Targeting Insulin and Insulin-Like Growth Factor Signaling in Breast Cancer

  • Yuzhe Yang
  • Douglas Yee


The insulin and insulin like growth factor (IGF) signaling systems are implicated in breast cancer biology. Thus, disrupting IGF/insulin signaling has been shown to have promise in a number of preclinical models. However, human clinical trials have been less promising. Despite evidence of some activity in early phase trials, randomized phase III studies have thus far been unable to show a benefit of blocking IGF signaling in combination with conventional strategies. In breast cancer, combination anti IGF/insulin signaling agents with hormone therapy has not yet proven to have benefit. This inability to translate the preclinical findings into useful clinical strategies calls attention to the need for a deeper understanding of this complex pathway. Development of predictive biomarkers and optimal inhibitory strategies of the IGF/insulin system should yield better clinical strategies. Furthermore, unraveling the interaction between the IGF/insulin pathway and other critical signaling pathways in breast cancer biology, namely estrogen receptor-α (ERα) and epidermal growth factor receptor (EGFR) pathways, provides additional new concepts in designing combination therapies. In this review, we will briefly summarize the current strategies targeting the IGF/insulin system, discuss the possible reasons of success or failure of the existing therapies, and provide potential future directions for research and clinical trials.


Breast cancer Insulin-like growth factor Type I receptor IGF receptor Insulin receptor Predictive biomarkers 



This work was supported by NIH grants R01CA74285, P30 CA 077598, P50CA116201, and Komen for the Cure KG101465.


