Advertisement

Ectodysplasin/NF-κB Signaling in Embryonic Mammary Gland Development

  • 808 Accesses

  • 19 Citations

Abstract

The ectodysplasin (Eda) signaling pathway consists of a TNF-like ligand Eda, its receptor Edar, and an adaptor protein Edaradd and its activation leads to NF-κB mediated transcription. In humans, mutations in the EDA pathway genes cause hypohidrotic ectodermal dysplasia, a disorder characterized by defective formation of hair follicles, teeth, and several exocrine glands including the breast. Embryonic mammary gland development proceeds via placode, bud, bulb and sprout stages before the onset of branching morphogenesis. Studies on mouse models have linked Eda with two aspects of embryonic mammary gland morphogenesis: placode induction and ductal growth and branching. Here we summarize the current knowledge on the role of Eda/NF-κB in mammary gland development.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1

Abbreviations

AR:

Androgen receptor

Eda:

Ectodysplasin

Edar:

Eda receptor

EdU:

5-ethynyl-2′-deoxyuridine

HED:

Hypohidrotic ectodermal dysplasia

IKK:

IκB kinase

NF-κB:

Nuclear factor-κB

Nrg3:

Neuregulin3

TNF:

Tumor necrosis factor

TNFR:

Tumor necrosis factor receptor

Traf:

TNFR-associated factor

XLHED:

X-linked hypohidrotic ectodermal dysplasia

References

  1. 1.

    Mikkola ML. TNF superfamily in skin appendage development. Cytokine Growth Factor Rev. 2008;19(3–4):219–30.

  2. 2.

    Mikkola ML. Molecular aspects of hypohidrotic ectodermal dysplasia. Am J Med Genet A. 2009;149A(9):2031–6.

  3. 3.

    Clarke A, Phillips DI, Brown R, Harper PS. Clinical aspects of X-linked hypohidrotic ectodermal dysplasia. Arch Dis Child. 1987;62(10):989–96.

  4. 4.

    Naito A, Yoshida H, Nishioka E, Satoh M, Azuma S, Yamamoto T, et al. TRAF6-deficient mice display hypohidrotic ectodermal dysplasia. Proc Natl Acad Sci U S A. 2002;99(13):8766–71.

  5. 5.

    Morlon A, Munnich A, Smahi A. TAB2, TRAF6 and TAK1 are involved in NF-κB activation induced by the TNF-receptor, Edar and its adaptator Edaradd. Hum Mol Genet. 2005;14(23):3751–7.

  6. 6.

    Perkins ND. Integrating cell-signalling pathways with NF-κB and IKK function. Nat Rev Mol Cell Biol. 2007;8(1):49–62.

  7. 7.

    Schmidt-Ullrich R, Aebischer T, Hülsken J, Birchmeier W, Klemm U, Scheidereit C. Requirement of NF-κB/Rel for the development of hair follicles and other epidermal appendices. Development. 2001;128(19):3843–53.

  8. 8.

    Pispa J, Mikkola ML, Mustonen T, Thesleff I. Ectodysplasin, Edar and TNFRSF19 are expressed in complementary and overlapping patterns during mouse embryogenesis. Gene Expr Patterns. 2003;3(5):675–9.

  9. 9.

    Häärä O, Fujimori S, Schmidt-Ullrich R, Hartmann C, Thesleff I, Mikkola ML. Ectodysplasin and Wnt pathways are required for salivary gland branching morphogenesis. Development. 2011;138(13):2681–91.

  10. 10.

    Voutilainen M, Lindfors PH, Lefebvre S, Ahtiainen L, Fliniaux I, Rysti E, et al. Ectodysplasin regulates hormone-independent mammary ductal morphogenesis via NF-κB. Proc Natl Acad Sci USA. 2012;109(15):5744–9.

  11. 11.

    Dickson KM, Bhakar AL, Barker PA. TRAF6-dependent NF-κB transcriptional activity during mouse development. Dev Dyn. 2004;231(1):122–7.

  12. 12.

    Pispa J, Pummila M, Barker PA, Thesleff I, Mikkola ML. Edar and Troy signalling pathways act redundantly to regulate initiation of hair follicle development. Hum Mol Genet. 2008;17(21):3380–91.

  13. 13.

    Mustonen T, Pispa J, Mikkola ML, Pummila M, Kangas AT, Pakkasjärvi L, et al. Stimulation of ectodermal organ development by Ectodysplasin-A1. Dev Biol. 2003;259(1):123–36.

  14. 14.

    Mustonen T, Ilmonen M, Pummila M, Kangas AT, Laurikkala J, Jaatinen R, et al. Ectodysplasin A1 promotes placodal cell fate during early morphogenesis of ectodermal appendages. Development. 2004;131(20):4907–19.

  15. 15.

    Chu EY, Hens J, Andl T, Kairo A, Yamaguchi TP, Brisken C, et al. Canonical WNT signaling promotes mammary placode development and is essential for initiation of mammary gland morphogenesis. Development. 2004;131(19):4819–29.

  16. 16.

    Ahn Y, Sims C, Logue JM, Weatherbee SD, Krumlauf R. Lrp4 and Wise interplay controls the formation and patterning of mammary and other skin appendage placodes by modulating Wnt signaling. Development. 2013;140(3):583–93.

