Cholesterol Transport and Regulation in the Mammary Gland

  • Edgar C. Ontsouka
  • Christiane AlbrechtEmail author


The milk-producing alveolar epithelial cells secrete milk that remains after birth the principal source of nutrients for neonates. Milk secretion and composition are highly regulated processes via integrated actions of hormones and local factors which involve specific receptors and downstream signal transduction pathways. Overall milk composition is similar among mammalian species, although the content of individual constituents such as lipids may significantly differ from one species to another. The milk lipid fraction is essentially composed of triglycerides, which represent more than 95 % of the total lipids in human and commercialized bovine milk. Though sterols, including cholesterol, which is the major milk sterol, represent less than 0.5 % of the total milk lipid fraction, they are of key importance for several biological processes. Cholesterol is required for the formation of biological membranes especially in rapidly growing organisms, and for the synthesis of sterol-based compounds. Cholesterol found in milk originates predominantly from blood uptake and, to a certain extent, from local synthesis in the mammary tissue. The present review summarizes current knowledge on cellular mechanisms and regulatory processes determining intra- and transcellular cholesterol transport in the mammary gland. Cholesterol exchanges between the blood, the mammary alveolar cells and the milk, and the likely role of active cholesterol transporters in these processes are discussed. In this context, the hormonal regulation and signal transduction pathways promoting active cholesterol transport as well as potential regulatory crosstalks are highlighted.


ABC transporters Cholesterolemia Cholesterol transport Hormonal regulation Lipid secretion Mammary gland Milk lipid composition Signaling pathways 


ABC transporter

ATP-binding cassette transporter


Acyl-coenzyme A: cholesterol acyltransferase


Apolipoprotein A-I


Cholesteryl ester hydrolase


Cytoplasmic lipid droplets


High density lipoprotein




Hormone-sensitive lipase




Lysosomal acid lipase


Low density lipoprotein


Lipoprotein lipase


Liver X receptor


Mitogen-activated protein kinase


Alveolar mammary epithelial cell


Milk fat globule


Niemann-Pick type C


Oxysterol-binding protein


OSBP-releated protein


Peroxisome proliferator-activated receptor


Prolactin regulatory element binding


Scavenger receptor class B type I


Sterol response element binding protein


Very low density lipoprotein



The present paper was supported by the Swiss National Science Foundation through the National Centre of Competence in Research TransCure. The authors thank Xiao Huang for her major contribution in the design of the figures.


