Advertisement

Ectodysplasin/NF-κB Signaling in Embryonic Mammary Gland Development

  • Päivi H. Lindfors
  • Maria Voutilainen
  • Marja L. MikkolaEmail author
Article

Abstract

The ectodysplasin (Eda) signaling pathway consists of a TNF-like ligand Eda, its receptor Edar, and an adaptor protein Edaradd and its activation leads to NF-κB mediated transcription. In humans, mutations in the EDA pathway genes cause hypohidrotic ectodermal dysplasia, a disorder characterized by defective formation of hair follicles, teeth, and several exocrine glands including the breast. Embryonic mammary gland development proceeds via placode, bud, bulb and sprout stages before the onset of branching morphogenesis. Studies on mouse models have linked Eda with two aspects of embryonic mammary gland morphogenesis: placode induction and ductal growth and branching. Here we summarize the current knowledge on the role of Eda/NF-κB in mammary gland development.

Keywords

Ectodermal dysplasia HED Breast Placode Branching Duct 

Abbreviations

AR

Androgen receptor

Eda

Ectodysplasin

Edar

Eda receptor

EdU

5-ethynyl-2′-deoxyuridine

HED

Hypohidrotic ectodermal dysplasia

IKK

IκB kinase

NF-κB

Nuclear factor-κB

Nrg3

Neuregulin3

TNF

Tumor necrosis factor

TNFR

Tumor necrosis factor receptor

Traf

TNFR-associated factor

XLHED

X-linked hypohidrotic ectodermal dysplasia

Notes

Acknowledgments

This work was supported by the Sigrid Jusélius Foundation (MLM) and Helsinki Graduate Program in Biotechnology and Molecular Biology (MV).

