labat ML, Blazek KD, Gardiner-Garden M, Hilton HN, et al. The Ets transcription factor Elf5 specifies mammary alveolar cell fate. Genes Dev. 2008;22:581–6.PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Lee HJ, Gallego-Ortega D, Ledger A, Schramek D, Joshi P, Szwarc MM, et al. Progesterone drives mammary secretory differentiation via RankL-mediated induction of Elf5 in luminal progenitor cells. Development. 2013;140:1397–401.PubMedCrossRefGoogle Scholar
  69. 69.
    Harris J, Stanford PM, Sutherland K, Oakes SR, Naylor MJ, Robertson FG, et al. Socs2 and elf5 mediate prolactin-induced mammary gland development. Mol Endocrinol. 2006;20:1177–87.PubMedCrossRefGoogle Scholar
  70. 70.
    Gallego MI, Binart N, Robinson GW, Okagaki R, Coschigano KT, Perry J, et al. Prolactin, growth hormone, and epidermal growth factor activate Stat5 in different compartments of mammary tissue and exert different and overlapping developmental effects. Dev Biol. 2001;229:163–75.PubMedCrossRefGoogle Scholar
  71. 71.
    Kendrick H, Regan JL, Magnay FA, Grigoriadis A, Mitsopoulos C, Zvelebil M, et al. Transcriptome analysis of mammary epithelial subpopulations identifies novel determinants of lineage commitment and cell fate. BMC Genomics. 2008;9:591.PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Lim E, Wu D, Pal B, Bouras T, Asselin-Labat ML, Vaillant F, et al. Transcriptome analyses of mouse and human mammary cell subpopulations reveal multiple conserved genes and pathways. Breast Cancer Res. 2010;12:R21.PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Raouf A, Zhao Y, To K, Stingl J, Delaney A, Barbara M, et al. Transcriptome analysis of the normal human mammary cell commitment and differentiation process. Cell Stem Cell. 2008;3:109–18.PubMedCrossRefGoogle Scholar
  74. 74.
    Soneji S, Huang S, Loose M, Donaldson IJ, Patient R, Gottgens B, et al. Inference, validation, and dynamic modeling of transcription networks in multipotent hematopoietic cells. Ann N Y Acad Sci. 2007;1106:30–40.PubMedCrossRefGoogle Scholar
  75. 75.
    DeOme KB, Faulkin Jr LJ, Bern HA, Blair PB. Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Res. 1959;19:515–20.PubMedGoogle Scholar
  76. 76.
    Daniel CW, DeOme KB. Growth of mouse mammary glands in vivo after monolayer culture. Science. 1965;149:634–6.PubMedCrossRefGoogle Scholar
  77. 77.
    Kordon EC, Smith GH. An entire functional mammary gland may comprise the progeny from a single cell. Development. 1998;125:1921–30.PubMedGoogle Scholar
  78. 78.
    Lachenmayer A, Alsinet C, Savic R, Cabellos L, Toffanin S, Hoshida Y, et al. Wnt-pathway activation in two molecular classes of hepatocellular carcinoma and experimental modulation by sorafenib. Clin Cancer Res. 2012;18:4997–5007.PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Novelli M, Cossu A, Oukrif D, Quaglia A, Lakhani S, Poulsom R, et al. X-inactivation patch size in human female tissue confounds the assessment of tumor clonality. Proc Natl Acad Sci U S A. 2003;100:3311–4.PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML, et al. Generation of a functional mammary gland from a single stem cell. Nature. 2006;439:84–8.PubMedCrossRefGoogle Scholar
  81. 81.
    Stingl J, Eirew P, Ricketson I, Shackleton M, Vaillant F, Choi D, et al. Purification and unique properties of mammary epithelial stem cells. Nature. 2006;439:993–7.PubMedGoogle Scholar
  82. 82.
    Van Keymeulen A, Rocha AS, Ousset M, Beck B, Bouvencourt G, Rock J, et al. Distinct stem cells contribute to mammary gland development and maintenance. Nature. 2011;479:189–93.PubMedCrossRefGoogle Scholar
  83. 83.