  1. 1.
    Long CA, Patton S, McCarthy RD. Origins of the cholesterol in milk. Lipids. 1980;15(10):853–7.PubMedGoogle Scholar
  2. 2.
    McManaman J, Reyland M, Thrower E. Secretion and fluid transport mechanisms in the mammary gland: comparisons with the exocrine pancreas and the salivary gland. J Mammary Gland Biol Neoplasia. 2006;11(3–4):249–68.PubMedGoogle Scholar
  3. 3.
    McManaman J, Neville M. Mammary physiology and milk secretion. Adv Drug Deliv Rev. 2003;55(5):629–41.PubMedGoogle Scholar
  4. 4.
    Mani O, Korner M, Sorensen MT, Sejrsen K, Wotzkow C, Ontsouka CE, et al. Expression, localization, and functional model of cholesterol transporters in lactating and nonlactating mammary tissues of murine, bovine, and human origin. Am J Physiol Regul Integr Comp Physiol. 2010;299(2):R642–54.PubMedGoogle Scholar
  5. 5.
    Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000;1(1):31–9.PubMedGoogle Scholar
  6. 6.
    Simons K, Ikonen E. Functional rafts in cell membranes. Nature. 1997;387(6633):569–72.PubMedGoogle Scholar
  7. 7.
    Gofflot F, Hars C, Illien F, Chevy F, Wolf C, Picard JJ, et al. Molecular mechanisms underlying limb anomalies associated with cholesterol deficiency during gestation: implications of Hedgehog signaling. Hum Mol Genet. 2003;12(10):1187–98.PubMedGoogle Scholar
  8. 8.
    Mishkel MA. Neonatal plasma lipids as measured in cord blood. Can Med Assoc J. 1974;111(8):775–80.PubMedCentralPubMedGoogle Scholar
  9. 9.
    Isomura H, Takimoto H, Miura F, Kitazawa S, Takeuchi T, Itabashi K, et al. Type of milk feeding affects hematological parameters and serum lipid profile in Japanese infants. Pediatr Int. 2011;53(6):807–13.PubMedGoogle Scholar
  10. 10.
    Albrecht C, Huang X, Ontsouka EC. Cholesterol transporters in lactating and non-lactating human mammary tissue. In: In dietary and nutritional aspects of human breast milk. Wageningen Academic Publishers; 2013.Google Scholar
  11. 11.
    Owen CG, Martin RM, Whincup PH, Davey-Smith G, Gillman MW, Cook DG. The effect of breastfeeding on mean body mass index throughout life: a quantitative review of published and unpublished observational evidence. Am J Clin Nutr. 2005;82(6):1298–307.PubMedGoogle Scholar
  12. 12.
    Owen CG, Martin RM, Whincup PH, Smith GD, Cook DG. Effect of infant feeding on the risk of obesity across the life course: a quantitative review of published evidence. Pediatrics. 2005;115(5):1367–77.PubMedGoogle Scholar
  13. 13.
    Rudnicka AR, Owen CG, Strachan DP. The effect of breastfeeding on cardiorespiratory risk factors in adult life. Pediatrics. 2007;119(5):e1107–15.PubMedGoogle Scholar
  14. 14.
    Peaker M. The mammary gland in mammalian evolution: a brief commentary on some of the concepts. J Mammary Gland Biol. 2002;7(3):347–53.Google Scholar
  15. 15.
    Victora CG, Vaughan JP, Lombardi C, Fuchs SMC, Gigante LP, Smith PG, et al. Evidence for protection by breast-feeding against infant deaths from infectious-diseases in Brazil. Lancet. 1987;2(8554):319–22.PubMedGoogle Scholar
  16. 16.
    Picaud JC, Chapalain V, Paineau D, Zourabichvili O, Bornet FR, Duhamel JF. Incidence of infectious diseases in infants fed follow-on formula containing synbiotics: an observational study. Acta Paediatr. 2010;99(11):1695–700.PubMedCentralPubMedGoogle Scholar
  17. 17.
    Haave NC, Innis SM. Cholesterol synthesis and accretion within various tissues of the fetal and neonatal rat. Metabolism. 2001;50(1):12–8.PubMedGoogle Scholar
  18. 18.
    Jensen RG. The composition of bovine milk lipids: January 1995 to December 2000. J Dairy Sci. 2002;85(2):295–350.PubMedGoogle Scholar
  19. 19.
    Oram JF, Vaughan AM. ATP-Binding cassette cholesterol transporters and cardiovascular disease. Circ Res. 2006;99(10):1031–43.PubMedGoogle Scholar
  20. 20.
    Llaverias G, Danilo C, Mercier I, Daumer K, Capozza F, Williams TM, et al. Role of cholesterol in the development and progression of breast cancer. Am J Pathol. 2011;178(1):402–12.PubMedCentralPubMedGoogle Scholar
  21. 21.
    Coughlin SS, Ekwueme DU. Breast cancer as a global health concern. Cancer Epidemiol. 2009;33(5):315–8.PubMedGoogle Scholar
  22. 22.
    Awad AB, Williams H, Fink CS. Phytosterols reduce in vitro metastatic ability of MDA-MB-231 human breast cancer cells. Nutr Cancer. 2001;40(2):157–64.PubMedGoogle Scholar
  23. 23.
    Dessi S, Batetta B, Pulisci D, Spano O, Anchisi C, Tessitore L, et al. Cholesterol content in tumor-tissues is inversely associated with high-density-lipoprotein cholesterol in serum in patients with gastrointestinal cancer. Cancer. 1994;73(2):253–8.PubMedGoogle Scholar
