Impact of Obesity on Mammary Gland Inflammation and Local Estrogen Production



Obesity rates have risen dramatically over the past century, having nearly doubled since 1980. Changes in diet and lifestyle have contributed to this occurrence in younger women, and changing hormone levels during the menopausal transition has no doubt exacerbated the issue in older women. The relationship between adiposity and breast cancer is clear in postmenopausal women, and is intimately linked to the increased expression of aromatase and the production of estrogens within the breast adipose. This, in turn, is highly dependent on the localized chronic inflammation observed in obese adipose. This review will therefore explore the relationship between obesity, inflammation and estrogens, with a particular focus on the molecular regulation of aromatase in the postmenopausal breast in the context of obesity and breast cancer.


Obesity Breast Mammary gland Inflammation Estrogen Aromatase 



AMP-activated protein kinase


Activating protein-1


Activating transcription factor 2


Crown-like structures




cAMP response element


cAMP response element binding protein


CREB-regulated transcription coactivator




Early growth response




Glucocorticoid receptor


Hypoxia inducible factor 1α






C-jun NH2-terminal kinase


Liver kinase B1


Liver receptor homolog-1


P38 mitogen-activated protein kinase


Nuclear factor κB


Prostaglandin E2


Protein kinase A


Protein kinase C


Tumor necrosis factor α


  1. 1.
    Organisation WH. Obesity and overweight. In: Fact sheet No 311. 2012.
  2. 2.
    Ursin G, Longnecker MP, Haile RW, Greenland S. A meta-analysis of body mass index and risk of premenopausal breast cancer. Epidemiol Camb Mass. 1995;6(2):137–41.CrossRefGoogle Scholar
  3. 3.
    Lahmann PH, Hoffmann K, Allen N, van Gils CH, Khaw KT, Tehard B, et al. Body size and breast cancer risk: findings from the european prospective investigation into cancer and nutrition (EPIC). Int J Cancer. 2004;111(5):762–71. doi:10.1002/ijc.20315.PubMedCrossRefGoogle Scholar
  4. 4.
    Weiderpass E, Braaten T, Magnusson C, Kumle M, Vainio H, Lund E, et al. A prospective study of body size in different periods of life and risk of premenopausal breast cancer. Cancer Epidemiol Biomarkers Prev. 2004;13(7):1121–7.PubMedGoogle Scholar
  5. 5.
    Michels KB, Terry KL, Willett WC. Longitudinal study on the role of body size in premenopausal breast cancer. Arch Intern Med. 2006;166(21):2395–402. doi:10.1001/archinte.166.21.2395.PubMedCrossRefGoogle Scholar
  6. 6.
    Biglia N, Peano E, Sgandurra P, Moggio G, Pecchio S, Maggiorotto F et al. Body mass index (BMI) and breast cancer: impact on tumor histopatologic features, cancer subtypes and recurrence rate in pre and postmenopausal women. Gynecological endocrinology : the official journal of the International Society of Gynecological Endocrinology. 2012. doi:10.3109/09513590.2012.736559.
  7. 7.
    Pierobon M, Frankenfeld CL. Obesity as a risk factor for triple-negative breast cancers: a systematic review and meta-analysis. Breast Cancer Res Treat. 2013;137(1):307–14. doi:10.1007/s10549-012-2339-3.PubMedCrossRefGoogle Scholar
  8. 8.
    Kimura K, Tanaka S, Iwamoto M, Fujioka H, Takahashi Y, Satou N, et al. Association between body mass index and breast cancer intrinsic subtypes in Japanese women. Exp ther med. 2012;4(3):391–6. doi:10.3892/etm.2012.621.PubMedCentralPubMedGoogle Scholar
  9. 9.