    Prater MD, Petit V, Alasdair RI, Giraddi RR, Shehata M, Menon S, et al. Mammary stem cells have myoepithelial cell properties. Nat Cell Biol. 2014;16:942–7.PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Boras-Granic K, Dann P, Wysolmerski JJ. Embryonic cells contribute directly to the quiescent stem cell population in the adult mouse mammary gland. Breast Cancer Res. 2014;16:487.PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.
    van Amerongen R, Bowman AN, Nusse R. Developmental stage and time dictate the fate of Wnt/beta-catenin-responsive stem cells in the mammary gland. Cell Stem Cell. 2012;11:387–400.PubMedCrossRefGoogle Scholar
  86. 86.
    Wang D, Cai C, Dong X, Yu QC, Zhang XO, Yang L, et al. Identification of multipotent mammary stem cells by protein C receptor expression. Nature. 2015;517:81–4.PubMedCrossRefGoogle Scholar
  87. 87.
    Tao L, van Bragt MP, Laudadio E, Li Z. Lineage tracing of mammary epithelial cells using cell-type-specific cre-expressing adenoviruses. Stem Cell Reports. 2014;2:770–9.PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Rios AC, Fu NY, Lindeman GJ, Visvader JE. In situ identification of bipotent stem cells in the mammary gland. Nature. 2014;506:322–7.PubMedCrossRefGoogle Scholar
  89. 89.
    Pei XH, Bai F, Smith MD, Usary J, Fan C, Pai SY, et al. CDK inhibitor p18(INK4c) is a downstream target of GATA3 and restrains mammary luminal progenitor cell proliferation and tumorigenesis. Cancer Cell. 2009;15:389–401.PubMedCentralPubMedCrossRefGoogle Scholar
  90. 90.
    Zhu Y, Huang YF, Kek C, Bulavin DV. Apoptosis differently affects lineage tracing of Lgr5 and Bmi1 intestinal stem cell populations. Cell Stem Cell. 2013;12:298–303.PubMedCrossRefGoogle Scholar
  91. 91.
    Shehata M, van Amerongen R, Zeeman AL, Giraddi RR, Stingl J. The influence of tamoxifen on normal mouse mammary gland homeostasis. Breast Cancer Res. 2014;16:411.PubMedCentralPubMedCrossRefGoogle Scholar
  92. 92.
    Sale S, Pavelic K. Mammary lineage tracing: the coming of age. Cell Mol Life Sci. 2015;72:1577–83.PubMedCrossRefGoogle Scholar
  93. 93.
    Gusterson BA, Ross DT, Heath VJ, Stein T. Basal cytokeratins and their relationship to the cellular origin and functional classification of breast cancer. Breast Cancer Res. 2005;7:143–8.PubMedCentralPubMedCrossRefGoogle Scholar
  94. 94.
    Villadsen R, Fridriksdottir AJ, Ronnov-Jessen L, Gudjonsson T, Rank F, LaBarge MA, et al. Evidence for a stem cell hierarchy in the adult human breast. J Cell Biol. 2007;177:87–101.PubMedCentralPubMedCrossRefGoogle Scholar
  95. 95.
    Lim E, Vaillant F, Wu D, Forrest NC, Pal B, Hart AH, et al. Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med. 2009;15:907–13.PubMedCrossRefGoogle Scholar
  96. 96.
    Keller PJ, Arendt LM, Skibinski A, Logvinenko T, Klebba I, Dong S, et al. Defining the cellular precursors to human breast cancer. Proc Natl Acad Sci U S A. 2012;109:2772–7.PubMedCentralPubMedCrossRefGoogle Scholar
  97. 97.
    Proia TA, Keller PJ, Gupta PB, Klebba I, Jones AD, Sedic M, et al. Genetic predisposition directs breast cancer phenotype by dictating progenitor cell fate. Cell Stem Cell. 2011;8:149–63.PubMedCentralPubMedCrossRefGoogle Scholar
  98. 98.
    Stingl J, Eaves CJ, Kuusk U, Emerman JT. Phenotypic and functional characterization in vitro of a multipotent epithelial cell present in the normal adult human breast. Differentiation. 1998;63:201–13.PubMedCrossRefGoogle Scholar
  99. 99.
    O’Hare MJ, Ormerod MG, Monaghan P, Lane EB, Gusterson BA. Characterization in vitro of luminal and myoepithelial cells isolated from the human mammary gland by cell sorting. Differentiation. 1991;46:209–21.PubMedCrossRefGoogle Scholar
  100. 100.