  24. 24.
    Freeman MR, Solomon KR. Cholesterol and prostate cancer. J Cell Biochem. 2004;91(1):54–69.PubMedGoogle Scholar
  25. 25.
    Li YC, Park MJ, Ye SK, Kim CW, Kim YN. Elevated levels of cholesterol-rich lipid rafts in cancer cells are correlated with apoptosis sensitivity induced by cholesterol-depleting agents. Am J Pathol. 2006;168(4):1107–18. quiz 1404-1105.PubMedCentralPubMedGoogle Scholar
  26. 26.
    Martin BJ, van Golen KL. A comparison of cholesterol uptake and storage in inflammatory and noninflammatory breast cancer cells. Int J Breast Cancer. 2012;2012:412581.PubMedCentralPubMedGoogle Scholar
  27. 27.
    Armstrong B, Doll R. Environmental factors and cancer incidence and mortality in different countries, with special reference to dietary practices. Int J Cancer. 1975;15(4):617–31.PubMedGoogle Scholar
  28. 28.
    Carroll KK, Gammal EB, Plunkett ER. Dietary fat and mammary cancer. Can Med Assoc J. 1968;98(12):590–4.PubMedCentralPubMedGoogle Scholar
  29. 29.
    Kolonel LN, Hankin JH, Lee J, Chu SY, Nomura AMY, Hinds MW. Nutrient intakes in relation to cancer incidence in Hawaii. Brit J Cancer. 1981;44(3):332–9.PubMedCentralPubMedGoogle Scholar
  30. 30.
    Yu SZ, Lu RF, Xu DD, Howe GR. A case-control study of dietary and nondietary risk factors for breast cancer in Shanghai. Cancer Res. 1990;50(16):5017–21.PubMedGoogle Scholar
  31. 31.
    Potischman N, Mcculloch CE, Byers T, Houghton L, Nemoto T, Graham S, et al. Associations between breast-cancer, plasma triglycerides, and cholesterol. Nutr Cancer. 1991;15(3–4):205–15.PubMedGoogle Scholar
  32. 32.
    Howe GR, Hirohata T, Hislop TG, Iscovich JM, Yuan JM, Katsouyanni K, et al. Dietary factors and risk of breast cancer: combined analysis of 12 case-control studies. J Natl Cancer Inst. 1990;82(7):561–9.PubMedGoogle Scholar
  33. 33.
    Bani IA, Williams CM, Boulter PS, Dickerson JW. Plasma lipids and prolactin in patients with breast cancer. Br J Cancer. 1986;54(3):439–46.PubMedCentralPubMedGoogle Scholar
  34. 34.
    Linzell JL, Peaker M. Mechanism of milk secretion. Physiol Rev. 1971;51(3):564–97.PubMedGoogle Scholar
  35. 35.
    Connor WE, Lin DS. Origin of milk cholesterol in the rabbit and guinea pig. Am J Physiol. 1967;213(6):1353–8.PubMedGoogle Scholar
  36. 36.
    Scow RO, Chernick SS, Fleck TR. Lipoprotein lipase and uptake of triacylglycerol, cholesterol and phosphatidylcholine from chylomicrons by mammary and adipose tissue of lactating rats in vivo. Biochim Biophys Acta. 1977;487(2):297–306.PubMedGoogle Scholar
  37. 37.
    Miller PS, Reis BL, Calvert CC, DePeters EJ, Baldwin RL. Patterns of nutrient uptake by the mammary glands of lactating dairy cows. J Dairy Sci. 1991;74(11):3791–9.PubMedGoogle Scholar
  38. 38.
    Zinder O, Mendelson CR, Blanchette-Mackie EF, Scow RO. Lipoprotein lipase and uptake of chylomicron triacylglycerol and cholesterol by perfused rat mammary tissue. Biochim Biophys Acta. 1976;431(3):526–37.PubMedGoogle Scholar
  39. 39.
    Wang YY, Tong J, Li SP, Zhang R, Chen L, Wang YH, et al. Over-expression of human lipoprotein lipase in mouse mammary glands leads to reduction of milk triglyceride and delayed growth of suckling pups. PLoS One. 2011;6(6):e20895.PubMedCentralPubMedGoogle Scholar
  40. 40.
    Braun JE, Severson DL. Regulation of the synthesis, processing and translocation of lipoprotein lipase. Biochem J. 1992;287(Pt 2):337–47.PubMedCentralPubMedGoogle Scholar
  41. 41.
    Lillis AP, Van Duyn LB, Murphy-Ullrich JE, Strickland DK. LDL receptor-related protein 1: unique tissue-specific functions revealed by selective gene knockout studies. Physiol Rev. 2008;88(3):887–918.PubMedCentralPubMedGoogle Scholar
  42. 42.
    Monks J, Huey PU, Hanson L, Eckel RH, Neville MC, Gavigan S. A lipoprotein-containing particle is transferred from the serum across the mammary epithelium into the milk of lactating mice. J Lipid Res. 2001;42(5):686–96.PubMedGoogle Scholar
  43. 43.
    Landschulz KT, Pathak RK, Rigotti A, Krieger M, Hobbs HH. Regulation of scavenger receptor, class B, type I, a high density lipoprotein receptor, in liver and steroidogenic tissues of the rat. J Clin Invest. 1996;98(4):984–95.PubMedCentralPubMedGoogle Scholar
  44. 44.
    Ontsouka EC, Huang X, Stieger B, Albrecht C. Characteristics and functional relevance of apolipoprotein-A1 and cholesterol binding in mammary gland tissues and epithelial cells. PLoS One. 2013;8(7):e70407.PubMedCentralPubMedGoogle Scholar