    Amadou A, Ferrari P, Muwonge R, Moskal A, Biessy C, Romieu I et al. Overweight, obesity and risk of premenopausal breast cancer according to ethnicity: a systematic review and dose–response meta-analysis. Obesity reviews : an official journal of the International Association for the Study of Obesity. 2013. doi:10.1111/obr.12028.
  10. 10.
    Cheraghi Z, Poorolajal J, Hashem T, Esmailnasab N, Doosti IA. Effect of body mass index on breast cancer during premenopausal and postmenopausal periods: a meta-analysis. PLoS One. 2012;7(12):e51446. doi:10.1371/journal.pone.0051446.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Bergstrom A, Pisani P, Tenet V, Wolk A, Adami HO. Overweight as an avoidable cause of cancer in Europe. Int J Cancer. 2001;91(3):421–30.PubMedCrossRefGoogle Scholar
  12. 12.
    John EM, Phipps AI, Sangaramoorthy M. Body size, modifying factors, and postmenopausal breast cancer risk in a multiethnic population: the San Francisco Bay area breast cancer study. Springer Plus. 2013;2(1):239. doi:10.1186/2193-1801-2-239.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Krishnan K, Bassett JK, Macinnis RJ, English DR, Hopper JL, McLean CA et al. Associations between weight in early adulthood, change in weight and breast cancer risk in postmenopausal women. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2013. doi:10.1158/1055-9965.EPI-13-0136.
  14. 14.
    van Kruijsdijk RC, van der Wall E, Visseren FL. Obesity and cancer: the role of dysfunctional adipose tissue. Cancer Epidemiol Biomarkers Prev. 2009;18(10):2569–78. doi:10.1158/1055-9965.EPI-09-0372.PubMedCrossRefGoogle Scholar
  15. 15.
    Garrisi VM, Tufaro A, Trerotoli P, Bongarzone I, Quaranta M, Ventrella V, et al. Body mass index and serum proteomic profile in breast cancer and healthy women: a prospective study. PLoS One. 2012;7(11):e49631. doi:10.1371/journal.pone.0049631.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Kamineni A, Anderson ML, White E, Taplin SH, Porter P, Ballard-Barbash R. Body mass index, tumor characteristics, and prognosis following diagnosis of early-stage breast cancer in a mammographically screened population. Cancer Causes Control. 2012. doi:10.1007/s10552-012-0115-7.PubMedCentralPubMedGoogle Scholar
  17. 17.
    Toth MJ, Tchernof A, Sites CK, Poehlman ET. Effect of menopausal status on body composition and abdominal fat distribution. Int J Obes Relat Metab Disord. 2000;24(2):226–31.PubMedCrossRefGoogle Scholar
  18. 18.
    Goto A, Chen BH, Song Y, Cauley J, Cummings SR, Farhat GN, et al. Age, body mass, usage of exogenous estrogen, and lifestyle factors in relation to circulating sex hormone-binding globulin concentrations in postmenopausal women. Clin Chem. 2014;60(1):174–85. doi:10.1373/clinchem.2013.207217.PubMedCrossRefGoogle Scholar
  19. 19.
    Jones ME, Thorburn AW, Britt KL, Hewitt KN, Wreford NG, Proietto J, et al. Aromatase-deficient (ArKO) mice have a phenotype of increased adiposity. Proc Natl Acad Sci U S A. 2000;97(23):12735–40. doi:10.1073/pnas.97.23.12735.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Van Sinderen ML, Boon WC, Ederveen AG, Kloosterboer HJ, Simpson ER, Jones ME. The estrogenic component of tibolone reduces adiposity in female aromatase knockout mice. Menopause New York. 2009;16(3):582–8. doi:10.1097/gme.0b013e31818fb20b.CrossRefGoogle Scholar
  21. 21.