    Stingl J, Eaves CJ, Zandieh I, Emerman JT. Characterization of bipotent mammary epithelial progenitor cells in normal adult human breast tissue. Breast Cancer Res Treat. 2001;67:93–109.PubMedCrossRefGoogle Scholar
  101. 101.
    Moreb JS. Aldehyde dehydrogenase as a marker for stem cells. Curr Stem Cell Res Ther. 2008;3:237–46.PubMedCrossRefGoogle Scholar
  102. 102.
    Eirew P, Kannan N, Knapp DJ, Vaillant F, Emerman JT, Lindeman GJ, et al. Aldehyde dehydrogenase activity is a biomarker of primitive normal human mammary luminal cells. Stem Cells. 2012;30:344–8.PubMedCrossRefGoogle Scholar
  103. 103.
    Honeth G, Lombardi S, Ginestier C, Hur M, Marlow R, Buchupalli B, et al. Aldehyde dehydrogenase and estrogen receptor define a hierarchy of cellular differentiation in the normal human mammary epithelium. Breast Cancer Res. 2014;16:R52.PubMedCentralPubMedCrossRefGoogle Scholar
  104. 104.
    Shehata M, Teschendorff A, Sharp G, Novcic N, Russell A, Avril S, et al. Phenotypic and functional characterization of the luminal cell hierarchy of the mammary gland. Breast Cancer Res. 2012;14:R134.PubMedCentralPubMedCrossRefGoogle Scholar
  105. 105.
    Sleeman KE, Kendrick H, Robertson D, Isacke CM, Ashworth A, Smalley MJ. Dissociation of estrogen receptor expression and in vivo stem cell activity in the mammary gland. J Cell Biol. 2007;176:19–26.PubMedCentralPubMedCrossRefGoogle Scholar
  106. 106.
    Holmes C, Stanford WL. Concise review: stem cell antigen-1: expression, function, and enigma. Stem Cells. 2007;25:1339–47.PubMedCrossRefGoogle Scholar
  107. 107.
    Welm BE, Tepera SB, Venezia T, Graubert TA, Rosen JM, Goodell MA. Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Dev Biol. 2002;245:42–56.PubMedCrossRefGoogle Scholar
  108. 108.
    Regan JL, Kendrick H, Magnay FA, Vafaizadeh V, Groner B, Smalley MJ. c-Kit is required for growth and survival of the cells of origin of Brca1-mutation-associated breast cancer. Oncogene. 2012;31:869–83.PubMedCrossRefGoogle Scholar
  109. 109.
    Smith GH. Experimental mammary epithelial morphogenesis in an in vivo model: evidence for distinct cellular progenitors of the ductal and lobular phenotype. Breast Cancer Res Treat. 1996;39:21–31.PubMedCrossRefGoogle Scholar
  110. 110.
    Jeselsohn R, Brown NE, Arendt L, Klebba I, Hu MG, Kuperwasser C, et al. Cyclin D1 kinase activity is required for the self-renewal of mammary stem and progenitor cells that are targets of MMTV-ErbB2 tumorigenesis. Cancer Cell. 2010;17:65–76.PubMedCentralPubMedCrossRefGoogle Scholar
  111. 111.
    Fu N, Lindeman GJ, Visvader JE. The mammary stem cell hierarchy. Curr Top Dev Biol. 2014;107:133–60.PubMedCrossRefGoogle Scholar
  112. 112.
    Pechoux C, Gudjonsson T, Ronnov-Jessen L, Bissell MJ, Petersen OW. Human mammary luminal epithelial cells contain progenitors to myoepithelial cells. Dev Biol. 1999;206:88–99.PubMedCrossRefGoogle Scholar
  113. 113.
    Novaro V, Roskelley CD, Bissell MJ. Collagen-IV and laminin-1 regulate estrogen receptor alpha expression and function in mouse mammary epithelial cells. J Cell Sci. 2003;116:2975–86.PubMedCentralPubMedCrossRefGoogle Scholar
  114. 114.