  45. 45.
    Miller WL. Steroid hormone synthesis in mitochondria. Mol Cell Endocrinol. 2013;379:62–73.PubMedGoogle Scholar
  46. 46.
    Chang TY, Chang CCY, Lin S, Yu CJ, Li BL, Miyazaki A. Roles of acyl-coenzyme A : cholesterol acyltransferase-1 and-2. Curr Opin Lipidol. 2001;12(3):289–96.PubMedGoogle Scholar
  47. 47.
    Ross AC, Rowe JF. Cholesterol esterification by mammary-gland microsomes from the lactating rat. Proc Soc Exp Biol Med. 1984;176(1):42–7.PubMedGoogle Scholar
  48. 48.
    Shand JH, West DW. Acyl-Coa-Cholesterol acyltransferase activity in the rat mammary-gland - variation during pregnancy and lactation. Lipids. 1991;26(2):150–4.PubMedGoogle Scholar
  49. 49.
    Suguro T, Watanabe T, Kanome T, Kodate S, Hirano T, Miyazaki A, et al. Serotonin acts as an up-regulator of acyl-coenzyme A : cholesterol acyltransferase-1 in human monocyte-macrophages. Atherosclerosis. 2006;186(2):275–81.PubMedGoogle Scholar
  50. 50.
    Martin-Hidalgo A, Huerta L, Alvarez N, Alegria G, Del Val TM, Herrera E. Expression, activity, and localization of hormone-sensitive lipase in rat mammary gland during pregnancy and lactation. J Lipid Res. 2005;46(4):658–68.PubMedGoogle Scholar
  51. 51.
    Zidi A, Fernandez-Cabanas VM, Carrizosa J, Jordana J, Urrutia B, Polvillo O, et al. Genetic variation at the goat hormone-sensitive lipase (LIPE) gene and its association with milk yield and composition. J Dairy Res. 2010;77(2):190–8.PubMedGoogle Scholar
  52. 52.
    Yonezawa T, Haga S, Kobayashi Y, Katoh K, Obara Y. Regulation of hormone-sensitive lipase expression by saturated fatty acids and hormones in bovine mammary epithelial cells. Biochem Biophys Res Commun. 2008;376(1):36–9.PubMedGoogle Scholar
  53. 53.
    Botham KM, Martinez MJ, Ochoa B. Cholesteryl ester synthesis and hydrolysis in the rat mammary gland during pregnancy and lactation. J Biochem. 1993;114(3):415–20.PubMedGoogle Scholar
  54. 54.
    Maxfield FR, Wustner D. Intracellular cholesterol transport. J Clin Invest. 2002;110(7):891–8.PubMedCentralPubMedGoogle Scholar
  55. 55.
    Pentchev PG. Niemann-Pick C research from mouse to gene. Biochim Biophys Acta. 2004;1685(1–3):3–7.PubMedGoogle Scholar
  56. 56.
    Vanier MT, Millat G. Niemann-Pick disease type C. Clin Genet. 2003;64(4):269–81.PubMedGoogle Scholar
  57. 57.
    Mani O, Sorensen MT, Sejrsen K, Bruckmaier RM, Albrecht C. Differential expression and localization of lipid transporters in the bovine mammary gland during the pregnancy-lactation cycle. J Dairy Sci. 2009;92(8):3744–56.PubMedGoogle Scholar
  58. 58.
    Lev S. Nonvesicular lipid transfer from the endoplasmic reticulum. Cold Spring Harb Perspect Biol. 2012;4(10):pii: a013300.Google Scholar
  59. 59.
    Ikonen E. Cellular cholesterol trafficking and compartmentalization. Nat Rev Mol Cell Biol. 2008;9(2):125–38.PubMedGoogle Scholar
  60. 60.
    Hao MM, Lin SX, Karylowski OJ, Wustner D, McGraw TE, Maxfield FR. Vesicular and non-vesicular sterol transport in living cells - The endocytic recycling compartment is a major sterol storage organelle. J Biol Chem. 2002;277(1):609–17.PubMedGoogle Scholar
  61. 61.
    Raychaudhuri S, Im YJ, Hurley JH, Prinz WA. Nonvesicular sterol movement from plasma membrane to ER requires oxysterol-binding protein-related proteins and phosphoinositides. J Cell Biol. 2006;173(1):107–19.PubMedCentralPubMedGoogle Scholar
  62. 62.
    Hynynen R, Laitinen S, Kakela R, Tanhuanpaa K, Lusa S, Ehnholm C, et al. Overexpression of OSBP-related protein 2 (ORP2) induces changes in cellular cholesterol metabolism and enhances endocytosis. Biochem J. 2005;390:273–83.PubMedCentralPubMedGoogle Scholar
  63. 63.
    Misumi Y, Miki K, Takatsuki A, Tamura G, Ikehara Y. Novel blockade by brefeldin A of intracellular transport of secretory proteins in cultured rat hepatocytes. J Biol Chem. 1986;261(24):11398–403.PubMedGoogle Scholar
  64. 64.
    Lippincott-Schwartz J, Yuan LC, Bonifacino JS, Klausner RD. Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin A: evidence for membrane cycling from Golgi to ER. Cell. 1989;56(5):801–13.PubMedGoogle Scholar
  65. 65.
    Mather IH, Keenan TW. Origin and secretion of milk lipids. J Mammary Gland Biol Neoplasia. 1998;3(3):259–73.PubMedGoogle Scholar
  66. 66.
    Keenan TW. Assembly and secretion of the lipid globules of milk. Adv Exp Med Biol. 2001;501:125–36.PubMedGoogle Scholar
  67. 67.