    Heine PA, Taylor JA, Iwamoto GA, Lubahn DB, Cooke PS. Increased adipose tissue in male and female estrogen receptor-alpha knockout mice. Proc Natl Acad Sci U S A. 2000;97(23):12729–34. doi:10.1073/pnas.97.23.12729.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Vieira Potter VJ, Strissel KJ, Xie C, Chang E, Bennett G, Defuria J, et al. Adipose tissue inflammation and reduced insulin sensitivity in ovariectomized mice occurs in the absence of increased adiposity. Endocrinology. 2012;153(9):4266–77. doi:10.1210/en.2011-2006.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Ghisletti S, Meda C, Maggi A, Vegeto E. 17beta-estradiol inhibits inflammatory gene expression by controlling NF-kappaB intracellular localization. Mol Cell Biol. 2005;25(8):2957–68. doi:10.1128/MCB.25.8.2957-2968.2005.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Joffe HV, Ridker PM, Manson JE, Cook NR, Buring JE, Rexrode KM. Sex hormone-binding globulin and serum testosterone are inversely associated with C-reactive protein levels in postmenopausal women at high risk for cardiovascular disease. Ann Epidemiol. 2006;16(2):105–12. doi:10.1016/j.annepidem.2005.07.055.PubMedCrossRefGoogle Scholar
  25. 25.
    Subbaramaiah K, Howe LR, Bhardwaj P, Du B, Gravaghi C, Yantiss RK. Obesity is associated with inflammation and elevated aromatase expression in the mouse mammary gland. Cancer Prev Res (Phila). 2011;4(3):329–46. doi:10.1158/1940-6207.CAPR-10-0381.
  26. 26.
    Subbaramaiah K, Morris PG, Zhou XK, Morrow M, Du B, Giri D, et al. Increased levels of COX-2 and prostaglandin E2 contribute to elevated aromatase expression in inflamed breast tissue of obese women. Cancer discov. 2012;2(4):356–65. doi:10.1158/2159-8290.CD-11-0241.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Simons PJ, van den Pangaart PS, van Roomen CP, Aerts JM, Boon L. Cytokine-mediated modulation of leptin and adiponectin secretion during in vitro adipogenesis: evidence that tumor necrosis factor-alpha- and interleukin-1beta-treated human preadipocytes are potent leptin producers. Cytokine. 2005;32(2):94–103. doi:10.1016/j.cyto.2005.08.003.PubMedCrossRefGoogle Scholar
  28. 28.
    Vona-Davis L, Rose DP. Angiogenesis, adipokines and breast cancer. Cytokine Growth Factor Rev. 2009;20(3):193–201. doi:10.1016/j.cytogfr.2009.05.007.PubMedCrossRefGoogle Scholar
  29. 29.
    Zeyda M, Gollinger K, Kriehuber E, Kiefer FW, Neuhofer A, Stulnig TM. Newly identified adipose tissue macrophage populations in obesity with distinct chemokine and chemokine receptor expression. Int J Obes (Lond). 2010;34(12):1684–94. doi:10.1038/ijo.2010.103.CrossRefGoogle Scholar
  30. 30.
    Touvier M, Fezeu L, Ahluwalia N, Julia C, Charnaux N, Sutton A, et al. Association between prediagnostic biomarkers of inflammation and endothelial function and cancer risk: a nested case–control study. Am J Epidemiol. 2013;177(1):3–13. doi:10.1093/aje/kws359.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Dethlefsen C, Hojfeldt G, Hojman P. The role of intratumoral and systemic IL-6 in breast cancer. Breast Cancer Res Treat. 2013;138(3):657–64. doi:10.1007/s10549-013-2488-z.PubMedCrossRefGoogle Scholar
  32. 32.
    Zhang B, Perpetua M, Fulmer M, Harbrecht BG. JNK signaling involved in the effects of cyclic AMP on IL-1beta plus IFNgamma-induced inducible nitric oxide synthase expression in hepatocytes. Cell Signal. 2004;16(7):837–46. doi:10.1016/j.cellsig.2004.01.001.
  33. 33.
    Singh A, Purohit A, Wang DY, Duncan LJ, Ghilchik MW, Reed MJ. IL-6sR: release from MCF-7 breast cancer cells and role in regulating peripheral oestrogen synthesis. J endocrinol. 1995;147(2):R9–12.Google Scholar
  34. 34.
