Unsolved Mysteries of the Human Mammary Gland: Defining and Redefining the Critical Questions from the Lactation Consultant’s Perspective

  • Lisa Ann Marasco


Despite advances in knowledge about human lactation, clinicians face many problems when advising mothers who are experiencing breastfeeding difficulties that do not respond to normal management strategies. Primary insufficient milk production is now being acknowledged, but incidence rates have not been well studied. Many women have known histories of infertility, polycystic ovary syndrome, obesity, hypertension, insulin resistance, thyroid dysfunction, hyperandrogenism or other hormonal imbalances, while others have no obvious risk factors. Some present with obviously abnormal breasts that are pubescent, tuberous/tubular or asymmetric in shape, raising the question of insufficient mammary gland tissue. Other women have breasts that appear within normal limits yet do not lactate normally. Endocrine disruptors may underlie some of these cases but their impact on human milk production has not been well explored. Similarly, any problem with prolactin such as a deficiency in serum prolactin or receptor number, receptor resistance, or poor bioavailability or bioactivity could underlie some cases of insufficient lactation, yet these possibilities are rarely investigated. A weak or suppressed milk ejection reflex, often assumed to be psychosomatic, could be related to thyroid dysfunction or caused by downstream post-receptor pathway problems. In the absence of sufficient data regarding these situations, desperate mothers may turn to non-evidence-based remedies, sometimes at considerable cost and unknown risk. Research targeted to these clinical dilemmas is critical in order to develop evidence-based strategies and increase breastfeeding duration and success rates.


Mammary hypoplasia Lactation failure Hyperlactation Macroprolactin Connexin43 Serotonin Galactogogues 



I would like to thank the mothers of the Low Milk Supply and IGT Facebook group and the Mothers Overcoming Breastfeeding Issues (MOBI) listserv for their generosity in sharing their stories and photos for this article. I would also like to express my gratitude to Dr. Russ Hovey for help with the preparation of this manuscript as well as his many insights into individual situations that have helped sharpen my understanding of the physiology of lactation; progress cannot be made without such collaboration across the fields and disciplines.

Conflict of interest

The author declare that they have no conflict of interest.


  1. 1.
    Saadeh RJ. The baby-friendly hospital initiative 20 years on: facts, progress, and the way forward. J Hum Lact. 2012;28(3):272–5. doi: 10.1177/0890334412446690.PubMedGoogle Scholar
  2. 2.
    Li R, Fein SB, Chen J, Grummer-Strawn LM. Why mothers stop breastfeeding: mothers’ self-reported reasons for stopping during the first year. Pediatrics. 2008;122 Suppl 2:S69–76. doi: 10.1542/peds.2008-1315i.PubMedGoogle Scholar
  3. 3.
    Odom EC, Li R, Scanlon KS, Perrine CG, Grummer-Strawn L. Reasons for earlier than desired cessation of breastfeeding. Pediatrics. 2013;131(3):e726–32. doi: 10.1542/peds.2012-1295.PubMedGoogle Scholar
  4. 4.
    Brown CR, Dodds L, Legge A, Bryanton J, Semenic S. Factors influencing the reasons why mothers stop breastfeeding. Can J Public health. 2014;105(3):e179–85.PubMedGoogle Scholar
  5. 5.
    Olang B, Heidarzadeh A, Strandvik B, Yngve A. Reasons given by mothers for discontinuing breastfeeding in Iran. Int Breastfeed J. 2012;7(1):7. doi: 10.1186/1746-4358-7-7.PubMedCentralPubMedGoogle Scholar
  6. 6.
    Hurst N. Recognizing and treating delayed or failed lactogenesis II. J Midwifery Women’s Health. 2007;52(6):588–94.Google Scholar
  7. 7.
    West D, Marasco L. The breastfeeding mother’s guide to making more milk. McGraw Hill Professional; 2009.Google Scholar
  8. 8.
    Stuebe AM, Horton BJ, Chetwynd E, Watkins S, Grewen K, Meltzer-Brody S. Prevalence and risk factors for early, undesired weaning attributed to lactation dysfunction. J Womens Health (Larchmt). 2014. doi: 10.1089/jwh.2013.4506.Google Scholar
  9. 9.
    Kent JC, Prime DK, Garbin CP. Principles for maintaining or increasing breast milk production. J Obstet Gynecol Neonatal Nurs. 2012;41(1):114–21. doi: 10.1111/j.1552-6909.2011.01313.x.PubMedGoogle Scholar
  10. 10.
    Amir L. Breastfeeding: managing ‘supply’ difficulties. Aust Fam Physician. 2006;35(9):686–9.PubMedGoogle Scholar
  11. 11.
    Flaherman VJ, Hicks KG, Cabana MD, Lee KA. Maternal experience of interactions with providers among mothers with milk supply concern. Clin Pediatr (Phila). 2012;51(8):778–84. doi: 10.1177/0009922812448954.Google Scholar
  12. 12.
    Neville MC, Anderson SM, McManaman JL, Badger TM, Bunik M, Contractor N, et al. Lactation and neonatal nutrition: defining and refining the critical questions. J Mammary Gland Biol Neoplasia. 2012;17(2):167–88. doi: 10.1007/s10911-012-9261-5.PubMedCentralPubMedGoogle Scholar
  13. 13.
    Spence J. The modern decline of breast-feeding. Br Med J. 1938;2(4057):729–33.PubMedCentralPubMedGoogle Scholar
  14. 14.
    Deem H, McGeorge M. Breastfeeding. N Z Med J. 1958;57:539–56.PubMedGoogle Scholar
  15. 15.
    Neifert M, DeMarzo S, Seacat J, Young D, Leff M, Orleans M. The influence of breast surgery, breast appearance, and pregnancy-induced breast changes on lactation sufficiency as measured by infant weight gain. Birth. 1990;17(1):31–8.PubMedGoogle Scholar
  16. 16.
