Advertisement

Breast Cancer Stem Cells and the Immune System: Promotion, Evasion and Therapy

  • Sarah T. Boyle
  • Marina Kochetkova
Article

Abstract

Cancer stem cells are believed to be a subset of heterogeneous tumour cells responsible for tumour initiation, growth, local invasion, and metastasis. In breast cancer, numerous factors have been implicated in regulation of cancer stem cells, but there is still a paucity of information regarding precise molecular and cellular mechanisms guiding their pathobiology. Components of both the adaptive and the innate immune system have been shown to play a crucial role in supporting breast cancer growth and spread, and recently some immune mediators, both molecules and cells, have been reported to influence breast cancer stem cell biology. This review summarises a small, pioneering body of evidence for the potentially important function of the “immuniche” in maintaining and supporting breast cancer stem cells.

Keywords

Breast cancer Cancer stem cells Immune system Chemokine Cytokine Immunotherapy 

Abbreviations

ALDH1

Aldehyde dehydrogenase 1

BCSC

Breast cancer stem cell

CAF

Cancer-associated fibroblast

CCL

C-C chemokine ligand

CCR

C-C chemokine receptor

CSC

Cancer stem cell

CXCL

C-X-C chemokine ligand

CXCR

C-X-C chemokine receptor

EMT

Epithelial-to-mesenchymal transition

IL-6

Interleukin-6

IL-8

Interleukin-8

MFE

Mammosphere-forming efficiency

MMTV

Mouse mammary tumour virus

MSC

Mesenchymal stem cell

PyMT

Polyoma middle T antigen

RANK

Receptor activator of NFκB

RANKL

Receptor activator of NFκB ligand

TAM

Tumour-associated macrophage

TGF-β

Transforming growth factor β

Notes

Acknowledgments

We thank Miss Michelle Turvey for critical reading of the manuscript. Work by S. T. Boyle and M. Kochetkova is supported by a grant from the National Health and Medical Research Council and the Australian Postgraduate Award.