    Il'yasova D, Colbert LH, Harris TB, Newman AB, Bauer DC, Satterfield S, et al. Circulating levels of inflammatory markers and cancer risk in the health aging and body composition cohort. Cancer Epidemiol Biomarkers Prev. 2005;14(10):2413–8. doi:10.1158/1055-9965.EPI-05-0316.PubMedCrossRefGoogle Scholar
  35. 35.
    Grodin JM, Siiteri PK, MacDonald PC. Source of estrogen production in postmenopausal women. J Clin Endocrinolmetab. 1973;36(2):207–14.CrossRefGoogle Scholar
  36. 36.
    Hemsell DL, Grodin JM, Brenner PF, Siiteri PK, MacDonald PC. Plasma precursors of estrogen. II. Correlation of the extent of conversion of plasma androstenedione to estrone with age. J Clin Endocrinolmetab. 1974;38(3):476–9.CrossRefGoogle Scholar
  37. 37.
    Edman CD, MacDonald PC. Effect of obesity on conversion of plasma androstenedione to estrone in ovulatory and anovulator young women. Am J Obstet Gynecol. 1978;130(4):456–61.PubMedGoogle Scholar
  38. 38.
    Miller WR, O'Neill J. The importance of local synthesis of estrogen within the breast. Steroids. 1987;50(4–6):537–48.PubMedCrossRefGoogle Scholar
  39. 39.
    Mahendroo MS, Mendelson CR, Simpson ER. Tissue-specific and hormonally controlled alternative promoters regulate aromatase cytochrome P450 gene expression in human adipose tissue. J Biol Chem. 1993;268(26):19463–70.PubMedGoogle Scholar
  40. 40.
    Simpson ER, Mahendroo MS, Means GD, Kilgore MW, Corbin CJ, Mendelson CR. Tissue-specific promoters regulate aromatase cytochrome P450 expression. J Steroid Biochem Mol Biol. 1993;44(4–6):321–30.PubMedCrossRefGoogle Scholar
  41. 41.
    Simpson ER, Michael MD, Agarwal VR, Hinshelwood MM, Bulun SE, Zhao Y. Cytochromes P450 11: expression of the CYP19 (aromatase) gene: an unusual case of alternative promoter usage. FASEB J. 1997;11(1):29–36.PubMedGoogle Scholar
  42. 42.
    Vachon CM, Sasano H, Ghosh K, Brandt KR, Watson DA, Reynolds C et al. Aromatase immunoreactivity is increased in mammographically dense regions of the breast. Breast cancer research and treatment. 2010; [Epub ahead of print].Google Scholar
  43. 43.
    O'Neill JS, Elton RA, Miller WR. Aromatase activity in adipose tissue from breast quadrants: a link with tumour site. Br Med J (Clin Res Ed). 1988;296(6624):741–3.CrossRefGoogle Scholar
  44. 44.
    Bulun SE, Price TM, Aitken J, Mahendroo MS, Simpson ER. A link between breast cancer and local estrogen biosynthesis suggested by quantification of breast adipose tissue aromatase cytochrome P450 transcripts using competitive polymerase chain reaction after reverse transcription. J Clin Endocrinolmetab. 1993;77(6):1622–8.Google Scholar
  45. 45.
    Utsumi T, Harada N, Maruta M, Takagi Y. Presence of alternatively spliced transcripts of aromatase gene in human breast cancer. J Clin Endocrinolmetab. 1996;81(6):2344–9.Google Scholar
  46. 46.
    Zhou C, Zhou D, Esteban J, Murai J, Siiteri PK, Wilczynski S, et al. Aromatase gene expression and its exon I usage in human breast tumors. Detection of aromatase messenger RNA by reverse transcription-polymerase chain reaction. J Steroid Biochem Mol Biol. 1996;59(2):163–71.PubMedCrossRefGoogle Scholar
  47. 47.
    Sasano H, Nagura H, Harada N, Goukon Y, Kimura M. Immunolocalization of aromatase and other steroidogenic enzymes in human breast disorders. Hum Pathol. 1994;25(5):530–5.PubMedCrossRefGoogle Scholar
  48. 48.