    Neifert MR. Prevention of breastfeeding tragedies. Pediatr Clin N Am. 2001;48(2):273–97.Google Scholar
  17. 17.
    Schoenberg N. Some mothers can’t breast-feed. Chic Tribune. 2013;3:2013.Google Scholar
  18. 18.
    Thoma ME, McLain AC, Louis JF, King RB, Trumble AC, Sundaram R, et al. Prevalence of infertility in the United States as estimated by the current duration approach and a traditional constructed approach. Fertil Steril. 2013;99(5):1324–31.e1. doi: 10.1016/j.fertnstert.2012.11.037.PubMedCentralPubMedGoogle Scholar
  19. 19.
    Stanford JB. What is the true prevalence of infertility? Fertil Steril. 2013;99(5):1201–2. doi: 10.1016/j.fertnstert.2012.12.006.PubMedGoogle Scholar
  20. 20.
    Chandra A, Copen CE, Stephen EH. Infertility and impaired fecundity in the United States, 1982–2010: data from the national survey of family growth. Natl Health Stat Rep. 2013;67:1–18.Google Scholar
  21. 21.
    ESHRE/ASRM. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod. 2004;19(1):41–7.Google Scholar
  22. 22.
    Sirmans SM, Pate KA. Epidemiology, diagnosis, and management of polycystic ovary syndrome. Clin Epidemiol. 2013;6:1–13. doi: 10.2147/clep.s37559.PubMedCentralPubMedGoogle Scholar
  23. 23.
    Gambineri A, Pelusi C, Vicennati V, Pagotto U, Pasquali R. Obesity and the polycystic ovary syndrome. Int J Obes Relat Metab Disord. 2002;26(7):883–96. doi: 10.1038/sj.ijo.0801994.PubMedGoogle Scholar
  24. 24.
    Vrbikova J, Hainer V. Obesity and polycystic ovary syndrome. Obes Facts. 2009;2(1):26–35. doi: 10.1159/000194971.PubMedGoogle Scholar
  25. 25.
    Singla R, Gupta Y, Khemani M, Aggarwal S. Thyroid disorders and polycystic ovary syndrome: an emerging relationship. Indian J Endocrinol Metab. 2015;19(1):25–9. doi: 10.4103/2230-8210.146860.PubMedCentralPubMedGoogle Scholar
  26. 26.
    Gaberscek S, Zaletel K, Schwetz V, Pieber T, Obermayer-Pietsch B, Lerchbaum E. Mechanisms in endocrinology: thyroid and polycystic ovary syndrome. Eur J Endocrinol. 2015;172(1):R9–21. doi: 10.1530/eje-14-0295.PubMedGoogle Scholar
  27. 27.
    Torris C, Thune I, Emaus A, Finstad SE, Bye A, Furberg AS, et al. Duration of lactation, maternal metabolic profile, and body composition in the Norwegian EBBA I-study. Breastfeed Med. 2013;8(1):8–15. doi: 10.1089/bfm.2012.0048.PubMedGoogle Scholar
  28. 28.
    Vanky E, Nordskar J, Leithe H, Hjorth-Hansen A, Martinussen M, Carlsen S. Breast size increment during pregnancy and breastfeeding in mothers with polycystic ovary syndrome: a follow-up study of a randomised controlled trial on metformin versus placebo. BJOG: Int J Obstet Gynaecol. 2012. doi: 10.1111/j.1471-0528.2012.03449.x.Google Scholar
  29. 29.
    Nommsen-Rivers LA, Dolan LM, Huang B. Timing of stage II lactogenesis is predicted by antenatal metabolic health in a cohort of primiparas. Breastfeed Med. 2012;7(1):43–9. doi: 10.1089/bfm.2011.0007.PubMedCentralPubMedGoogle Scholar
  30. 30.
    Routh C H F. Infant feeding and its influence on life, or, The causes and prevention of infant mortality. William Wood & Co.; 1879.Google Scholar
  31. 31.
    Dimitrakakis C, Bondy C. Androgens and the breast. Breast Cancer Res. 2009;11(5):212. doi: 10.1186/bcr2413.PubMedCentralPubMedGoogle Scholar
  32. 32.
    Kochenour NK. Lactation suppression. Clin Obstet Gynecol. 1980;23(4):1045–59.PubMedGoogle Scholar
  33. 33.
    Betzold CM, Hoover KL, Snyder CL. Delayed lactogenesis II: a comparison of four cases. J Midwifery Womens Health. 2004;49(2):132–7. doi: 10.1016/j.jmwh.2003.12.008.PubMedGoogle Scholar
  34. 34.
    Vanky E, Isaksen H, Moen MH, Carlsen SM. Breastfeeding in polycystic ovary syndrome. Acta Obstet Gynecol Scand. 2008;87(5):531–5. doi: 10.1080/00016340802007676.PubMedGoogle Scholar
  35. 35.
    Carlsen SM, Jacobsen G, Vanky E. Mid-pregnancy androgen levels are negatively associated with breastfeeding. Acta Obstet Gynecol Scand. 2010;89(1):87–94. doi: 10.3109/00016340903318006.PubMedGoogle Scholar
  36. 36.
    Soltani H, Arden M. Factors associated with breastfeeding up to 6 months postpartum in mothers with diabetes. J Obstet Gynecol Neonatal Nurs : JOGNN / NAACOG. 2009;38(5):586–94. doi: 10.1111/j.1552-6909.2009.01052.x.Google Scholar
  37. 37.
    Hummel S, Hummel M, Knopff A, Bonifacio E, Ziegler AG. [Breastfeeding in women with gestational diabetes]. Dtsch Med Wochenschr. 2008;133(5):180–4. doi: 10.1055/s-2008-1017493.PubMedGoogle Scholar
  38. 38.