    Mani O, Korner M, Ontsouka CE, Sorensen MT, Sejrsen K, Bruckmaier RM, et al. Identification of ABCA1 and ABCG1 in milk fat globules and mammary cells–implications for milk cholesterol secretion. J Dairy Sci. 2011;94(3):1265–76.PubMedGoogle Scholar
  68. 68.
    Mesilati-Stahy R, Mida K, Argov-Argaman N. Size-dependent lipid content of bovine milk fat globule and membrane phospholipids. J Agric Food Chem. 2011;59(13):7427–35.PubMedGoogle Scholar
  69. 69.
    Keenan TW. Milk lipid globules and their surrounding membrane: a brief history and perspectives for future research. J Mammary Gland Biol Neoplasia. 2001;6(3):365–71.PubMedGoogle Scholar
  70. 70.
    Patton S, Jensen RG. Lipid metabolism and membrane functions of the mammary gland. Prog Chem Fats Other Lipids. 1975;14(4):163–277.PubMedGoogle Scholar
  71. 71.
    Nagao K, Takahashi K, Azuma Y, Takada M, Kimura Y, Matsuo M, et al. ATP hydrolysis-dependent conformational changes in the extracellular domain of ABCA1 are associated with apoA-I binding. J Lipid Res. 2012;53(1):126–36.PubMedCentralPubMedGoogle Scholar
  72. 72.
    Rust S, Rosier M, Funke H, Real J, Amoura Z, Piette JC, et al. Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nat Genet. 1999;22(4):352–5.PubMedGoogle Scholar
  73. 73.
    Shulenin S, Nogee LM, Annilo T, Wert SE, Whitsett JA, Dean M. ABCA3 gene mutations in newborns with fatal surfactant deficiency. N Engl J Med. 2004;350(13):1296–303.PubMedGoogle Scholar
  74. 74.
    Ueda K. ABC proteins protect the human body and maintain optimal health. Biosci Biotechnol Biochem. 2011;75(3):401–9.PubMedGoogle Scholar
  75. 75.
    Linsel-Nitschke P, Jehle AW, Shan J, Cao G, Bacic D, Lan D, et al. Potential role of ABCA7 in cellular lipid efflux to apoA-I. J Lipid Res. 2005;46(1):86–92.PubMedGoogle Scholar
  76. 76.
    Wang N, Lan D, Gerbod-Giannone M, Linsel-Nitschke P, Jehle AW, Chen W, et al. ATP-binding cassette transporter A7 (ABCA7) binds apolipoprotein A-I and mediates cellular phospholipid but not cholesterol efflux. J Biol Chem. 2003;278(44):42906–12.PubMedGoogle Scholar
  77. 77.
    Abe-Dohmae S, Ueda K, Yokoyama S. ABCA7, a molecule with unknown function. FEBS Lett. 2006;580(4):1178–82.PubMedGoogle Scholar
  78. 78.
    Kim WS, Fitzgerald ML, Kang K, Okuhira K, Bell SA, Manning JJ, et al. Abca7 null mice retain normal macrophage phosphatidylcholine and cholesterol efflux activity despite alterations in adipose mass and serum cholesterol levels. J Biol Chem. 2005;280(5):3989–95.PubMedGoogle Scholar
  79. 79.
    Reinhardt TA, Lippolis JD. Bovine milk fat globule membrane proteome. J Dairy Res. 2006;73(4):406–16.PubMedGoogle Scholar
  80. 80.
    Stefulj J, Panzenboeck U, Becker T, Hirschmugl B, Schweinzer C, Lang I, et al. Human endothelial cells of the placental barrier efficiently deliver cholesterol to the fetal circulation via ABCA1 and ABCG1. Circ Res. 2009;104(5):600–8.PubMedGoogle Scholar
  81. 81.
    Lee J, Shirk A, Oram JF, Lee SP, Kuver R. Polarized cholesterol and phospholipid efflux in cultured gall-bladder epithelial cells: evidence for an ABCA1-mediated pathway. Biochem J. 2002;364(Pt 2):475–84.PubMedCentralPubMedGoogle Scholar
  82. 82.
    Liao Y, Alvarado R, Phinney B, Lonnerdal B. Proteomic characterization of human milk fat globule membrane proteins during a 12 month lactation period. J Proteome Res. 2011;10(8):3530–41.PubMedGoogle Scholar
  83. 83.
    Reinhardt TA, Lippolis JD. Developmental changes in the milk fat globule membrane proteome during the transition from colostrum to milk. J Dairy Sci. 2008;91(6):2307–18.PubMedGoogle Scholar
  84. 84.
    Vorbach C, Scriven A, Capecchi MR. The housekeeping gene xanthine oxidoreductase is necessary for milk fat droplet enveloping and secretion: gene sharing in the lactating mammary gland. Genes Dev. 2002;16(24):3223–35.PubMedCentralPubMedGoogle Scholar
  85. 85.
    McManaman JL, Palmer CA, Wright RM, Neville MC. Functional regulation of xanthine oxidoreductase expression and localization in the mouse mammary gland: evidence of a role in lipid secretion. J Physiol. 2002;545(Pt 2):567–79.PubMedCentralPubMedGoogle Scholar
  86. 86.
    Heid HW, Schnolzer M, Keenan TW. Adipocyte differentiation-related protein is secreted into milk as a constituent of milk lipid globule membrane. Biochem J. 1996;320(Pt 3):1025–30.PubMedCentralPubMedGoogle Scholar
  87. 87.