  1. 1.
    Osborne CK. Tamoxifen in the treatment of breast cancer. N Engl J Med. 1998;339(22):1609–18. doi: 10.1056/NEJM199811263392207.PubMedGoogle Scholar
  2. 2.
    Gianni L, Dafni U, Gelber RD, Azambuja E, Muehlbauer S, Goldhirsch A, et al. Treatment with trastuzumab for 1 year after adjuvant chemotherapy in patients with HER2-positive early breast cancer: a 4-year follow-up of a randomised controlled trial. Lancet Oncol. 2011;12(3):236–44. doi: 10.1016/S1470-2045(11)70033-X.PubMedGoogle Scholar
  3. 3.
    Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I, et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med. 2005;353(16):1659–72. doi: 10.1056/NEJMoa052306.PubMedGoogle Scholar
  4. 4.
    Garcia-Closas M, Hall P, Nevanlinna H, Pooley K, Morrison J, Richesson DA, et al. Heterogeneity of breast cancer associations with five susceptibility loci by clinical and pathological characteristics. PLoS Genet. 2008;4(4):e1000054. doi: 10.1371/journal.pgen.1000054.PubMedGoogle Scholar
  5. 5.
    Sachdev D. Regulation of breast cancer metastasis by IGF signaling. J Mammary Gland Biol Neoplasia. 2008;13(4):431–41. doi: 10.1007/s10911-008-9105-5.PubMedGoogle Scholar
  6. 6.
    Pollak M. Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer. 2008;8(12):915–28. doi: 10.1038/nrc2536.PubMedGoogle Scholar
  7. 7.
    Favoni RE, de Cupis A, Ravera F, Cantoni C, Pirani P, Ardizzoni A, et al. Expression and function of the insulin-like growth factor I system in human non-small-cell lung cancer and normal lung cell lines. Int J Cancer. 1994;56(6):858–66.PubMedGoogle Scholar
  8. 8.
    Arteaga CL, Kitten LJ, Coronado EB, Jacobs S, Kull Jr FC, Allred DC, et al. Blockade of the type I somatomedin receptor inhibits growth of human breast cancer cells in athymic mice. J Clin Invest. 1989;84(5):1418–23. doi: 10.1172/JCI114315.PubMedGoogle Scholar
  9. 9.
    Kaleko M, Rutter WJ, Miller AD. Overexpression of the human insulinlike growth factor I receptor promotes ligand-dependent neoplastic transformation. Mol Cell Biol. 1990;10(2):464–73.PubMedGoogle Scholar
  10. 10.
    Kim HJ, Litzenburger BC, Cui X, Delgado DA, Grabiner BC, Lin X, et al. Constitutively active type I insulin-like growth factor receptor causes transformation and xenograft growth of immortalized mammary epithelial cells and is accompanied by an epithelial-to-mesenchymal transition mediated by NF-kappaB and snail. Mol Cell Biol. 2007;27(8):3165–75. doi: 10.1128/MCB.01315-06.PubMedGoogle Scholar
  11. 11.
    Sachdev D, Hartell JS, Lee AV, Zhang X, Yee D. A dominant negative type I insulin-like growth factor receptor inhibits metastasis of human cancer cells. J Biol Chem. 2004;279(6):5017–24. doi: 10.1074/jbc.M305403200.PubMedGoogle Scholar
  12. 12.
    Sachdev D, Li SL, Hartell JS, Fujita-Yamaguchi Y, Miller JS, Yee D. A chimeric humanized single-chain antibody against the type I insulin-like growth factor (IGF) receptor renders breast cancer cells refractory to the mitogenic effects of IGF-I. Cancer Res. 2003;63(3):627–35.PubMedGoogle Scholar
  13. 13.
    Burtrum D, Zhu Z, Lu D, Anderson DM, Prewett M, Pereira DS, et al. A fully human monoclonal antibody to the insulin-like growth factor I receptor blocks ligand-dependent signaling and inhibits human tumor growth in vivo. Cancer Res. 2003;63(24):8912–21.PubMedGoogle Scholar
  14. 14.
    Arteaga CL, Osborne CK. Growth inhibition of human breast cancer cells in vitro with an antibody against the type I somatomedin receptor. Cancer Res. 1989;49(22):6237–41.PubMedGoogle Scholar
  15. 15.
    Tanno S, Mitsuuchi Y, Altomare DA, Xiao GH, Testa JR. AKT activation up-regulates insulin-like growth factor I receptor expression and promotes invasiveness of human pancreatic cancer cells. Cancer Res. 2001;61(2):589–93.PubMedGoogle Scholar
  16. 16.
    Ciampolillo A, De Tullio C, Giorgino F. The IGF-I/IGF-I receptor pathway: implications in the pathophysiology of thyroid cancer. Curr Med Chem. 2005;12(24):2881–91.PubMedGoogle Scholar
  17. 17.
    Frasca F, Pandini G, Scalia P, Sciacca L, Mineo R, Costantino A, et al. Insulin receptor isoform A, a newly recognized, high-affinity insulin-like growth factor II receptor in fetal and cancer cells. Mol Cell Biol. 1999;19(5):3278–88.PubMedGoogle Scholar
  18. 18.
    Belfiore A, Frasca F, Pandini G, Sciacca L, Vigneri R. Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocr Rev. 2009;30(6):586–623.PubMedGoogle Scholar
  19. 19.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. doi: 10.1016/j.cell.2011.02.013.PubMedGoogle Scholar
  20. 20.
    Weichhaus M, Broom J, Wahle K, Bermano G. A novel role for insulin resistance in the connection between obesity and postmenopausal breast cancer. Int J Oncol. 2012;41(2):745–52. doi: 10.3892/ijo.2012.1480.PubMedGoogle Scholar
  21. 21.
    Algire C, Amrein L, Zakikhani M, Panasci L, Pollak M. Metformin blocks the stimulative effect of a high-energy diet on colon carcinoma growth in vivo and is associated with reduced expression of fatty acid synthase. Endocr Relat Canc. 2010;17(2):351–60. doi: 10.1677/ERC-09-0252.Google Scholar
  22. 22.
    Gunter MJ, Hoover DR, Yu H, Wassertheil-Smoller S, Rohan TE, Manson JE, et al. Insulin, insulin-like growth factor-I, and risk of breast cancer in postmenopausal women. J Natl Canc Inst. 2009;101(1):48–60. doi: 10.1093/jnci/djn415.Google Scholar
  23. 23.
    Ferguson RD, Novosyadlyy R, Fierz Y, Alikhani N, Sun H, Yakar S, et al. Hyperinsulinemia enhances c-Myc-mediated mammary tumor development and advances metastatic progression to the lung in a mouse model of type 2 diabetes. Breast canc res: BCR. 2012;14(1):R8. doi: 10.1186/bcr3089.Google Scholar