  17. 17.

    Panchal H, Wansbury O, Parry S, Ashworth A, Howard B. Neuregulin3 alters cell fate in the epidermis and mammary gland. BMC Dev Biol. 2007;7:105.

  18. 18.

    Howard B, Panchal H, McCarthy A, Ashworth A. Identification of the scaramanga gene implicates Neuregulin3 in mammary gland specification. Genes Dev. 2005;19(17):2078–90.

  19. 19.

    Demicco EG, Kavanagh KT, Romieu-Mourez R, Wang X, Shin SR, Landesman-Bollag E, et al. RelB/p52 NF-κB complexes rescue an early delay in mammary gland development in transgenic mice with targeted superrepressor IκB-alpha expression and promote carcinogenesis of the mammary gland. Mol Cell Biol. 2005;25(22):10136–47.

  20. 20.

    Brantley DM, Chen CL, Muraoka RS, Bushdid PB, Bradberry JL, Kittrell F, et al. Nuclear factor-κB (NF-κB) regulates proliferation and branching in mouse mammary epithelium. Mol Biol Cell. 2001;12(5):1445–55.

  21. 21.

    Chang SH, Jobling S, Brennan K, Headon DJ. Enhanced Edar signalling has pleiotropic effects on craniofacial and cutaneous glands. PLoS One. 2009;4(10):e7591.

  22. 22.

    Kuramoto T, Yokoe M, Hashimoto R, Hiai H, Serikawa T. A rat model of hypohidrotic ectodermal dysplasia carries a missense mutation in the Edaradd gene. BMC Genet. 2011;12:91.

  23. 23.

    Kamberov YG, Wang S, Tan J, Gerbault P, Wark A, Tan L, et al. Modeling recent human evolution in mice by expression of a selected EDAR variant. Cell. 2013;152(4):691–702.

  24. 24.

    Cowin P, Wysolmerski J. Molecular mechanisms guiding embryonic mammary gland development. Cold Spring Harb Perspect Biol. 2010;2(6):a003251.

  25. 25.

    Kratochwil K. Development and loss of androgen responsiveness in the embryonic rudiment of the mouse mammary gland. Dev Biol. 1977;61(2):358–65.

  26. 26.

    Tsukamoto AS, Grosschedl R, Guzman RC, Parslow T, Varmus HE. Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell. 1988;55(4):619–25.

  27. 27.

    Lane TF, Leder P. Wnt-10b directs hypermorphic development and transformation in mammary glands of male and female mice. Oncogene. 1997;15(18):2133–44.

  28. 28.

    Lefebvre S, Fliniaux I, Schneider P, Mikkola ML. Identification of ectodysplasin target genes reveals the involvement of chemokines in hair development. J Invest Dermatol. 2012;132(4):1094–102.

  29. 29.

    Boras-Granic K, Wysolmerski JJ. Wnt signaling in breast organogenesis. Organogenesis. 2008;4(2):116–22.

  30. 30.

    Häärä O, Harjunmaa E, Lindfors PH, Huh SH, Fliniaux I, Åberg T, et al. Ectodysplasin regulates activator-inhibitor balance in murine tooth development through Fgf20 signaling. Development. 2012;139(17):3189–99.

  31. 31.

    Huh SH, Närhi K, Lindfors PH, Häärä O, Yang L, Ornitz DM, et al. Fgf20 governs formation of primary and secondary dermal condensations in developing hair follicles. Genes Dev. 2013;27(4):450–8.

  32. 32.

    Mégarbané H, Cluzeau C, Bodemer C, Fraïtag S, Chababi-Atallah M, Mégarbané A, et al. Unusual presentation of a severe autosomal recessive anhydrotic ectodermal dysplasia with a novel mutation in the EDAR gene. Am J Med Genet A. 2008;146A(20):2657–62.

  33. 33.

    Haghighi A, Nikuei P, Haghighi-Kakhki H, Saleh-Gohari NH, Baghestani S, Krawitz PM, et al. Identification of a novel missense mutation in EDAR causing autosomal recessive hypohidrotic ectodermal dysplasia with bilateral amastia and palmoplantar hyperkeratosis. Br J Dermatol. 2012. doi:10.1111/bjd.12151.

  34. 34.

    Berlin AL, Paller AS, Chan LS. Incontinentia pigmenti: a review and update on the molecular basis of pathophysiology. J Am Acad Dermatol. 2002;47(2):169–87.

Download references

Acknowledgments

This work was supported by the Sigrid Jusélius Foundation (MLM) and Helsinki Graduate Program in Biotechnology and Molecular Biology (MV).

Author information

Correspondence to Marja L. Mikkola.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lindfors, P.H., Voutilainen, M. & Mikkola, M.L. Ectodysplasin/NF-κB Signaling in Embryonic Mammary Gland Development. J Mammary Gland Biol Neoplasia 18, 165–169 (2013) doi:10.1007/s10911-013-9277-5

Download citation

Keywords

  • Ectodermal dysplasia
  • HED
  • Breast
  • Placode
  • Branching
  • Duct