    Lemay DG, Ballard OA, Hughes MA, Morrow AL, Horseman ND, Nommsen-Rivers LA. RNA sequencing of the human milk Fat layer transcriptome reveals distinct gene expression profiles at three stages of lactation. PLoS One. 2013. doi: 10.1371/journal.pone.0067531.Google Scholar
  39. 39.
    Neville MC, Webb P, Ramanathan P, Mannino MP, Pecorini C, Monks J, et al. The insulin receptor plays an important role in secretory differentiation in the mammary gland. Am J Physiol Endocrinol Metab. 2013;305(9):E1103–14. doi: 10.1152/ajpendo.00337.2013.PubMedCentralPubMedGoogle Scholar
  40. 40.
    Thatcher SS, Jackson EM. Pregnancy outcome in infertile patients with polycystic ovary syndrome who were treated with metformin. Fertil Steril. 2006;85(4):1002–9. doi: 10.1016/j.fertnstert.2005.09.047.PubMedGoogle Scholar
  41. 41.
    Abascal K, Yarnell E. Botanical galactagogues. Altern Complement Ther. 2008;14(6):288–94.Google Scholar
  42. 42.
    Stein I, Leventhal M. Amenorrhea associated with bilateral polycystic ovaries. Am J Obstet Gynecol. 1935;29:181–91.Google Scholar
  43. 43.
    Stein I. Bilateral polycystic ovaries. Am J Obstet Gynecol. 1945;50:385–96.Google Scholar
  44. 44.
    Stein IF, Cohen MR, Elson R. Results of bilateral ovarian wedge resection in 47 cases of sterility; 20 year end results; 75 cases of bilateral polycystic ovaries. Am J Obstet Gynecol. 1949;58(2):267–74.PubMedGoogle Scholar
  45. 45.
    Balcar V, Silinkova-Malkova E, Matys Z. Soft tissue radiography of the female breast and pelvic pneumoperitoneum in the stein-leventhal syndrome. Acta Radiol Diagn (Stockh). 1972;12(3):353–62.Google Scholar
  46. 46.
    Cruz-Korchin N, Korchin L, Gonzalez-Keelan C, Climent C, Morales I. Macromastia: how much of it is fat? Plast Reconstr Surg. 2002;109(1):64–8.PubMedGoogle Scholar
  47. 47.
    Marasco L, Marmet C, Shell E. Polycystic ovary syndrome: a connection to insufficient milk supply? J Hum Lact. 2000;16(2):143–8.PubMedGoogle Scholar
  48. 48.
    Wojcicki JM. Maternal prepregnancy body mass index and initiation and duration of breastfeeding: a review of the literature. J Women’s Health. 2011;20(3):341–7.Google Scholar
  49. 49.
    Nader S. Polycystic ovary syndrome and the androgen-insulin connection. Am J Obstet Gynecol. 1991;165(2):346–8.PubMedGoogle Scholar
  50. 50.
    Rasmussen K, Kjolhede C. Prepregnant overweight and obesity diminish the prolactin response to suckling. Pediatrics. 2004;113(5):1388.Google Scholar
  51. 51.
    Clark NM, Podolski AJ, Brooks ED, Chizen DR, Pierson RA, Lehotay DC, et al. Prevalence of polycystic ovary syndrome phenotypes using updated criteria for polycystic ovarian morphology: an assessment of over 100 consecutive women self-reporting features of polycystic ovary syndrome. Reprod Sci. 2014;21(8):1034–43. doi: 10.1177/1933719114522525.PubMedGoogle Scholar
  52. 52.
    Palomba S, Falbo A, Russo T, Tolino A, Orio F, Zullo F. Pregnancy in women with polycystic ovary syndrome: the effect of different phenotypes and features on obstetric and neonatal outcomes. Fertil Steril. 2010;94(5):1805–11. doi: 10.1016/j.fertnstert.2009.10.043.PubMedGoogle Scholar
  53. 53.
    Soules MR, Sherman S, Parrott E, Rebar R, Santoro N, Utian W, et al. Executive summary: stages of reproductive aging workshop (STRAW). Climacteric. 2001;4(4):267–72.PubMedGoogle Scholar
  54. 54.
    Wang Y, Tanbo T, Åbyholm T, Henriksen T. The impact of advanced maternal age and parity on obstetric and perinatal outcomes in singleton gestations. Arch Gynecol Obstet. 2011;284(1):31–7.PubMedCentralPubMedGoogle Scholar
  55. 55.
    Crawford NM, Steiner AZ. Age-related infertility. Obstet Gynecol Clin N Am. 2015;42(1):15–25. doi: 10.1016/j.ogc.2014.09.005.Google Scholar
  56. 56.
    Marquis GS, Penny ME, Diaz JM, Marin RM. Postpartum consequences of an overlap of breastfeeding and pregnancy: reduced breast milk intake and growth during early infancy. Pediatrics. 2002;109(4):e56.PubMedCentralPubMedGoogle Scholar
  57. 57.
    Nommsen-Rivers LA, Chantry CJ, Peerson JM, Cohen RJ, Dewey KG. Delayed onset of lactogenesis among first-time mothers is related to maternal obesity and factors associated with ineffective breastfeeding. Am J Clin Nutr. 2010;92(3):574–84. doi: 10.3945/ajcn.2010.29192.PubMedGoogle Scholar
  58. 58.
    Suzuki S. Maternal age and breastfeeding at 1 month after delivery at a Japanese hospital. Breastfeed Med. 2014;9(2):101–2. doi: 10.1089/bfm.2013.0100.PubMedGoogle Scholar
  59. 59.