    Tanos T, Sflomos G, Echeverria PC, Ayyanan A, Gutierrez M, Delaloye JF, et al. Progesterone/RANKL is a major regulatory axis in the human breast. Sci Transl Med. 2013;5:182ra55.PubMedCrossRefGoogle Scholar
  115. 115.
    Graham JD, Mote PA, Salagame U, van Dijk JH, Balleine RL, Huschtscha LI, et al. DNA replication licensing and progenitor numbers are increased by progesterone in normal human breast. Endocrinology. 2009;150:3318–26.PubMedCentralPubMedCrossRefGoogle Scholar
  116. 116.
    Vaillant F, Lindeman GJ, Visvader JE. Jekyll or Hyde: does Matrigel provide a more or less physiological environment in mammary repopulating assays? Breast Cancer Res. 2011;13:108.PubMedCentralPubMedCrossRefGoogle Scholar
  117. 117.
    Joshi PA, Jackson HW, Beristain AG, Di Grappa MA, Mote PA, Clarke CL, et al. Progesterone induces adult mammary stem cell expansion. Nature. 2010;465:803–7.PubMedCrossRefGoogle Scholar
  118. 118.
    Mulac-Jericevic B, Lydon JP, Demayo FJ, Conneely OM. Defective mammary gland morphogenesis in mice lacking the progesterone receptor B isoform. Proc Natl Acad Sci U S A. 2003;100:9744–9.PubMedCentralPubMedCrossRefGoogle Scholar
  119. 119.
    Lombardi S, Honeth G, Ginestier C, Shinomiya I, Marlow R, Buchupalli B, et al. Growth hormone is secreted by normal breast epithelium upon progesterone stimulation and increases proliferation of stem/progenitor cells. Stem Cell Reports. 2014;2:780–93.PubMedCentralPubMedCrossRefGoogle Scholar
  120. 120.
    Rajaram RD, Buric D, Caikovski M, Ayyanan A, Rougemont J, Shan J, et al. Progesterone and Wnt4 control mammary stem cells via myoepithelial crosstalk. EMBO J. 2015;34:641–52.PubMedCrossRefGoogle Scholar
  121. 121.
    Lindvall C, Zylstra CR, Evans N, West RA, Dykema K, Furge KA, et al. The Wnt co-receptor Lrp6 is required for normal mouse mammary gland development. PLoS One. 2009;4:e5813.PubMedCentralPubMedCrossRefGoogle Scholar
  122. 122.
    Badders NM, Goel S, Clark RJ, Klos KS, Kim S, Bafico A, et al. The Wnt receptor, Lrp5, is expressed by mouse mammary stem cells and is required to maintain the basal lineage. PLoS One. 2009;4:e6594.PubMedCentralPubMedCrossRefGoogle Scholar
  123. 123.
    Shiah YJ, Tharmapalan P, Casey AE, Joshi PA, McKee TD, Jackson HW, et al. A progesterone-CXCR4 axis controls mammary progenitor cell fate in the adult gland CXCR4 function in mammary progenitors. Stem Cell Reports. 2015;4:313–22.PubMedCentralPubMedCrossRefGoogle Scholar
  124. 124.
    Gauthier ML, Berman HK, Miller C, Kozakeiwicz K, Chew K, Moore D, et al. Abrogated response to cellular stress identifies DCIS associated with subsequent tumor events and defines basal-like breast tumors. Cancer Cell. 2007;12:479–91.PubMedCentralPubMedCrossRefGoogle Scholar
  125. 125.
    Asselin-Labat ML, Vaillant F, Sheridan JM, Pal B, Wu D, Simpson ER, et al. Control of mammary stem cell function by steroid hormone signalling. Nature. 2010;465:798–802.PubMedCrossRefGoogle Scholar
  126. 126.
    Clarke RB. Ovarian steroids and the human breast: regulation of stem cells and cell proliferation. Maturitas. 2006;54:327–34.PubMedCrossRefGoogle Scholar
  127. 127.
    Booth BW, Smith GH. Estrogen receptor-alpha and progesterone receptor are expressed in label-retaining mammary epithelial cells that divide asymmetrically and retain their template DNA strands. Breast Cancer Res. 2006;8:R49.PubMedCentralPubMedCrossRefGoogle Scholar
  128. 128.