References

  1. 1.
    Mikkola ML. TNF superfamily in skin appendage development. Cytokine Growth Factor Rev. 2008;19(3–4):219–30.PubMedCrossRefGoogle Scholar
  2. 2.
    Mikkola ML. Molecular aspects of hypohidrotic ectodermal dysplasia. Am J Med Genet A. 2009;149A(9):2031–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Clarke A, Phillips DI, Brown R, Harper PS. Clinical aspects of X-linked hypohidrotic ectodermal dysplasia. Arch Dis Child. 1987;62(10):989–96.PubMedCrossRefGoogle Scholar
  4. 4.
    Naito A, Yoshida H, Nishioka E, Satoh M, Azuma S, Yamamoto T, et al. TRAF6-deficient mice display hypohidrotic ectodermal dysplasia. Proc Natl Acad Sci U S A. 2002;99(13):8766–71.PubMedGoogle Scholar
  5. 5.
    Morlon A, Munnich A, Smahi A. TAB2, TRAF6 and TAK1 are involved in NF-κB activation induced by the TNF-receptor, Edar and its adaptator Edaradd. Hum Mol Genet. 2005;14(23):3751–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Perkins ND. Integrating cell-signalling pathways with NF-κB and IKK function. Nat Rev Mol Cell Biol. 2007;8(1):49–62.PubMedCrossRefGoogle Scholar
  7. 7.
    Schmidt-Ullrich R, Aebischer T, Hülsken J, Birchmeier W, Klemm U, Scheidereit C. Requirement of NF-κB/Rel for the development of hair follicles and other epidermal appendices. Development. 2001;128(19):3843–53.PubMedGoogle Scholar
  8. 8.
    Pispa J, Mikkola ML, Mustonen T, Thesleff I. Ectodysplasin, Edar and TNFRSF19 are expressed in complementary and overlapping patterns during mouse embryogenesis. Gene Expr Patterns. 2003;3(5):675–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Häärä O, Fujimori S, Schmidt-Ullrich R, Hartmann C, Thesleff I, Mikkola ML. Ectodysplasin and Wnt pathways are required for salivary gland branching morphogenesis. Development. 2011;138(13):2681–91.PubMedCrossRefGoogle Scholar
  10. 10.
    Voutilainen M, Lindfors PH, Lefebvre S, Ahtiainen L, Fliniaux I, Rysti E, et al. Ectodysplasin regulates hormone-independent mammary ductal morphogenesis via NF-κB. Proc Natl Acad Sci USA. 2012;109(15):5744–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Dickson KM, Bhakar AL, Barker PA. TRAF6-dependent NF-κB transcriptional activity during mouse development. Dev Dyn. 2004;231(1):122–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Pispa J, Pummila M, Barker PA, Thesleff I, Mikkola ML. Edar and Troy signalling pathways act redundantly to regulate initiation of hair follicle development. Hum Mol Genet. 2008;17(21):3380–91.PubMedCrossRefGoogle Scholar
  13. 13.
    Mustonen T, Pispa J, Mikkola ML, Pummila M, Kangas AT, Pakkasjärvi L, et al. Stimulation of ectodermal organ development by Ectodysplasin-A1. Dev Biol. 2003;259(1):123–36.PubMedCrossRefGoogle Scholar
  14. 14.
    Mustonen T, Ilmonen M, Pummila M, Kangas AT, Laurikkala J, Jaatinen R, et al. Ectodysplasin A1 promotes placodal cell fate during early morphogenesis of ectodermal appendages. Development. 2004;131(20):4907–19.PubMedCrossRefGoogle Scholar
  15. 15.
    Chu EY, Hens J, Andl T, Kairo A, Yamaguchi TP, Brisken C, et al. Canonical WNT signaling promotes mammary placode development and is essential for initiation of mammary gland morphogenesis. Development. 2004;131(19):4819–29.PubMedCrossRefGoogle Scholar
  16. 16.
    Ahn Y, Sims C, Logue JM, Weatherbee SD, Krumlauf R. Lrp4 and Wise interplay controls the formation and patterning of mammary and other skin appendage placodes by modulating Wnt signaling. Development. 2013;140(3):583–93.PubMedCrossRefGoogle Scholar
  17. 17.
    Panchal H, Wansbury O, Parry S, Ashworth A, Howard B. Neuregulin3 alters cell fate in the epidermis and mammary gland. BMC Dev Biol. 2007;7:105.PubMedCrossRefGoogle Scholar
  18. 18.
    Howard B, Panchal H, McCarthy A, Ashworth A. Identification of the scaramanga gene implicates Neuregulin3 in mammary gland specification. Genes Dev. 2005;19(17):2078–90.PubMedCrossRefGoogle Scholar
  19. 19.
    Demicco EG, Kavanagh KT, Romieu-Mourez R, Wang X, Shin SR, Landesman-Bollag E, et al. RelB/p52 NF-κB complexes rescue an early delay in mammary gland development in transgenic mice with targeted superrepressor IκB-alpha expression and promote carcinogenesis of the mammary gland. Mol Cell Biol. 2005;25(22):10136–47.PubMedCrossRefGoogle Scholar
  20. 20.
    Brantley DM, Chen CL, Muraoka RS, Bushdid PB, Bradberry JL, Kittrell F, et al. Nuclear factor-κB (NF-κB) regulates proliferation and branching in mouse mammary epithelium. Mol Biol Cell. 2001;12(5):1445–55.PubMedGoogle Scholar
  21. 21.
    Chang SH, Jobling S, Brennan K, Headon DJ. Enhanced Edar signalling has pleiotropic effects on craniofacial and cutaneous glands. PLoS One. 2009;4(10):e7591.PubMedCrossRefGoogle Scholar
  22. 22.
    Kuramoto T, Yokoe M, Hashimoto R, Hiai H, Serikawa T. A rat model of hypohidrotic ectodermal dysplasia carries a missense mutation in the Edaradd gene. BMC Genet. 2011;12:91.PubMedCrossRefGoogle Scholar
  23. 23.
    Kamberov YG, Wang S, Tan J, Gerbault P, Wark A, Tan L, et al. Modeling recent human evolution in mice by expression of a selected EDAR variant. Cell. 2013;152(4):691–702.PubMedCrossRefGoogle Scholar
  24. 24.
    Cowin P, Wysolmerski J. Molecular mechanisms guiding embryonic mammary gland development. Cold Spring Harb Perspect Biol. 2010;2(6):a003251.PubMedCrossRefGoogle Scholar
  25. 25.
    Kratochwil K. Development and loss of androgen responsiveness in the embryonic rudiment of the mouse mammary gland. Dev Biol. 1977;61(2):358–65.PubMedCrossRefGoogle Scholar
  26. 26.
    Tsukamoto AS, Grosschedl R, Guzman RC, Parslow T, Varmus HE. Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell. 1988;55(4):619–25.PubMedCrossRefGoogle Scholar
  27. 27.
    Lane TF, Leder P. Wnt-10b directs hypermorphic development and transformation in mammary glands of male and female mice. Oncogene. 1997;15(18):2133–44.PubMedCrossRefGoogle Scholar
  28. 28.
    Lefebvre S, Fliniaux I, Schneider P, Mikkola ML. Identification of ectodysplasin target genes reveals the involvement of chemokines in hair development. J Invest Dermatol. 2012;132(4):1094–102.Google Scholar
  29. 29.
    Boras-Granic K, Wysolmerski JJ. Wnt signaling in breast organogenesis. Organogenesis. 2008;4(2):116–22.Google Scholar
  30. 30.
    Häärä O, Harjunmaa E, Lindfors PH, Huh SH, Fliniaux I, Åberg T, et al. Ectodysplasin regulates activator-inhibitor balance in murine tooth development through Fgf20 signaling. Development. 2012;139(17):3189–99.PubMedCrossRefGoogle Scholar
  31. 31.
    Huh SH, Närhi K, Lindfors PH, Häärä O, Yang L, Ornitz DM, et al. Fgf20 governs formation of primary and secondary dermal condensations in developing hair follicles. Genes Dev. 2013;27(4):450–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Mégarbané H, Cluzeau C, Bodemer C, Fraïtag S, Chababi-Atallah M, Mégarbané A, et al. Unusual presentation of a severe autosomal recessive anhydrotic ectodermal dysplasia with a novel mutation in the EDAR gene. Am J Med Genet A. 2008;146A(20):2657–62.PubMedCrossRefGoogle Scholar
  33. 33.
    Haghighi A, Nikuei P, Haghighi-Kakhki H, Saleh-Gohari NH, Baghestani S, Krawitz PM, et al. Identification of a novel missense mutation in EDAR causing autosomal recessive hypohidrotic ectodermal dysplasia with bilateral amastia and palmoplantar hyperkeratosis. Br J Dermatol. 2012. doi: 10.1111/bjd.12151.
  34. 34.
    Berlin AL, Paller AS, Chan LS. Incontinentia pigmenti: a review and update on the molecular basis of pathophysiology. J Am Acad Dermatol. 2002;47(2):169–87.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Päivi H. Lindfors
    • 1
  • Maria Voutilainen
    • 1
  • Marja L. Mikkola
    • 1
    Email author
  1. 1.Developmental Biology Program, Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland

Personalised recommendations