References

  1. 1.
    Clevers H. The cancer stem cell: premises, promises and challenges. Nat Med. 2011;17(3):313–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3(7):730–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Visvader JE, Lindeman GJ. Cancer stem cells: current status and evolving complexities. Cell Stem Cell. 2012;10(6):717–28.PubMedCrossRefGoogle Scholar
  4. 4.
    Malanchi I et al. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature. 2012;481(7379):85–9.CrossRefGoogle Scholar
  5. 5.
    Bouras T et al. Notch signaling regulates mammary stem cell function and luminal cell-fate commitment. Cell Stem Cell. 2008;3(4):429–41.PubMedCrossRefGoogle Scholar
  6. 6.
    Liu S et al. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res. 2006;66(12):6063–71.PubMedCrossRefGoogle Scholar
  7. 7.
    Wang, Y., et al., Transforming growth factor-beta regulates the sphere-initiating stem cell-like feature in breast cancer through miRNA-181 and ATM. Oncogene, 2010.Google Scholar
  8. 8.
    van Amerongen R, Bowman AN, Nusse R. Developmental stage and time dictate the fate of Wnt/beta-catenin-responsive stem cells in the mammary gland. Cell Stem Cell. 2012;11(3):387–400.PubMedCrossRefGoogle Scholar
  9. 9.
    Karamboulas C, Ailles L. Developmental signaling pathways in cancer stem cells of solid tumors. Biochim Biophys Acta. 2013;1830(2):2481–95.PubMedCrossRefGoogle Scholar
  10. 10.
    Alison, M.R., S.M. Lim, and L.J. Nicholson, Cancer stem cells: problems for therapy? J Pathol, 2010.Google Scholar
  11. 11.
    Al-Hajj M et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100(7):3983–8.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Shackleton M et al. Generation of a functional mammary gland from a single stem cell. Nature. 2006;439(7072):84–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Stingl J et al. Purification and unique properties of mammary epithelial stem cells. Nature. 2006;439(7079):993–7.PubMedGoogle Scholar
  14. 14.
    Patrawala L et al. Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2- cancer cells are similarly tumorigenic. Cancer Res. 2005;65(14):6207–19.PubMedCrossRefGoogle Scholar
  15. 15.
    Ginestier C et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1(5):555–67.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Dontu G et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 2003;17(10):1253–70.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.PubMedCrossRefGoogle Scholar
  18. 18.
    Aspord C et al. Breast cancer instructs dendritic cells to prime interleukin 13-secreting CD4+ T cells that facilitate tumor development. J Exp Med. 2007;204(5):1037–47.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    DeNardo DG, Coussens LM. Inflammation and breast cancer. Balancing immune response: crosstalk between adaptive and innate immune cells during breast cancer progression. Breast Cancer Res. 2007;9(4):212.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Olkhanud PB et al. Tumor-evoked regulatory B cells promote breast cancer metastasis by converting resting CD4(+) T cells to T-regulatory cells. Cancer Res. 2011;71(10):3505–15.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Liyanage UK et al. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol. 2002;169(5):2756–61.PubMedCrossRefGoogle Scholar
  22. 22.
    Gobert M et al. Regulatory T cells recruited through CCL22/CCR4 are selectively activated in lymphoid infiltrates surrounding primary breast tumors and lead to an adverse clinical outcome. Cancer Res. 2009;69(5):2000–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Balkwill FR. The chemokine system and cancer. J Pathol. 2012;226(2):148–57.PubMedCrossRefGoogle Scholar
  24. 24.
    Bombonati A, Sgroi DC. The molecular pathology of breast cancer progression. J Pathol. 2011;223(2):307–17.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    de la Cruz-Merino L et al. New insights into the role of the immune microenvironment in breast carcinoma. Clin Dev Immunol. 2013;2013:785317.PubMedCentralPubMedGoogle Scholar
  26. 26.