    Murase M, Nommsen-Rivers L, Morrow AL, Hatsuno M, Mizuno K, Taki M, et al. Predictors of low milk volume among mothers who delivered preterm. J Hum Lact. 2014;30(4):425–35. doi: 10.1177/0890334414543951.PubMedGoogle Scholar
  60. 60.
    Shermak M. Congenital and Developmental Abnormalities of the Breast. In: Jatoi I, Kaufmann M, editors. Management of Breast Disease. Berlin: Springer-Verlag; 2010. p. 37–51.Google Scholar
  61. 61.
    Dewey K, Finley D, Strode M, Lönnerdal B. Relationship of maternal age to breast milk volume and composition. Human Lactation 2. Springer; 1986. p. 263–73.Google Scholar
  62. 62.
    De Tata V. Age-related impairment of pancreatic beta-cell function: pathophysiological and cellular mechanisms. Front Endocrinol. 2014;5:138. doi: 10.3389/fendo.2014.00138.Google Scholar
  63. 63.
    Neifert MR, Seacat JM, Jobe WE. Lactation failure due to insufficient glandular development of the breast. Pediatrics. 1985;76(5):823–8.PubMedGoogle Scholar
  64. 64.
    Huggins K, Petok E, Mireles O. Markers of Lactation Insufficiency: A Study of 34 Mothers. Curr Issues Clin Lact. 2000:25–35Google Scholar
  65. 65.
    Arbour MW, Kessler JL. Mammary hypoplasia: not every breast can produce sufficient milk. J Midwifery Womens Health. 2013;58(4):457–61. doi: 10.1111/jmwh.12070.PubMedGoogle Scholar
  66. 66.
    Neifert MR, Seacat JM. Lactation insufficiency: a rational approach. Birth. 1987;14(4):182–8.PubMedGoogle Scholar
  67. 67.
    Cassar-Uhl D. Finding sufficiency: breastfeeding with insufficient glandular tissue. Amarillo: Praeclarus Press, LLC; 2014.Google Scholar
  68. 68.
    Lieberman P, Ravichandran P. Breast Surgery Likely to Cause Breastfeeding Problems. National Research Center for Women and Families. 2010.Google Scholar
  69. 69.
    Andrade RA, Coca KP, Abrao AC. Breastfeeding pattern in the first month of life in women submitted to breast reduction and augmentation. J Pediatr. 2010;86(3):239–44. doi: 10.2223/JPED.2002.Google Scholar
  70. 70.
    Pacifico MD, Kang NV. The tuberous breast revisited. J Plast Reconstr Aesthet Surg. 2007;60(5):455–64. doi: 10.1016/j.bjps.2007.01.002.PubMedGoogle Scholar
  71. 71.
    Klinger M, Caviggioli F, Klinger F, Villani F, Arra E, Di Tommaso L. Tuberous breast: morphological study and overview of a borderline entity. Can J Plast Surg = J Can de chirurgie Plast. 2011;19(2):42–4.Google Scholar
  72. 72.
    Ito O, Kawazoe T, Suzuki S, Muneuchi G, Saso Y, Hamamoto Y, et al. Mammary hypoplasia resulting from hormone receptor deficiency. Plast Reconstr Surg. 2004;113(3):975–7.PubMedGoogle Scholar
  73. 73.
    Guillette EA, Conard C, Lares F, Aguilar MG, McLachlan J, Guillette Jr LJ. Altered breast development in young girls from an agricultural environment. Environ Health Perspect. 2006;114(3):471–5.PubMedCentralPubMedGoogle Scholar
  74. 74.
    Hansen T. Pesticide exposure deprives Yaqui girls of breastfeeding-- ever. Indian Country Today 2010.Google Scholar
  75. 75.
    Crain DA, Janssen SJ, Edwards TM, Heindel J, Ho SM, Hunt P, et al. Female reproductive disorders: the roles of endocrine-disrupting compounds and developmental timing. Fertil Steril. 2008;90(4):911–40. doi: 10.1016/j.fertnstert.2008.08.067.PubMedCentralPubMedGoogle Scholar
  76. 76.
    Neville M, Walsh C. Effects of xenobiotics on milk secretion and composition. Am J Clin Nutr. 1995;61(3):687S–94.PubMedGoogle Scholar
  77. 77.
    Cox DB, Owens RA, Hartmann PE. Blood and milk prolactin and the rate of milk synthesis in women. Exp Physiol. 1996;81(6):1007–20.PubMedGoogle Scholar
  78. 78.
    O’Brien CE, Krebs NF, Westcott JL, Dong F. Relationships among plasma zinc, plasma prolactin, milk transfer, and milk zinc in lactating women. J Hum Lact. 2007;23(2):179–83. doi: 10.1177/0890334407300021.PubMedGoogle Scholar
  79. 79.
    Koprowski JA, Tucker HA. Serum prolactin during various physiological states and its relationship to milk production in the bovine. Endocrinology. 1973;92(5):1480–7. doi: 10.1210/endo-92-5-1480.PubMedGoogle Scholar
  80. 80.
    Mennella JA, Pepino MY. Breastfeeding and prolactin levels in lactating women with a family history of alcoholism. Pediatrics. 2010;125(5):e1162–70. doi: 10.1542/peds.2009-3040.PubMedCentralPubMedGoogle Scholar
  81. 81.
    Iwama S, Welt CK, Romero CJ, Radovick S, Caturegli P. Isolated prolactin deficiency associated with serum autoantibodies against prolactin-secreting cells. J Clin Endocrinol Metab. 2013;98(10):3920–5. doi: 10.1210/jc.2013-2411.PubMedCentralPubMedGoogle Scholar
  82. 82.