    Harada N, Utsumi T, Takagi Y. Tissue-specific expression of the human aromatase cytochrome P-450 gene by alternative use of multiple exons 1 and promoters, and switching of tissue-specific exons 1 in carcinogenesis. Proc Natl Acad Sci U S A. 1993;90(23):11312–6.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Tekmal RR, Kirma N, Gill K, Fowler K. Aromatase overexpression and breast hyperplasia, an in vivo model–continued overexpression of aromatase is sufficient to maintain hyperplasia without circulating estrogens, and aromatase inhibitors abrogate these preneoplastic changes in mammary glands. Endocr Relat Cancer. 1999;6(2):307–14.PubMedCrossRefGoogle Scholar
  50. 50.
    Agarwal VR, Bulun SE, Leitch M, Rohrich R, Simpson ER. Use of alternative promoters to express the aromatase cytochrome P450 (CYP19) gene in breast adipose tissues of cancer-free and breast cancer patients. J Clin Endocrinolmetab. 1996;81(11):3843–9.Google Scholar
  51. 51.
    Brown KA, McInnes KJ, Hunger NI, Oakhill JS, Steinberg GR, Simpson ER. Subcellular localization of cyclic AMP-responsive element binding protein-regulated transcription coactivator 2 provides a link between obesity and breast cancer in postmenopausal women. Cancer Res. 2009;69(13):5392–9. doi:10.1158/0008-5472.CAN-09-0108.PubMedCrossRefGoogle Scholar
  52. 52.
    Bulun SE, Simpson ER. Aromatase expression in women's cancers. Adv Exp Med Biol. 2008;630:112–32.PubMedCrossRefGoogle Scholar
  53. 53.
    Richards JA, Brueggemeier RW. Prostaglandin E2 regulates aromatase activity and expression in human adipose stromal cells via two distinct receptor subtypes. J Clin Endocrinolmetab. 2003;88(6):2810–6.CrossRefGoogle Scholar
  54. 54.
    Zhao Y, Agarwal VR, Mendelson CR, Simpson ER. Estrogen biosynthesis proximal to a breast tumor is stimulated by PGE2 via cyclic AMP, leading to activation of promoter II of the CYP19 (aromatase) gene. Endocrinology. 1996;137(12):5739–42.PubMedGoogle Scholar
  55. 55.
    Mendelson CR, Cleland WH, Smith ME, Simpson ER. Regulation of aromatase activity of stromal cells derived from human adipose tissue. Endocrinology. 1982;111(4):1077–85.PubMedCrossRefGoogle Scholar
  56. 56.
    Means GD, Mahendroo MS, Corbin CJ, Mathis JM, Powell FE, Mendelson CR, et al. Structural analysis of the gene encoding human aromatase cytochrome P-450, the enzyme responsible for estrogen biosynthesis. J Biol Chem. 1989;264(32):19385–91.PubMedGoogle Scholar
  57. 57.
    Michael MD, Michael LF, Simpson ER. A CRE-like sequence that binds CREB and contributes to cAMP-dependent regulation of the proximal promoter of the human aromatase P450 (CYP19) gene. Mol Cell Endocrinol. 1997;134(2):147–56.PubMedCrossRefGoogle Scholar
  58. 58.
    Sofi M, Young MJ, Papamakarios T, Simpson ER, Clyne CD. Role of CRE-binding protein (CREB) in aromatase expression in breast adipose. Breast Cancer Res Treat. 2003;79(3):399–407.PubMedCrossRefGoogle Scholar
  59. 59.
    Zhou D, Chen S. Identification and characterization of a cAMP-responsive element in the region upstream from promoter 1.3 of the human aromatase gene. Arch Biochem Biophys. 1999;371(2):179–90.PubMedCrossRefGoogle Scholar
  60. 60.
    Samarajeewa NU, Docanto MM, Simpson ER, Brown KA. CREB-Regulated Transcription Co-Activator Family Stimulates Promoter II-Driven Aromatase Expression in Preadipocytes. Horm cancer. 2013. doi:10.1007/s12672-013-0142-1.PubMedGoogle Scholar
  61. 61.
    Samarajeewa NU, Yang F, Docanto MM, Sakurai M, McNamara KM, Sasano H, et al. HIF-1alpha stimulates aromatase expression driven by prostaglandin E2 in breast adipose stroma. Breast Cancer Res : BCR. 2013;15(2):R30. doi:10.1186/bcr3410.PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Chen D, Reierstad S, Fang F, Bulun SE. JunD and JunB integrate prostaglandin E2 activation of breast cancer-associated proximal aromatase promoters. Mol Endocrinol. 2011;25(5):767–75. doi:10.1210/me.2010-0368.PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Mechta-Grigoriou F, Gerald D, Yaniv M. The mammalian Jun proteins: redundancy and specificity. Oncogene. 2001;20(19):2378–89. doi:10.1038/sj.onc.1204381.PubMedCrossRefGoogle Scholar