    Zlotnik A, Yoshie O. The chemokine superfamily revisited. Immunity. 2012;36(5):705–16.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Qian BZ et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature. 2011;475(7355):222–5.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Nannuru KC et al. Role of chemokine receptor CXCR2 expression in mammary tumor growth, angiogenesis and metastasis. J Carcinog. 2011;10:40.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Zhang Y et al. A novel role of hematopoietic CCL5 in promoting triple-negative mammary tumor progression by regulating generation of myeloid-derived suppressor cells. Cell Res. 2013;23(3):394–408.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Cabioglu N et al. CCR7 and CXCR4 as novel biomarkers predicting axillary lymph node metastasis in T1 breast cancer. Clin Cancer Res. 2005;11(16):5686–93.PubMedCrossRefGoogle Scholar
  31. 31.
    Russo RC et al. The CXCL8/IL-8 chemokine family and its receptors in inflammatory diseases. Expert Rev Clin Immunol. 2014;10(5):593–619.PubMedCrossRefGoogle Scholar
  32. 32.
    Charafe-Jauffret E et al. Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res. 2009;69(4):1302–13.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Ginestier C et al. CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. J Clin Invest. 2010;120(2):485–97.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Acharyya S et al. A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell. 2012;150(1):165–78.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Singh S et al. Small-molecule antagonists for CXCR2 and CXCR1 inhibit human melanoma growth by decreasing tumor cell proliferation, survival, and angiogenesis. Clin Cancer Res. 2009;15(7):2380–6.PubMedCrossRefGoogle Scholar
  36. 36.
    Korkaya H et al. Activation of an IL6 inflammatory loop mediates trastuzumab resistance in HER2+ breast cancer by expanding the cancer stem cell population. Mol Cell. 2012;47(4):570–84.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Marotta LL et al. The JAK2/STAT3 signaling pathway is required for growth of CD44(+)CD24(−) stem cell-like breast cancer cells in human tumors. J Clin Invest. 2011;121(7):2723–35.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Liu S et al. Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res. 2011;71(2):614–24.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Chapman RW et al. CXCR2 antagonists for the treatment of pulmonary disease. Pharmacol Ther. 2009;121(1):55–68.PubMedCrossRefGoogle Scholar
  40. 40.
    Kodama J et al. Association of CXCR4 and CCR7 chemokine receptor expression and lymph node metastasis in human cervical cancer. Ann Oncol. 2007;18(1):70–6.PubMedCrossRefGoogle Scholar
  41. 41.
    Kochetkova M, Kumar S, McColl SR. Chemokine receptors CXCR4 and CCR7 promote metastasis by preventing anoikis in cancer cells. Cell Death Differ. 2009;16(5):664–73.PubMedCrossRefGoogle Scholar
  42. 42.
    Dubrovska A et al. CXCR4 activation maintains a stem cell population in tamoxifen-resistant breast cancer cells through AhR signalling. Br J Cancer. 2012;107(1):43–52.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Sheridan C et al. CD44+/CD24- breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res. 2006;8(5):R59.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Huang M et al. Breast cancer stromal fibroblasts promote the generation of CD44 + CD24- cells through SDF-1/CXCR4 interaction. J Exp Clin Cancer Res. 2010;29:80.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Cronin PA, Wang JH, Redmond HP. Hypoxia increases the metastatic ability of breast cancer cells via upregulation of CXCR4. BMC Cancer. 2010;10:225.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Smith MC et al. CXCR4 regulates growth of both primary and metastatic breast cancer. Cancer Res. 2004;64(23):8604–12.PubMedCrossRefGoogle Scholar
  47. 47.
    Asiedu MK et al. TGFbeta/TNF(alpha)-mediated epithelial-mesenchymal transition generates breast cancer stem cells with a claudin-low phenotype. Cancer Res. 2011;71(13):4707–19.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Luker KE et al. Scavenging of CXCL12 by CXCR7 promotes tumor growth and metastasis of CXCR4-positive breast cancer cells. Oncogene. 2012;31(45):4750–8.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Yoshimura T et al. Monocyte chemoattractant protein-1/CCL2 produced by stromal cells promotes lung metastasis of 4 T1 murine breast cancer cells. PLoS One. 2013;8(3):e58791.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Velasco-Velazquez M et al. CCR5 antagonist blocks metastasis of basal breast cancer cells. Cancer Res. 2012;72(15):3839–50.PubMedCrossRefGoogle Scholar
  51. 51.