    De Bellis A, Colella C, Bellastella G, Lucci E, Sinisi AA, Bizzarro A, et al. Late primary autoimmune hypothyroidism in a patient with postdelivery autoimmune hypopituitarism associated with antibodies to growth hormone and prolactin-secreting cells. Thyroid. 2013;23(8):1037–41. doi: 10.1089/thy.2012.0482.PubMedGoogle Scholar
  83. 83.
    Cooper GS, Bynum ML, Somers EC. Recent insights in the epidemiology of autoimmune diseases: improved prevalence estimates and understanding of clustering of diseases. J Autoimmun. 2009;33(3–4):197–207. doi: 10.1016/j.jaut.2009.09.008.PubMedCentralPubMedGoogle Scholar
  84. 84.
    Neville MC, Morton J. Physiology and endocrine changes underlying human lactogenesis II. J Nutr. 2001;131(11):3005S–8.PubMedGoogle Scholar
  85. 85.
    Tyson JE, Hwang P, Guyda H, Friesen HG. Studies of prolactin secretion in human pregnancy. Am J Obstet Gynecol. 1972;113(1):14–20.PubMedGoogle Scholar
  86. 86.
    López MÁC, Rodríguez JLR, García MR. Chapter 12: Physiological and pathological hyperprolactinemia: can we minimize errors in the clinical practice? Prolactin InTech; 2013.Google Scholar
  87. 87.
    Callejas L, Berens P, Nader S. Breastfeeding failure secondary to idiopathic isolated prolactin deficiency: report of two cases. Breastfeed Med. 2015. doi: 10.1089/bfm.2015.0003.PubMedGoogle Scholar
  88. 88.
    Lawrence RA, Lawrence RM. Breastfeeding: a guide for the medical profession. 7th ed. Maryland Heights: Elsevier Mosby; 2011. p. 71.Google Scholar
  89. 89.
    Koukoulis GN. Macroprolactinemia: an unnoticeable factor. Hormones (Athens). 2003;2:91–2.Google Scholar
  90. 90.
    Chen C-C, Stairs DB, Boxer RB, Belka GK, Horseman ND, Alvarez JV, et al. Autocrine prolactin induced by the Pten–Akt pathway is required for lactation initiation and provides a direct link between the Akt and Stat5 pathways. Genes Dev. 2012;26(19):2154–68.PubMedCentralPubMedGoogle Scholar
  91. 91.
    Auriemma RS, Perone Y, Di Sarno A, Grasso LFS, Guerra E, Gasperi M, et al. Results of a single-center observational 10-year survey study on recurrence of hyperprolactinemia after pregnancy and lactation. J Clin Endocrinol Metab. 2013;98(1):372–9. doi: 10.1210/jc.2012-3039.PubMedGoogle Scholar
  92. 92.
    Batrinos ML, Panitsa-Faflia C, Anapliotou M, Pitoulis S. Prolactin and placental hormone levels during pregnancy in prolactinomas. Int J Fertil. 1981;26(2):77–85.PubMedGoogle Scholar
  93. 93.
    Cheng W, Zhang Z. [Management of pituitary adenoma in pregnancy]. Zhonghua fu chan ke za zhi. 1996;31(9):537–9.PubMedGoogle Scholar
  94. 94.
    Ingram JC, Woolridge MW, Greenwood RJ, McGrath L. Maternal predictors of early breast milk output. Acta Paediatr. 1999;88(5):493–9.PubMedGoogle Scholar
  95. 95.
    Hurley WL. Role of prolactin. In: Lactation Biology ANSC 438. University of Illinois, Urbana-Champaign. 2010. Accessed 15 Feb 2015.
  96. 96.
    Varas SM, Jahn GA. The expression of estrogen, prolactin, and progesterone receptors in mammary gland and liver of female rats during pregnancy and early postpartum: regulation by thyroid hormones. Endocr Res. 2005;31(4):357–70.PubMedGoogle Scholar
  97. 97.
    Zargar AH, Salahuddin M, Laway BA, Masoodi SR, Ganie MA, Bhat MH. Puerperal alactogenesis with normal prolactin dynamics: is prolactin resistance the cause? Fertil Steril. 2000;74(3):598–600.PubMedGoogle Scholar
  98. 98.
    Hovey RC, Trott JF, Vonderhaar BK. Establishing a framework for the functional mammary gland: from endocrinology to morphology. J Mammary Gland Biol Neoplasia. 2002;7(1):17–38.PubMedGoogle Scholar
  99. 99.
    Motil K, Thotathuchery M, Montandon C, Hachey D, Boutton T, Klein P, et al. Insulin, cortisol and thyroid hormones modulate maternal protein status and milk production and composition in humans. J Nutr. 1994;124(8):1248–57.PubMedGoogle Scholar
  100. 100.
    Miyake A, Tahara M, Koike K, Tanizawa O. Decrease in neonatal suckled milk volume in diabetic women. Eur J Obstet Gynecol Reprod Biol. 1989;33(1):49–53.PubMedGoogle Scholar
  101. 101.
    Speller E, Brodribb W. Breastfeeding and thyroid disease: a literature review. Breastfeed Rev. 2012;20(2):41–7.PubMedGoogle Scholar
  102. 102.
    Stein M. Failure to thrive in a four-month-old nursing infant. Dev Behav Pediatr. 2002;23(4):S69–73.Google Scholar
  103. 103.
    Buckshee K, Kriplani A, Kapil A, Bhargava VL, Takkar D. Hypothyroidism complicating pregnancy. Aust N Z J Obstet Gynaecol. 1992;32(3):240–2.PubMedGoogle Scholar
  104. 104.
    Marasco L. The impact of thyroid dysfunction on lactation. Breastfeed Abstr. 2006;25(2):9. 11–2.Google Scholar
  105. 105.
    Capuco AV, Connor EE, Wood DL. Regulation of mammary gland sensitivity to thyroid hormones during the transition from pregnancy to lactation. Exp Biol Med (Maywood). 2008;233(10):1309–14. doi: 10.3181/0803-RM-85.Google Scholar
  106. 106.