    Clarke RB, Spence K, Anderson E, Howell A, Okano H, Potten CS. A putative human breast stem cell population is enriched for steroid receptor-positive cells. Dev Biol. 2005;277:443–56.PubMedCrossRefGoogle Scholar
  129. 129.
    Clarke RB, Anderson E, Howell A, Potten CS. Regulation of human breast epithelial stem cells. Cell Prolif. 2003;36:45–58.PubMedCrossRefGoogle Scholar
  130. 130.
    Mastroianni M, Kim S, Kim YC, Esch A, Wagner C, Alexander CM. Wnt signaling can substitute for estrogen to induce division of ERalpha-positive cells in a mouse mammary tumor model. Cancer Lett. 2010;289:23–31.PubMedCentralPubMedCrossRefGoogle Scholar
  131. 131.
    de Silva D, Kunasegaran K, Ghosh S, Pietersen AM. Transcriptome analysis of the hormone-sensing cells in mammary epithelial reveals dynamic changes in early pregnancy. BMC Dev Biol. 2015;15:7.PubMedCentralPubMedCrossRefGoogle Scholar
  132. 132.
    dos Santos CO, Rebbeck C, Rozhkova E, Valentine A, Samuels A, Kadiri LR, et al. Molecular hierarchy of mammary differentiation yields refined markers of mammary stem cells. Proc Natl Acad Sci U S A. 2013;110:7123–30.PubMedCentralPubMedCrossRefGoogle Scholar
  133. 133.
    Kaanta AS, Virtanen C, Selfors LM, Brugge JS, Neel BG. Evidence for a multipotent mammary progenitor with pregnancy-specific activity. Breast Cancer Res. 2013;15:R65.PubMedCentralPubMedCrossRefGoogle Scholar
  134. 134.
    Choudhury S, Almendro V, Merino VF, Wu Z, Maruyama R, Su Y, et al. Molecular profiling of human mammary gland links breast cancer risk to a p27(+) cell population with progenitor characteristics. Cell Stem Cell. 2013;13:117–30.PubMedCentralPubMedCrossRefGoogle Scholar
  135. 135.
    Menchon C, Edel MJ, Izpisua Belmonte JC. The cell cycle inhibitor p27Kip(1) controls self-renewal and pluripotency of human embryonic stem cells by regulating the cell cycle, Brachyury and Twist. Cell Cycle. 2011;10:1435–47.PubMedCentralPubMedCrossRefGoogle Scholar
  136. 136.
    Cheng T, Rodrigues N, Dombkowski D, Stier S, Scadden DT. Stem cell repopulation efficiency but not pool size is governed by p27(kip1). Nat Med. 2000;6:1235–40.PubMedCrossRefGoogle Scholar
  137. 137.
    Booth BW, Boulanger CA, Smith GH. Alveolar progenitor cells develop in mouse mammary glands independent of pregnancy and lactation. J Cell Physiol. 2007;212:729–36.PubMedCrossRefGoogle Scholar
  138. 138.
    Chang TH, Kunasegaran K, Tarulli GA, de Silva D, Voorhoeve PM, Pietersen AM. New insights into lineage restriction of mammary gland epithelium using parity-identified mammary epithelial cells. Breast Cancer Res. 2014;16:R1.PubMedCentralPubMedCrossRefGoogle Scholar
  139. 139.
    Matulka LA, Triplett AA, Wagner KU. Parity-induced mammary epithelial cells are multipotent and express cell surface markers associated with stem cells. Dev Biol. 2007;303:29–44.PubMedCrossRefGoogle Scholar
  140. 140.
    Boulanger CA, Wagner KU, Smith GH. Parity-induced mouse mammary epithelial cells are pluripotent, self-renewing and sensitive to TGF-beta1 expression. Oncogene. 2005;24:552–60.PubMedCrossRefGoogle Scholar
  141. 141.
    Henry MD, Triplett AA, Oh KB, Smith GH, Wagner KU. Parity-induced mammary epithelial cells facilitate tumorigenesis in MMTV-neu transgenic mice. Oncogene. 2004;23:6980–5.PubMedCrossRefGoogle Scholar
  142. 142.
    Smith GH, Medina D. Re-evaluation of mammary stem cell biology based on in vivo transplantation. Breast Cancer Res. 2008;10:203.PubMedCentralPubMedCrossRefGoogle Scholar
  143. 143.