  64. 64.
    Schonwasser DC, Marais RM, Marshall CJ, Parker PJ. Activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway by conventional, novel, and atypical protein kinase C isotypes. Mol Cell Biol. 1998;18(2):790–8.PubMedCentralPubMedGoogle Scholar
  65. 65.
    Steinberg GR, Kemp BE. AMPK in Health and Disease. Physiol Rev. 2009;89(3):1025–78.PubMedCrossRefGoogle Scholar
  66. 66.
    Coen P, Kulin H, Ballantine T, Zaino R, Frauenhoffer E, Boal D, et al. An aromatase-producing sex-cord tumor resulting in prepubertal gynecomastia. N Engl J Med. 1991;324(5):317–22.PubMedCrossRefGoogle Scholar
  67. 67.
    Bulun SE, Rosenthal IM, Brodie AM, Inkster SE, Zeller WP, DiGeorge AM, et al. Use of tissue-specific promoters in the regulation of aromatase cytochrome P450 gene expression in human testicular and ovarian sex cord tumors, as well as in normal fetal and adult gonads. J Clin Endocrinolmetab. 1994;78(2):1616–21.Google Scholar
  68. 68.
    Ham S, Meachem SJ, Choong CS, Charles AK, Baynam GS, Jones TW, et al. Overexpression of aromatase associated with loss of heterozygosity of the STK11 gene accounts for prepubertal gynecomastia in boys with Peutz-Jeghers syndrome. J Clin Endocrinolmetab. 2013;98(12):E1979–87. doi:10.1210/jc.2013-2291.CrossRefGoogle Scholar
  69. 69.
    Chen D, Reierstad S, Lin Z, Lu M, Brooks C, Li N, et al. Prostaglandin E(2) induces breast cancer related aromatase promoters via activation of p38 and c-Jun NH (2)-terminal kinase in adipose fibroblasts. Cancer Res. 2007;67(18):8914–22. doi:10.1158/0008-5472.CAN-06-4751.PubMedCrossRefGoogle Scholar
  70. 70.
    Clyne CD, Speed CJ, Zhou J, Simpson ER. Liver receptor homologue-1 (LRH-1) regulates expression of aromatase in preadipocytes. J Biol Chem. 2002;277(23):20591–7.PubMedCrossRefGoogle Scholar
  71. 71.
    Chand AL, Herridge KA, Howard TL, Simpson ER, Clyne CD. Tissue-specific regulation of aromatase promoter II by the orphan nuclear receptor LRH-1 in breast adipose stromal fibroblasts. Steroids. 2011;76(8):741–4. doi:10.1016/j.steroids.2011.02.024.PubMedCrossRefGoogle Scholar
  72. 72.
    Macdiarmid F, Wang D, Duncan LJ, Purohit A, Ghilchick MW, Reed MJ. Stimulation of aromatase activity in breast fibroblasts by tumor necrosis factor alpha. Mol Cell Endocrinol. 1994;106(1–2):17–21.PubMedCrossRefGoogle Scholar
  73. 73.
    Zhao Y, Nichols JE, Valdez R, Mendelson CR, Simpson ER. Tumor necrosis factor-alpha stimulates aromatase gene expression in human adipose stromal cells through use of an activating protein-1 binding site upstream of promoter 1.4. Mol Endocrinol Baltimore, Md. 1996;10(11):1350–7.Google Scholar
  74. 74.
    To SQ. Simpson ER. Knower KC: Clyne CD. Involvement of early growth response factors in TNFalpha-induced aromatase expression in breast adipose. Breast cancer research and treatment; 2013. doi:10.1007/s10549-013-2413-5.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Metabolism & Cancer LaboratoryMIMR-PHI Institute of Medical ResearchClaytonAustralia
  2. 2.Monash Institute of Medical ResearchMonash UniversityClaytonAustralia
  3. 3.Department of PhysiologyMonash UniversityClaytonAustralia
  4. 4.Metabolism & Cancer LaboratoryMIMR-PHI Institute of Medical ResearchClaytonAustralia

Personalised recommendations