    Capuco AV, Kahl S, Jack LJ, Bishop JO, Wallace H. Prolactin and growth hormone stimulation of lactation in mice requires thyroid hormones. Proc Soc Exp Biol Med. 1999;221(4):345–51.PubMedGoogle Scholar
  107. 107.
    Hapon MB, Varas SM, Gimenez MS, Jahn GA. Reduction of mammary and liver lipogenesis and alteration of milk composition during lactation in rats by hypothyroidism. Thyroid. 2007;17(1):11–8. doi: 10.1089/thy.2005.0267.PubMedGoogle Scholar
  108. 108.
    Hapon MB, Varas SM, Jahn GA, Gimenez MS. Effects of hypothyroidism on mammary and liver lipid metabolism in virgin and late-pregnant rats. J Lipid Res. 2005;46(6):1320–30. doi: 10.1194/jlr.M400325-JLR200.PubMedGoogle Scholar
  109. 109.
    Hapon MB, Simoncini M, Via G, Jahn GA. Effect of hypothyroidism on hormone profiles in virgin, pregnant and lactating rats, and on lactation. Reproduction. 2003;126(3):371–82.PubMedGoogle Scholar
  110. 110.
    Brabant G, Beck-Peccoz P, Jarzab B, Laurberg P, Orgiazzi J, Szabolcs I, et al. Is there a need to redefine the upper normal limit of TSH? Eur J Endocrinol. 2006;154(5):633–7. doi: 10.1530/eje.1.02136.PubMedGoogle Scholar
  111. 111.
    Waise A, Price HC. The upper limit of the reference range for thyroid-stimulating hormone should not be confused with a cut-off to define subclinical hypothyroidism. Ann Clin Biochem. 2009;46(Pt 2):93–8. doi: 10.1258/acb.2008.008113.PubMedGoogle Scholar
  112. 112.
    Stagnaro-Green A. Optimal care of the pregnant woman with thyroid disease. J Clin Endocrinol Metab. 2012;97(8):2619–22.PubMedGoogle Scholar
  113. 113.
    Negro R, Schwartz ARG, Tinelli A, Mangieri T, Stagnaro-Green A. Increased pregnancy loss rate in thyroid antibody negative women with TSH levels between 2.5 and 5.0 in the first trimester of pregnancy. J Clin Endocrinol Metab. 2010;95:E44–8.PubMedGoogle Scholar
  114. 114.
    Joshi JV, Bhandarkar SD, Chadha M, Balaiah D, Shah R. Menstrual irregularities and lactation failure may precede thyroid dysfunction or goitre. J Postgrad Med. 1993;39(3):137–41.PubMedGoogle Scholar
  115. 115.
    Varas SM, Munoz EM, Hapon MB, Aguilera Merlo CI, Gimenez MS, Jahn GA. Hyperthyroidism and production of precocious involution in the mammary glands of lactating rats. Reproduction. 2002;124(5):691–702.PubMedGoogle Scholar
  116. 116.
    Geddes DT. The use of ultrasound to identify milk ejection in women – tips and pitfalls. Int Breastfeed J. 2009;4:5. doi: 10.1186/1746-4358-4-5.PubMedCentralPubMedGoogle Scholar
  117. 117.
    Hurley WL. Residual Milk. In: Lactation Biology ANSC 438. University of Illinois, Urbana-Champaign. 2010. Accessed 15 Feb 2015.
  118. 118.
    Ueda T, Yokoyama Y, Irahara M, Aono T. Influence of psychological stress on suckling-induced pulsatile oxytocin release. Obstet Gynecol. 1994;84(2):259–62.PubMedGoogle Scholar
  119. 119.
    Dewey KG. Maternal and fetal stress are associated with impaired lactogenesis in humans. J Nutr. 2001;131(11):3012S–5.PubMedGoogle Scholar
  120. 120.
    Baxley SE, Jiang W, Serra R. Misexpression of wingless-related MMTV integration site 5A in mouse mammary gland inhibits the milk ejection response and regulates Connexin43 phosphorylation. Biol Reprod. 2011;85(5):907–15. doi: 10.1095/biolreprod.111.091645.PubMedCentralPubMedGoogle Scholar
  121. 121.
    Reichenstein M, Rauner G, Barash I. Conditional repression of STAT5 expression during lactation reveals its exclusive roles in mammary gland morphology, milk-protein gene expression, and neonate growth. Mol Reprod Dev. 2011;78(8):585–96. doi: 10.1002/mrd.21345.PubMedGoogle Scholar
  122. 122.
    Plante I, Wallis A, Shao Q, Laird DW. Milk secretion and ejection are impaired in the mammary gland of mice harboring a Cx43 mutant while expression and localization of tight and adherens junction proteins remain unchanged. Biol Reprod. 2010;82(5):837–47. doi: 10.1095/biolreprod.109.081406.PubMedGoogle Scholar
  123. 123.
    Plante I, Laird DW. Decreased levels of connexin43 result in impaired development of the mammary gland in a mouse model of oculodentodigital dysplasia. Dev Biol. 2008;318(2):312–22. doi: 10.1016/j.ydbio.2008.03.033.PubMedGoogle Scholar
  124. 124.
    Muto T, Tien T, Kim D, Sarthy VP, Roy S. High glucose alters Cx43 expression and gap junction intercellular communication in retinal Muller cells: promotes Muller cell and pericyte apoptosis. Invest Ophthalmol Vis Sci. 2014;55(7):4327–37. doi: 10.1167/iovs.14-14606.PubMedCentralPubMedGoogle Scholar
  125. 125.