    Tsuyada A et al. CCL2 mediates cross-talk between cancer cells and stromal fibroblasts that regulates breast cancer stem cells. Cancer Res. 2012;72(11):2768–79.PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Carr MW et al. Monocyte chemoattractant protein 1 acts as a T-lymphocyte chemoattractant. Proc Natl Acad Sci U S A. 1994;91(9):3652–6.PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Iliopoulos D, Hirsch HA, Struhl K. An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell. 2009;139(4):693–706.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Sansone P et al. IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J Clin Invest. 2007;117(12):3988–4002.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Iliopoulos D et al. Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion. Proc Natl Acad Sci U S A. 2011;108(4):1397–402.PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Visvader JE. Cells of origin in cancer. Nature. 2011;469(7330):314–22.PubMedCrossRefGoogle Scholar
  57. 57.
    Marotta, L.L., et al., The JAK2/STAT3 signaling pathway is required for growth of CD44 + CD24- stem cell-like breast cancer cells in human tumors. J Clin Invest, 2011. 121(7).Google Scholar
  58. 58.
    Ansieau S. EMT in breast cancer stem cell generation. Cancer Lett. 2013;338(1):63–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Xie G et al. IL-6-induced epithelial-mesenchymal transition promotes the generation of breast cancer stem-like cells analogous to mammosphere cultures. Int J Oncol. 2012;40(4):1171–9.PubMedCentralPubMedGoogle Scholar
  60. 60.
    Sullivan NJ et al. Interleukin-6 induces an epithelial-mesenchymal transition phenotype in human breast cancer cells. Oncogene. 2009;28(33):2940–7.PubMedCrossRefGoogle Scholar
  61. 61.
    Anderson DM et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature. 1997;390(6656):175–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Page G, Miossec P. RANK and RANKL expression as markers of dendritic cell-T cell interactions in paired samples of rheumatoid synovium and lymph nodes. Arthritis Rheum. 2005;52(8):2307–12.PubMedCrossRefGoogle Scholar
  63. 63.
    Palafox M et al. RANK induces epithelial-mesenchymal transition and stemness in human mammary epithelial cells and promotes tumorigenesis and metastasis. Cancer Res. 2012;72(11):2879–88.PubMedCrossRefGoogle Scholar
  64. 64.
    Pellegrini P et al. Constitutive activation of RANK disrupts mammary cell fate leading to tumorigenesis. Stem Cells. 2013;31(9):1954–65.PubMedCrossRefGoogle Scholar
  65. 65.
    Thomas E et al. Receptor activator of NF-kappaB ligand promotes proliferation of a putative mammary stem cell unique to the lactating epithelium. Stem Cells. 2012;30(6):1255–64.PubMedCrossRefGoogle Scholar
  66. 66.
    Schramek D et al. Osteoclast differentiation factor RANKL controls development of progestin-driven mammary cancer. Nature. 2010;468(7320):98–102.PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Arwert EN, Hoste E, Watt FM. Epithelial stem cells, wound healing and cancer. Nat Rev Cancer. 2012;12(3):170–80.PubMedCrossRefGoogle Scholar
  68. 68.
    Spike BT et al. A mammary stem cell population identified and characterized in late embryogenesis reveals similarities to human breast cancer. Cell Stem Cell. 2012;10(2):183–97.PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Asselin-Labat ML et al. Control of mammary stem cell function by steroid hormone signalling. Nature. 2010;465(7299):798–802.PubMedCrossRefGoogle Scholar
  70. 70.
    Joshi PA et al. Progesterone induces adult mammary stem cell expansion. Nature. 2010;465(7299):803–7.PubMedCrossRefGoogle Scholar
  71. 71.
    Chin AR, Wang SE. Cytokines driving breast cancer stemness. Mol Cell Endocrinol. 2014;382(1):598–602.PubMedCrossRefGoogle Scholar
  72. 72.
    Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105(4):1815–22.PubMedCrossRefGoogle Scholar
  73. 73.
    Sotiropoulou PA et al. Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells. 2006;24(1):74–85.PubMedCrossRefGoogle Scholar
  74. 74.
    Karnoub AE et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 2007;449(7162):557–63.PubMedCrossRefGoogle Scholar
  75. 75.
    Dwyer RM et al. Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clin Cancer Res. 2007;13(17):5020–7.PubMedCrossRefGoogle Scholar
  76. 76.