    Langmann T, Klucken J, Reil M, Liebisch G, Luciani MF, Chimini G, et al. Molecular cloning of the human ATP-binding cassette transporter 1 (hABC1): evidence for sterol-dependent regulation in macrophages. Biochem Biophys Res Commun. 1999;257(1):29–33.PubMedGoogle Scholar
  88. 88.
    Farke C, Viturro E, Meyer HH, Albrecht C. Identification of the bovine cholesterol efflux regulatory protein ABCA1 and its expression in various tissues. J Anim Sci. 2006;84(11):2887–94.PubMedGoogle Scholar
  89. 89.
    Morroni M, Giordano A, Zingaretti MC, Boiani R, De Matteis R, Kahn BB, et al. Reversible transdifferentiation of secretory epithelial cells into adipocytes in the mammary gland. Proc Natl Acad Sci U S A. 2004;101(48):16801–6.PubMedCentralPubMedGoogle Scholar
  90. 90.
    Umemoto T, Han CY, Mitra P, Averill MM, Tang CR, Goodspeed L, et al. Apolipoprotein AI and high-density lipoprotein have anti-inflammatory effects on adipocytes via cholesterol transporters ATP-binding cassette A-1, ATP-binding cassette G-1, and scavenger receptor B-1. Circ Res. 2013;112(10):1345–54.PubMedGoogle Scholar
  91. 91.
    Schimanski S, Wild PJ, Treeck O, Horn F, Sigruener A, Rudolph C, et al. Expression of the lipid transporters ABCA3 and ABCA1 is diminished in human breast cancer tissue. Horm Metab Res. 2010;42(2):102–9.Google Scholar
  92. 92.
    Takahashi K, Kimura Y, Nagata K, Yamamoto A, Matsuo M, Ueda K. ABC proteins: key molecules for lipid homeostasis. Med Mol Morphol. 2005;38(1):2–12.PubMedGoogle Scholar
  93. 93.
    Vaughan AM, Oram JF. ABCG1 redistributes cell cholesterol to domains removable by high density lipoprotein but not by lipid-depleted apolipoproteins. J Biol Chem. 2005;280(34):30150–7.PubMedGoogle Scholar
  94. 94.
    Kobayashi A, Takanezawa Y, Hirata T, Shimizu Y, Misasa K, Kioka N, et al. Efflux of sphingomyelin, cholesterol, and phosphatidylcholine by ABCG1. J Lipid Res. 2006;47(8):1791–802.PubMedGoogle Scholar
  95. 95.
    Viturro E, Farke C, Meyer HH, Albrecht C. Identification, sequence analysis and mRNA tissue distribution of the bovine sterol transporters ABCG5 and ABCG8. J Dairy Sci. 2006;89(2):553–61.PubMedGoogle Scholar
  96. 96.
    Lee MH, Lu K, Hazard S, Yu H, Shulenin S, Hidaka H, et al. Identification of a gene, ABCG5, important in the regulation of dietary cholesterol absorption. Nat Genet. 2001;27(1):79–83.PubMedCentralPubMedGoogle Scholar
  97. 97.
    Yu L, Hammer RE, Li-Hawkins J, Von Bergmann K, Lutjohann D, Cohen JC, et al. Disruption of Abcg5 and Abcg8 in mice reveals their crucial role in biliary cholesterol secretion. Proc Natl Acad Sci U S A. 2002;99(25):16237–42.PubMedCentralPubMedGoogle Scholar
  98. 98.
    Yu L, Li-Hawkins J, Hammer RE, Berge KE, Horton JD, Cohen JC, et al. Overexpression of ABCG5 and ABCG8 promotes biliary cholesterol secretion and reduces fractional absorption of dietary cholesterol. J Clin Invest. 2002;110(5):671–80.PubMedCentralPubMedGoogle Scholar
  99. 99.
    Berge KE, Tian H, Graf GA, Yu L, Grishin NV, Schultz J, et al. Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science. 2000;290(5497):1771–5.PubMedGoogle Scholar
  100. 100.
    Phillips MC, Gillotte KL, Haynes MP, Johnson WJ, Lund-Katz S, Rothblat GH. Mechanisms of high density lipoprotein-mediated efflux of cholesterol from cell plasma membranes. Atherosclerosis. 1998;137(Suppl):S13–7.PubMedGoogle Scholar
  101. 101.
    McLean LR, Phillips MC. Mechanism of cholesterol and phosphatidylcholine exchange or transfer between unilamellar vesicles. Biochemistry-us. 1981;20(10):2893–900.Google Scholar
  102. 102.
    Mukherjee S, Zha XH, Tabas I, Maxfield FR. Cholesterol distribution in living cells: fluorescence imaging using dehydroergosterol as a fluorescent cholesterol analog. Biophys J. 1998;75(4):1915–25.PubMedCentralPubMedGoogle Scholar
  103. 103.
    Sankaranarayanan S, Kellner-Weibel G, de la Llera-Moya M, Phillips MC, Asztalos BF, Bittman R, et al. A sensitive assay for ABCA1-mediated cholesterol efflux using BODIPY-cholesterol. J Lipid Res. 2011;52(12):2332–40.PubMedCentralPubMedGoogle Scholar
  104. 104.
    Schroeder F, Holland JF, Bieber LL. Fluorometric evidence for the binding of cholesterol to the filipin complex. J Antibiot (Tokyo). 1971;24(12):846–9.Google Scholar
  105. 105.
    Edwards SH, Kimberly MM, Pyatt SD, Stribling SL, Dobbin KD, Myers GL. Proposed serum cholesterol reference measurement procedure by gas chromatography-isotope dilution mass spectrometry. Clin Chem. 2011;57(4):614–22.PubMedGoogle Scholar
  106. 106.