    Weisskopf E, Fischer CJ, Bickle Graz M, Morisod Harari M, Tolsa JF, Claris O, et al. Risk-benefit balance assessment of SSRI antidepressant use during pregnancy and lactation based on best available evidence. Expert Opin Drug Saf. 2015;14(3):413–27. doi: 10.1517/14740338.2015.997708.PubMedGoogle Scholar
  126. 126.
    Hernandez LL, Collier JL, Vomachka AJ, Collier R, Horseman N. Suppression of lactation and acceleration of involution in the bovine mammary gland by a selective serotonin reuptake inhibitor. J Endocrinol. 2011;209(1):45.PubMedGoogle Scholar
  127. 127.
    Pai VP, Hernandez LL, Stull MA, Horseman ND. The type 7 serotonin receptor, 5-HT(7), is essential in the mammary gland for regulation of mammary epithelial structure and function. BioMed Res Int. 2015;2015:364746. doi: 10.1155/2015/364746.PubMedCentralPubMedGoogle Scholar
  128. 128.
    Horseman ND, Collier RJ. Serotonin: a local regulator in the mammary gland epithelium. Ann Rev Animal Biosci. 2014;2:353–74. doi: 10.1146/annurev-animal-022513-114227.Google Scholar
  129. 129.
    Hernandez LL, Grayson BE, Yadav E, Seeley RJ, Horseman ND. High Fat diet alters lactation outcomes: possible involvement of inflammatory and serotonergic pathways. PLoS One. 2012;7(3):e32598. doi: 10.1371/journal.pone.0032598.PubMedCentralPubMedGoogle Scholar
  130. 130.
    Hutcheon JA, Lisonkova S, Joseph KS. Epidemiology of pre-eclampsia and the other hypertensive disorders of pregnancy. Best Pract Res Clin Obstet Gynaecol. 2011;25(4):391–403. doi: 10.1016/j.bpobgyn.2011.01.006.PubMedGoogle Scholar
  131. 131.
    Yabes-Almirante C, Lim CHTN. Enhancement of breastfeeding among hypertensive mothers. Increasingly Saf Success Pregnancies. 1996;12:279–86.Google Scholar
  132. 132.
    Leeners B, Rath W, Kuse S, Neumaier-Wagner P. Breast-feeding in women with hypertensive disorders in pregnancy. J Perinat Med. 2005;33(6):553–60.PubMedGoogle Scholar
  133. 133.
    Majumdar S, Dasgupta H, Bhattacharya K, Bhattacharya A. A study of placenta in normal and hypertensive pregnancies. J Anat Soc India. 2005;54(2):7–12.Google Scholar
  134. 134.
    Gouldsborough I, Black V, Johnson IT, Ashton N. Maternal nursing behaviour and the delivery of milk to the neonatal spontaneously hypertensive rat. Acta Physiol Scand. 1998;162(1):107–14.PubMedGoogle Scholar
  135. 135.
    Wlodek M, Wescott K, Serruto A, O’Dowd R, Wassef L, Ho P, et al. Impaired mammary function and parathyroid hormone-related protein during lactation in growth-restricted spontaneously hypertensive rats. J Endocrinol. 2003;178(2):233–45.PubMedGoogle Scholar
  136. 136.
    Haldeman W. Can magnesium sulfate therapy impact lactogenesis? J Hum Lact. 1993;9(4):249–52.PubMedGoogle Scholar
  137. 137.
    Adams R S, Hutchinson L J, Ishler V A. Trouble shooting problems with low milk production. Penn State Dairy and Animal Science Fact Sheet;1998 98–16.Google Scholar
  138. 138.
    Jelliffe DB, Jelliffe EF. The volume and composition of human milk in poorly nourished communities. A review. Am J Clin Nutr. 1978;31(3):492–515.PubMedGoogle Scholar
  139. 139.
    Penagos Tabares F, Bedoya Jaramillo JV, Ruiz-Cortés ZT. Pharmacological overview of galactogogues. Vet Med Int. 2014;2014:602894. doi: 10.1155/2014/602894.PubMedCentralPubMedGoogle Scholar
  140. 140.
    Jacobson H. Mother food: food and herbs that promote milk production and mother’s health self-published; 2004Google Scholar
  141. 141.
    Lamberts SW, Macleod RM. Regulation of prolactin secretion at the level of the lactotroph. Physiol Rev. 1990;70(2):279–318.PubMedGoogle Scholar
  142. 142.
    Merritt JE, Brown BL. An investigation of the involvement of calcium in the control of prolactin secretion: studies with low calcium, methoxyverapamil, cobalt and manganese. J Endocrinol. 1984;101(3):319–25.PubMedGoogle Scholar
  143. 143.
    Henly S, Anderson C, Avery M, Hills-Bonuyk S, Potter S, Duckett L. Anemia and insufficient milk in first-time mothers. Birth. 1995;22(2):87–92.Google Scholar
  144. 144.
    O’Connor DL, Picciano MF, Sherman AR. Impact of maternal iron deficiency on quality and quantity of milk ingested by neonatal rats. Br J Nutr. 1988;60(3):477–85.PubMedGoogle Scholar
  145. 145.
    Toppare MF, Kitapci F, Senses DA, Kaya IS, Dilmen U, Laleli Y. Lactational failure–study of risk factors in Turkish mothers. Indian J Pediatr. 1994;61(3):269–76.PubMedGoogle Scholar
  146. 146.
    Dempsey C, McCormick NH, Croxford TP, Seo YA, Grider A, Kelleher SL. Marginal maternal zinc deficiency in lactating mice reduces secretory capacity and alters milk composition. J Nutr. 2012;142(4):655–60. doi: 10.3945/jn.111.150623.PubMedCentralPubMedGoogle Scholar
  147. 147.