    Wagner KU, Boulanger CA, Henry MD, Sgagias M, Hennighausen L, Smith GH. An adjunct mammary epithelial cell population in parous females: its role in functional adaptation and tissue renewal. Development. 2002;129:1377–86.PubMedGoogle Scholar
  144. 144.
    Yu Q, Geng Y, Sicinski P. Specific protection against breast cancers by cyclin D1 ablation. Nature. 2001;411:1017–21.PubMedCrossRefGoogle Scholar
  145. 145.
    Landis MW, Pawlyk BS, Li T, Sicinski P, Hinds PW. Cyclin D1-dependent kinase activity in murine development and mammary tumorigenesis. Cancer Cell. 2006;9:13–22.PubMedCrossRefGoogle Scholar
  146. 146.
    Russo J, Balogh GA, Russo IH. Full-term pregnancy induces a specific genomic signature in the human breast. Cancer Epidemiol Biomarkers Prev. 2008;17:51–66.PubMedCrossRefGoogle Scholar
  147. 147.
    Balogh GA, Heulings R, Mailo DA, Russo PA, Sheriff F, Russo IH, et al. Genomic signature induced by pregnancy in the human breast. Int J Oncol. 2006;28:399–410.PubMedGoogle Scholar
  148. 148.
    Verlinden I, Gungor N, Wouters K, Janssens J, Raus J, Michiels L. Parity-induced changes in global gene expression in the human mammary gland. Eur J Cancer Prev. 2005;14:129–37.PubMedCrossRefGoogle Scholar
  149. 149.
    Asztalos S, Gann PH, Hayes MK, Nonn L, Beam CA, Dai Y, et al. Gene expression patterns in the human breast after pregnancy. Cancer Prev Res (Phila). 2010;3:301–11.CrossRefGoogle Scholar
  150. 150.
    Meier-Abt F, Milani E, Roloff T, Brinkhaus H, Duss S, Meyer DS, et al. Parity induces differentiation and reduces Wnt/Notch signaling ratio and proliferation potential of basal stem/progenitor cells isolated from mouse mammary epithelium. Breast Cancer Res. 2013;15:R36.PubMedCentralPubMedCrossRefGoogle Scholar
  151. 151.
    Liu J, Sato C, Cerletti M, Wagers A. Notch signaling in the regulation of stem cell self-renewal and differentiation. Curr Top Dev Biol. 2010;92:367–409.PubMedCrossRefGoogle Scholar
  152. 152.
    Koch U, Lehal R, Radtke F. Stem cells living with a Notch. Development. 2013;140:689–704.PubMedCrossRefGoogle Scholar
  153. 153.
    Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 2003;17:1253–70.PubMedCentralPubMedCrossRefGoogle Scholar
  154. 154.
    Ling H, Sylvestre JR, Jolicoeur P. Notch1-induced mammary tumor development is cyclin D1-dependent and correlates with expansion of pre-malignant multipotent duct-limited progenitors. Oncogene. 2010;29:4543–54.PubMedCrossRefGoogle Scholar
  155. 155.
    Sale S, Lafkas D, Artavanis-Tsakonas S. Notch2 genetic fate mapping reveals two previously unrecognized mammary epithelial lineages. Nat Cell Biol. 2013;15:451–60.PubMedCentralPubMedCrossRefGoogle Scholar
  156. 156.
    Ling H, Sylvestre JR, Jolicoeur P. Cyclin D1-dependent induction of luminal inflammatory breast tumors by activated notch3. Cancer Res. 2013;73:5963–73.PubMedCrossRefGoogle Scholar
  157. 157.
    Bruno RD, Boulanger CA, Smith GH. Notch-induced mammary tumorigenesis does not involve the lobule-limited epithelial progenitor. Oncogene. 2012;31:60–7.PubMedCentralPubMedCrossRefGoogle Scholar
  158. 158.
    Chakrabarti R, Wei Y, Romano RA, DeCoste C, Kang Y, Sinha S. Elf5 regulates mammary gland stem/progenitor cell fate by influencing notch signaling. Stem Cells. 2012;30:1496–508.PubMedCrossRefGoogle Scholar
  159. 159.