    VanHouten J, Dann P, McGeoch G, Brown EM, Krapcho K, Neville M, et al. The calcium-sensing receptor regulates mammary gland parathyroid hormone-related protein production and calcium transport. J Clin Invest. 2004;113(4):598–608.PubMedCentralPubMedGoogle Scholar
  107. 107.
    Stockinger W, Castoreno AB, Wang Y, Pagnon JC, Nohturfft A. Real-time analysis of endosomal lipid transport by live cell scintillation proximity assay. J Lipid Res. 2004;45(11):2151–8.PubMedCentralPubMedGoogle Scholar
  108. 108.
    Sorg D, Potzel A, Beck M, Meyer HH, Viturro E, Kliem H. Effects of cell culture techniques on gene expression and cholesterol efflux in primary bovine mammary epithelial cells derived from milk and tissue. In Vitro Cell Dev Biol Anim. 2012;48(9):550–3.PubMedGoogle Scholar
  109. 109.
    Jensen RG. The lipids in human milk. Prog Lipid Res. 1996;35(1):53–92.PubMedGoogle Scholar
  110. 110.
    Neville MC, Picciano MF. Regulation of milk lipid secretion and composition. Annu Rev Nutr. 1997;17:159–83.PubMedGoogle Scholar
  111. 111.
    Oppi-Williams C, Suagee JK, Corl BA. Regulation of lipid synthesis by liver X receptor alpha and sterol regulatory element-binding protein 1 in mammary epithelial cells. J Dairy Sci. 2013;96(1):112–21.PubMedGoogle Scholar
  112. 112.
    Shand JH, West DW. Co-ordinate diurnal variations in the activities of cholesterol-metabolizing enzymes in the rat mammary gland. Biochem Soc Trans. 1989;17(6):1081–2.PubMedGoogle Scholar
  113. 113.
    Duncan RE, El-Sohemy A, Archer MC. Delivery of mevalonate to murine extrahepatic tissues via mini-osmotic pumps. J Pharmacol Toxicol Methods. 2004;50(2):139–43.PubMedGoogle Scholar
  114. 114.
    Bionaz M, Chen SW, Khan MJ, Loor JJ. Functional role of PPARs in ruminants: potential targets for fine-tuning metabolism during growth and lactation. Ppar Res. 2013;2013:28.Google Scholar
  115. 115.
    Desvergne B, Michalik L, Wahli W. Transcriptional regulation of metabolism. Physiol Rev. 2006;86(2):465–514.PubMedGoogle Scholar
  116. 116.
    Bjorkhem I, Diczfalusy U. Oxysterols: friends, foes, or just fellow passengers? Arterioscler Thromb Vasc Biol. 2002;22(5):734–42.PubMedGoogle Scholar
  117. 117.
    Schroepfer Jr GJ. Oxysterols: modulators of cholesterol metabolism and other processes. Physiol Rev. 2000;80(1):361–554.PubMedGoogle Scholar
  118. 118.
    Janowski BA, Grogan MJ, Jones SA, Wisely GB, Kliewer SA, Corey EJ, et al. Structural requirements of ligands for the oxysterol liver X receptors LXRalpha and LXRbeta. Proc Natl Acad Sci U S A. 1999;96(1):266–71.PubMedCentralPubMedGoogle Scholar
  119. 119.
    McFadden JW, Corl BA. Activation of liver X receptor (LXR) enhances de novo fatty acid synthesis in bovine mammary epithelial cells. J Dairy Sci. 2010;93(10):4651–8.PubMedGoogle Scholar
  120. 120.
    Repa JJ, Mangelsdorf DJ. Nuclear receptor regulation of cholesterol and bile acid metabolism. Curr Opin Biotechnol. 1999;10(6):557–63.PubMedGoogle Scholar
  121. 121.
    Bionaz M, Hausman GJ, Loor JJ, Mandard S. Physiological and nutritional roles of PPAR across species. PPAR Res. 2013;2013:807156.PubMedCentralPubMedGoogle Scholar
  122. 122.
    Shi HB, Luo J, Zhu JJ, Li J, Sun YT, Lin XZ, et al. PPAR gamma regulates genes involved in triacylglycerol synthesis and secretion in mammary gland epithelial cells of dairy goats. Ppar Res. 2013;2013:310948.PubMedCentralPubMedGoogle Scholar
  123. 123.
    Bionaz M, Thering BJ, Loor JJ. Fine metabolic regulation in ruminants via nutrient-gene interactions: saturated long-chain fatty acids increase expression of genes involved in lipid metabolism and immune response partly through PPAR-alpha activation. Br J Nutr. 2012;107(2):179–91.PubMedGoogle Scholar
  124. 124.
    Schmitz G, Langmann T. Transcriptional regulatory networks in lipid metabolism control ABCA1 expression. Biochim Biophys Acta. 2005;1735(1):1–19.PubMedGoogle Scholar
  125. 125.
    Zinder O, Hamosh M, Fleck TRC, Scow RO. Effect of prolactin on lipoprotein-lipase in mammary-gland and adipose-tissue of rats. Am J Physiol. 1974;226(3):744–8.Google Scholar
  126. 126.
    Da Costa TH, Williamson DH. Regulation of rat mammary-gland uptake of orally administered [1-14C]triolein by insulin and prolactin: evidence for bihormonal control of lipoprotein lipase activity. Biochem J. 1994;300(Pt 1):257–62.PubMedCentralPubMedGoogle Scholar
  127. 127.
    Barber MC, Clegg RA, Finley E, Vernon RG, Flint DJ. The role of growth hormone, prolactin and insulin-like growth factors in the regulation of rat mammary gland and adipose tissue metabolism during lactation. J Endocrinol. 1992;135(2):195–202.PubMedGoogle Scholar