    Stone LP, Stone PM, Rydbom EA, Stone LA, Stone TE, Wilkens LE, et al. Customized nutritional enhancement for pregnant women appears to lower incidence of certain common maternal and neonatal complications: an observational study. Glob Adv Health Med : Improv Healthcare Outcomes Worldw. 2014;3(6):50–5. doi: 10.7453/gahmj.2014.053.Google Scholar
  148. 148.
    Mortel M, Mehta SD. Systematic review of the efficacy of herbal galactogogues. J Hum Lact. 2013;29(2):154–62. doi: 10.1177/0890334413477243.PubMedGoogle Scholar
  149. 149.
    Budzynska K, Gardner ZE, Low Dog T, Gardiner P. Complementary, holistic, and integrative medicine: advice for clinicians on herbs and breastfeeding. Pediatr Rev / Am Acad Pediatr. 2013;34(8):343–52. doi: 10.1542/pir.34-8-343. quiz 52–3.Google Scholar
  150. 150.
    Garg R, Gupta V. A comparative study on galactogogue property of milk and aqueous decoction of asparagus racemosus in rats. Int J Pharmacogn Phytochem Res. 2010;2(2):36–9.Google Scholar
  151. 151.
    Bingel A, Farnsworth N. Higher plants as potential sources of galactogogues. Econ Med Plant Res. 1994;6(1–54):2–53.Google Scholar
  152. 152.
    MacIntosh J. What is the Pharmacological basis for the action of herbs that promote lactation and how can they best be utilized? Part I. Can J Herbalism. 2003;24(4):15–9. 36.Google Scholar
  153. 153.
    MacIntosh J. What is the Pharmacological basis for the action of herbs that promote lactation and how can they best be utilized? Part II. Can J Herbalism. 2004;25(1):15–21. 38.Google Scholar
  154. 154.
    Stein J. Afterbirth: it’s what’s for dinner. Time Magazine. 2009 July 3.Google Scholar
  155. 155.
    Soyková-Pachnerová E, Brutar V, Golová B, Zvolská E. Placenta as a lactagogon. Gynecol Obstet Investig. 1954;138(6):617–27.Google Scholar
  156. 156.
    Vallone S. The role of subluxation and chiropractic care in hypolactation. J Clin Chiropr Pediatr. 2007;8(1–2):518–24.Google Scholar
  157. 157.
    Sutherland RC, Juss TS, Wakerley JB. Prolonged electrical stimulation of the nipples evokes intermittent milk ejection in the anaesthetised lactating rat. Exp Brain Res. 1987;66(1):29–34.PubMedGoogle Scholar
  158. 158.
    Baird A. How to use a TENS unit to aid in lactation. eHow Health 2010.Google Scholar
  159. 159.
    Smith KL. How do I use a TENS unit to re-lactate? 2015. Accessed 15 Feb 2015.
  160. 160.
    Wang Q, Qiao H, Bai J. Low frequency ultrasound promotes lactation in lactating rats. Nan fang yi ke da xue xue bao = J South Med Univ. 2012;32(5):730–3.Google Scholar
  161. 161.
    Ayers J. The use of alternative therapies in support of breastfeeding. J Hum Lact. 2000;16(1):52–6.PubMedGoogle Scholar
  162. 162.
    Yokoyama Y, Ueda T, Irahara M, Aono T. Releases of oxytocin and prolactin during breast massage and suckling in puerperal women. Eur J Obstet Gynecol Reprod Biol. 1994;53(1):17–20.PubMedGoogle Scholar
  163. 163.
    Cowley KC. Psychogenic and pharmacologic induction of the let-down reflex can facilitate breastfeeding by tetraplegic women: a report of 3 cases. Arch Phys Med Rehabil. 2005;86(6):1261–4.PubMedGoogle Scholar
  164. 164.
    Feher S, Berger L, Johnson J, Wilde J. Increasing breast milk production for premature infants with a relaxation/imagery audiotape. Pediatrics. 1989;83(1):57–60.PubMedGoogle Scholar
  165. 165.
    Pincus L, editor. Hypnosis: Using the Power of the Mind to Help the Power of the Breast. Annual meeting of the International Lactation Consultant Association. Scottsdale, AZ; 1999.Google Scholar
  166. 166.
    Singh G, Chouhan R, Kidhu K. Effect of antenatal expression of breast milk at term in reducing breast feeding failures. MJAFI. 2009;65:131–3.Google Scholar
  167. 167.
    Wang H, An J, Han Y, Huang L, Zhao J, Wei L, et al. Multicentral randomized controlled stuides on acupuncture at Shaoze (SI 1) for treatment of postpartum hypolactation. Zhongguo Zhen Jiu. 2007;27(2):85–8.PubMedGoogle Scholar
  168. 168.
    Lu P, Zheng J, Zhao Y, Chen J, Huang L. Research advance on tuina and postpartum milk secretion. J Acupunct Tuina Sci. 2009;7(6):375–8.Google Scholar
  169. 169.
    Wei L, Wang H, Han Y, Li C. Clinical observation on the effects of electroacupuncture at Shaoze (SI 1) in 46 cases of postpartum insufficient lactation. J Trad Chin Med = Chung i tsa chih ying wen pan / sponsored by All-China Association of Traditional Chinese Medicine, Academy of Traditional Chinese Medicine. 2008;28(3):168–72.Google Scholar
  170. 170.
    He JQ, Chen BY, Huang T, Li N, Bai J, Gu M, et al. Randomized controlled multi-central study on acupuncture at Tanzhong (CV 17) for treatment of postpartum hypolactation. Zhongguo zhen jiu = Chin Acupunct Moxibustion. 2008;28(5):317–20.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Expressly Yours Lactation ServiceSanta MariaUSA
  2. 2.Santa Barbara County Public Health Department/ Nutrition Services/Breastfeeding ProgramSanta MariaUSA

Personalised recommendations