    Migneco G et al. Glycolytic cancer associated fibroblasts promote breast cancer tumor growth, without a measurable increase in angiogenesis: evidence for stromal-epithelial metabolic coupling. Cell Cycle. 2010;9(12):2412–22.PubMedCrossRefGoogle Scholar
  77. 77.
    Liao D et al. Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4 T1 murine breast cancer model. PLoS One. 2009;4(11):e7965.PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Orimo A et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 2005;121(3):335–48.PubMedCrossRefGoogle Scholar
  79. 79.
    Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer. 2004;4(1):71–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Chen J et al. CCL18 from tumor-associated macrophages promotes breast cancer metastasis via PITPNM3. Cancer Cell. 2011;19(4):541–55.PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Okuda H et al. Hyaluronan synthase HAS2 promotes tumor progression in bone by stimulating the interaction of breast cancer stem-like cells with macrophages and stromal cells. Cancer Res. 2012;72(2):537–47.PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Jinushi M et al. Tumor-associated macrophages regulate tumorigenicity and anticancer drug responses of cancer stem/initiating cells. Proc Natl Acad Sci U S A. 2011;108(30):12425–30.PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Hong CC et al. Pretreatment levels of circulating Th1 and Th2 cytokines, and their ratios, are associated with ER-negative and triple negative breast cancers. Breast Cancer Res Treat. 2013;139(2):477–88.PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Liu F et al. CD8(+) cytotoxic T cell and FOXP3(+) regulatory T cell infiltration in relation to breast cancer survival and molecular subtypes. Breast Cancer Res Treat. 2011;130(2):645–55.PubMedCrossRefGoogle Scholar
  85. 85.
    Seo AN et al. Tumour-infiltrating CD8+ lymphocytes as an independent predictive factor for pathological complete response to primary systemic therapy in breast cancer. Br J Cancer. 2013;109(10):2705–13.PubMedCrossRefGoogle Scholar
  86. 86.
    Benevides L et al. Enrichment of regulatory T cells in invasive breast tumor correlates with the upregulation of IL-17A expression and invasiveness of the tumor. Eur J Immunol. 2013;43(6):1518–28.PubMedCrossRefGoogle Scholar
  87. 87.
    Santisteban M et al. Immune-induced epithelial to mesenchymal transition in vivo generates breast cancer stem cells. Cancer Res. 2009;69(7):2887–95.PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Holzel M, Bovier A, Tuting T. Plasticity of tumour and immune cells: a source of heterogeneity and a cause for therapy resistance? Nat Rev Cancer. 2013;13(5):365–76.PubMedCrossRefGoogle Scholar
  89. 89.
    Reim F et al. Immunoselection of breast and ovarian cancer cells with trastuzumab and natural killer cells: selective escape of CD44high/CD24low/HER2low breast cancer stem cells. Cancer Res. 2009;69(20):8058–66.PubMedCrossRefGoogle Scholar
  90. 90.
    Knutson KL et al. Immunoediting of cancers may lead to epithelial to mesenchymal transition. J Immunol. 2006;177(3):1526–33.PubMedCrossRefGoogle Scholar
  91. 91.
    Kawasaki BT et al. Co-expression of the toleragenic glycoprotein, CD200, with markers for cancer stem cells. Biochem Biophys Res Commun. 2007;364(4):778–82.PubMedCentralPubMedCrossRefGoogle Scholar
  92. 92.
    Wright SE. Immunotherapy of breast cancer. Expert Opin Biol Ther. 2012;12(4):479–90.PubMedCrossRefGoogle Scholar
  93. 93.
    Wang LX, Plautz GE. T cells sensitized with breast tumor progenitor cell vaccine have therapeutic activity against spontaneous HER2/neu tumors. Breast Cancer Res Treat. 2012;134(1):61–70.PubMedCentralPubMedCrossRefGoogle Scholar
  94. 94.
    Mine T et al. Breast cancer cells expressing stem cell markers CD44+ CD24 lo are eliminated by Numb-1 peptide-activated T cells. Cancer Immunol Immunother. 2009;58(8):1185–94.PubMedCentralPubMedCrossRefGoogle Scholar
  95. 95.
    Ning N et al. Cancer stem cell vaccination confers significant antitumor immunity. Cancer Res. 2012;72(7):1853–64.PubMedCentralPubMedCrossRefGoogle Scholar
  96. 96.
    Karyampudi, L., et al., Accumulation of Memory Precursor CD8 T Cells in Regressing Tumors Following Combination Therapy with Vaccine and Anti-PD-1 Antibody. Cancer Res, 2014.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.School of Molecular and Biomedical ScienceUniversity of AdelaideAdelaideAustralia

Personalised recommendations