  128. 128.
    Fliss MS, Hinkle PM, Bancroft C. Expression cloning and characterization of PREB (prolactin regulatory element binding), a novel WD motif DNA-binding protein with a capacity to regulate prolactin promoter activity. Mol Endocrinol. 1999;13(4):644–57.Google Scholar
  129. 129.
    Neville MC, Anderson SM, McManaman JL, Badger TM, Bunik M, Contractor N, et al. Lactation and neonatal nutrition: defining and refining the critical questions. J Mammary Gland Biol Neoplasia. 2012;17(2):167–88.PubMedCentralPubMedGoogle Scholar
  130. 130.
    Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993;362(6423):801–9.PubMedGoogle Scholar
  131. 131.
    Witztum JL, Steinberg D. Role of oxidized low-density-lipoprotein in atherogenesis. J Clin Invest. 1991;88(6):1785–92.PubMedCentralPubMedGoogle Scholar
  132. 132.
    Sakai M, Kobori S, Miyazaki A, Horiuchi S. Macrophage proliferation in atherosclerosis. Curr Opin Lipidol. 2000;11(5):503–9.PubMedGoogle Scholar
  133. 133.
    Annema W, Tietge UJ. Regulation of reverse cholesterol transport - a comprehensive appraisal of available animal studies. Nutr Metab (Lond). 2012;9(1):25.Google Scholar
  134. 134.
    Calpe-Berdiel L, Rotllan N, Palomer X, Ribas V, Blanco-Vaca F, Escola-Gil JC. Direct evidence in vivo of impaired macrophage-specific reverse cholesterol transport in ATP-binding cassette transporter A1-deficient mice. Biochim Biophys Acta. 2005;1738(1–3):6–9.PubMedGoogle Scholar
  135. 135.
    Calpe-Berdiel L, Rotllan N, Fievet C, Roig R, Blanco-Vaca F, Escola-Gil JC. Liver X receptor-mediated activation of reverse cholesterol transport from macrophages to feces in vivo requires ABCG5/G8. J Lipid Res. 2008;49(9):1904–11.PubMedGoogle Scholar
  136. 136.
    Zhang Y, Da Silva JR, Reilly M, Billheimer JT, Rothblat GH, Rader DJ. Hepatic expression of scavenger receptor class B type I (SR-BI) is a positive regulator of macrophage reverse cholesterol transport in vivo. J Clin Invest. 2005;115(10):2870–4.PubMedCentralPubMedGoogle Scholar
  137. 137.
    Moore RE, Navab M, Millar JS, Zimetti F, Hama S, Rothblat GH, et al. Increased atherosclerosis in mice lacking apolipoprotein A-I attributable to both impaired reverse cholesterol transport and increased inflammation. Circ Res. 2005;97(8):763–71.PubMedGoogle Scholar
  138. 138.
    Rudolph MC, Monks J, Burns V, Phistry M, Marians R, Foote MR, et al. Sterol regulatory element binding protein and dietary lipid regulation of fatty acid synthesis in the mammary epithelium. Am J Physiol Endocrinol Metab. 2010;299(6):E918–27.PubMedCentralPubMedGoogle Scholar
  139. 139.
    Rudolph MC, Russell TD, Webb P, Neville MC, Anderson SM. Prolactin-mediated regulation of lipid biosynthesis genes in vivo in the lactating mammary epithelial cell. Am J Physiol Endocrinol Metab. 2011;300(6):E1059–68.PubMedCentralPubMedGoogle Scholar
  140. 140.
    Peet DJ, Turley SD, Ma W, Janowski BA, Lobaccaro JM, Hammer RE, et al. Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR alpha. Cell. 1998;93(5):693–704.PubMedGoogle Scholar
  141. 141.
    Smith JL, Lear SR, Forte TM, Ko W, Massimi M, Erickson SK. Effect of pregnancy and lactation on lipoprotein and cholesterol metabolism in the rat. J Lipid Res. 1998;39(11):2237–49.PubMedGoogle Scholar
  142. 142.
    Tang C, Liu Y, Kessler PS, Vaughan AM, Oram JF. The macrophage cholesterol exporter ABCA1 functions as an anti-inflammatory receptor. J Biol Chem. 2009;284(47):32336–43.PubMedCentralPubMedGoogle Scholar
  143. 143.
    Picciano MF. Representative values for constituents of human milk. Pediatr Clin N Am. 2001;48(1):263–4.Google Scholar
  144. 144.
    Bitman J, Freed LM, Neville MC, Wood DL, Hamosh P, Hamosh M. Lipid composition of prepartum human mammary secretion and postpartum milk. J Pediatr Gastroenterol Nutr. 1986;5(4):608–15.PubMedGoogle Scholar
  145. 145.
    Jandal JM. Comparative aspects of goat and sheep milk. Small Rumin Res. 1996;22(2):177–85.Google Scholar
  146. 146.
    Park YW, Juarez M, Ramos M, Haenlein GFW. Physico-chemical characteristics of goat and sheep milk. Small Rumin Res. 2007;68(1–2):88–113.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Institute of Biochemistry and Molecular Medicine, Faculty of MedicineUniversity of BernBernSwitzerland
  2. 2.Swiss National Center of Competence in Research, NCCR TransCureUniversity of BernBernSwitzerland

Personalised recommendations