    Milanese TR, Hartmann LC, Sellers TA, Frost MH, Vierkant RA, Maloney SD, et al. Age-related lobular involution and risk of breast cancer. J Natl Cancer Inst. 2006;98:1600–7.PubMedCrossRefGoogle Scholar
  160. 160.
    McCormack VA, Perry NM, Vinnicombe SJ, dos Santos SI. Changes and tracking of mammographic density in relation to Pike’s model of breast tissue aging: a UK longitudinal study. Int J Cancer. 2010;127:452–61.PubMedCrossRefGoogle Scholar
  161. 161.
    Well D, Yang H, Houseni M, Iruvuri S, Alzeair S, Sansovini M, et al. Age-related structural and metabolic changes in the pelvic reproductive end organs. Semin Nucl Med. 2007;37:173–84.PubMedCrossRefGoogle Scholar
  162. 162.
    Cleland WH, Mendelson CR, Simpson ER. Effects of aging and obesity on aromatase activity of human adipose cells. J Clin Endocrinol Metab. 1985;60:174–7.PubMedCrossRefGoogle Scholar
  163. 163.
    Shoker BS, Jarvis C, Sibson DR, Walker C, Sloane JP. Oestrogen receptor expression in the normal and pre-cancerous breast. J Pathol. 1999;188:237–44.PubMedCrossRefGoogle Scholar
  164. 164.
    Shyamala G, Chou YC, Louie SG, Guzman RC, Smith GH, Nandi S. Cellular expression of estrogen and progesterone receptors in mammary glands: regulation by hormones, development and aging. J Steroid Biochem Mol Biol. 2002;80:137–48.PubMedCrossRefGoogle Scholar
  165. 165.
    Arendt LM, Evans LC, Rugowski DE, Garcia-Barchino MJ, Rui H, Schuler LA. Ovarian hormones are not required for PRL-induced mammary tumorigenesis, but estrogen enhances neoplastic processes. J Endocrinol. 2009;203:99–110.PubMedCentralPubMedCrossRefGoogle Scholar
  166. 166.
    Arendt LM, Grafwallner-Huseth TL, Schuler LA. Prolactin-growth factor crosstalk reduces mammary estrogen responsiveness despite elevated ERalpha expression. Am J Pathol. 2009;174:1065–74.PubMedCentralPubMedCrossRefGoogle Scholar
  167. 167.
    Christov K, Chew KL, Ljung BM, Waldman FM, Duarte LA, Goodson III WH, et al. Proliferation of normal breast epithelial cells as shown by in vivo labeling with bromodeoxyuridine. Am J Pathol. 1991;138:1371–7.PubMedCentralPubMedGoogle Scholar
  168. 168.
    Garbe JC, Pepin F, Pelissier FA, Sputova K, Fridriksdottir AJ, Guo DE, et al. Accumulation of multipotent progenitors with a basal differentiation bias during aging of human mammary epithelia. Cancer Res. 2012;72:3687–701.PubMedCentralPubMedCrossRefGoogle Scholar
  169. 169.
    Walker RA, Martin CV. The aged breast. J Pathol. 2007;11:232–40.CrossRefGoogle Scholar
  170. 170.
    Yasui Y, Potter JD. The shape of age-incidence curves of female breast cancer by hormone-receptor status. Cancer Causes Control. 1999;10:431–7.PubMedCrossRefGoogle Scholar
  171. 171.
    Tarone RE, Chu KC. The greater impact of menopause on ER- than ER+ breast cancer incidence: a possible explanation (United States). Cancer Causes Control. 2002;13:7–14.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Developmental, Molecular, and Chemical Biology Department, Sackler School of Graduate Biomedical SciencesTufts University School of MedicineBostonUSA
  2. 2.Molecular Oncology Research InstituteTufts Medical CenterBostonUSA
  3. 3.Raymond and Beverly Sackler Laboratory for the Convergence of BiomedicalPhysical and Engineering SciencesBostonUSA
  4. 4.Department of Comparative Biosciences, School of Veterinary MedicineUniversity of Wisconsin-MadisonMadisonUSA
  5. 5.Developmental, Molecular, and Chemical Biology DepartmentTufts University School of MedicineBostonUSA

Personalised recommendations