  24. 24.
    Guevara-Aguirre J, Balasubramanian P, Guevara-Aguirre M, Wei M, Madia F, Cheng CW, et al. Growth hormone receptor deficiency is associated with a major reduction in pro-aging signaling, cancer, and diabetes in humans. Sci Transl Med. 2011;3(70):70ra13. doi: 10.1126/scitranslmed.3001845.PubMedGoogle Scholar
  25. 25.
    Szereday Z, Schally AV, Varga JL, Kanashiro CA, Hebert F, Armatis P, et al. Antagonists of growth hormone-releasing hormone inhibit the proliferation of experimental non-small cell lung carcinoma. Cancer Res. 2003;63(22):7913–9.PubMedGoogle Scholar
  26. 26.
    Yin D, Vreeland F, Schaaf LJ, Millham R, Duncan BA, Sharma A. Clinical pharmacodynamic effects of the growth hormone receptor antagonist pegvisomant: implications for cancer therapy. Clin Cancer Res. 2007;13(3):1000–9. doi: 10.1158/1078-0432.CCR-06-1910.PubMedGoogle Scholar
  27. 27.
    Gao J, Chesebrough JW, Cartlidge SA, Ricketts SA, Incognito L, Veldman-Jones M, et al. Dual IGF-I/II-neutralizing antibody MEDI-573 potently inhibits IGF signaling and tumor growth. Cancer Res. 2011;71(3):1029–40. doi: 10.1158/0008-5472.CAN-10-2274.PubMedGoogle Scholar
  28. 28.
    Adam PJ, Friedbichler K, Hofmann MH, Bogenrieder T, Borges E, Adolf GR. BI 836845, a fully human IGF ligand neutralizing antibody, to improve the efficacy of rapamycin by blocking rapamacyin-induced AKT activation. ASCO Annual Meeting, Chicago: J Clin Oncol; 2012. p. suppl; abstr 3092.Google Scholar
  29. 29.
    Jogie-Brahim S, Feldman D, Oh Y. Unraveling insulin-like growth factor binding protein-3 actions in human disease. Endocr Rev. 2009;30(5):417–37. doi: 10.1210/er.2008-0028.PubMedGoogle Scholar
  30. 30.
    Alami N, Page V, Yu Q, Jerome L, Paterson J, Shiry L, et al. Recombinant human insulin-like growth factor-binding protein 3 inhibits tumor growth and targets the Akt pathway in lung and colon cancer models. Growth Horm IGF Res. 2008;18(6):487–96. doi: 10.1016/j.ghir.2008.04.002.PubMedGoogle Scholar
  31. 31.
    Jerome L, Alami N, Belanger S, Page V, Yu Q, Paterson J, et al. Recombinant human insulin-like growth factor binding protein 3 inhibits growth of human epidermal growth factor receptor-2-overexpressing breast tumors and potentiates herceptin activity in vivo. Cancer Res. 2006;66(14):7245–52.PubMedGoogle Scholar
  32. 32.
    Papa V, Pezzino V, Costantino A, Belfiore A, Giuffrida D, Frittitta L, et al. Elevated insulin receptor content in human breast cancer. J Clin Invest. 1990;86(5):1503–10. doi: 10.1172/JCI114868.PubMedGoogle Scholar
  33. 33.
    Mathieu MC, Clark GM, Allred DC, Goldfine ID, Vigneri R. Insulin receptor expression and clinical outcome in node-negative breast cancer. Proc Assoc Am Phys. 1997;109(6):565–71.PubMedGoogle Scholar
  34. 34.
    Haluska P, Shaw HM, Batzel GN, Yin D, Molina JR, Molife LR, et al. Phase I dose escalation study of the anti insulin-like growth factor-I receptor monoclonal antibody CP-751,871 in patients with refractory solid tumors. Clin Cancer Res. 2007;13(19):5834–40. doi: 10.1158/1078-0432.CCR-07-1118.PubMedGoogle Scholar
  35. 35.
    Avnet S, Sciacca L, Salerno M, Gancitano G, Cassarino MF, Longhi A, et al. Insulin receptor isoform A and insulin-like growth factor II as additional treatment targets in human osteosarcoma. Cancer Res. 2009;69(6):2443–52.PubMedGoogle Scholar
  36. 36.
    Pandini G, Wurch T, Akla B, Corvaia N, Belfiore A, Goetsch L. Functional responses and in vivo anti-tumour activity of h7C10: a humanised monoclonal antibody with neutralising activity against the insulin-like growth factor-1 (IGF-1) receptor and insulin/IGF-1 hybrid receptors. Eur J Cancer. 2007;43(8):1318–27. doi: 10.1016/j.ejca.2007.03.009.PubMedGoogle Scholar
  37. 37.
    Sachdev D, Yee D. Disrupting insulin-like growth factor signaling as a potential cancer therapy. Mol Cancer Ther. 2007;6(1):1–12. doi: 10.1158/1535-7163.MCT-06-0080.PubMedGoogle Scholar
  38. 38.
    Ryan PD, Neven P, Blackwell KL, Dirix LY, Barrios CH, Miller JWH et al. Figitumumab plus exemestane versus exemestane as first-line treatment of postmenopausal hormone receptor-positive advanced breast cancer: a randomized, open-label phase II trial. Cancer Res. 2011;71(24 Suppl.):239 s, Abs nr P1-17-01.Google Scholar
  39. 39.
    Zeng X, Sachdev D, Zhang H, Gaillard-Kelly M, Yee D. Sequencing of type I insulin-like growth factor receptor inhibition affects chemotherapy response in vitro and in vivo. Clin Cancer Res. 2009;15(8):2840–9. doi: 10.1158/1078-0432.CCR-08-1401.PubMedGoogle Scholar
  40. 40.
    Sachdev D, Zhang X, Matise I, Gaillard-Kelly M, Yee D. The type I insulin-like growth factor receptor regulates cancer metastasis independently of primary tumor growth by promoting invasion and survival. Oncogene. 2010;29(2):251–62. doi: 10.1038/onc.2009.316.PubMedGoogle Scholar
  41. 41.
    Atzori F, Tabernero J, Cervantes A, Prudkin L, Andreu J, Rodriguez-Braun E, et al. A phase I pharmacokinetic and pharmacodynamic study of dalotuzumab (MK-0646), an anti-insulin-like growth factor-1 receptor monoclonal antibody, in patients with advanced solid tumors. Clin Cancer Res. 2011;17(19):6304–12. doi: 10.1158/1078-0432.CCR-10-3336.PubMedGoogle Scholar
  42. 42.
    Fagan DH, Uselman RR, Sachdev D, Yee D. Acquired resistance to tamoxifen is associated with loss of the type I insulin-like growth factor receptor (IGF1R): implications for breast cancer treatment. Cancer Res. 2012. doi: 10.1158/0008-5472.CAN-12-0684.
  43. 43.
    Pollak M. The insulin and insulin-like growth factor receptor family in neoplasia: an update. Nat Rev Cancer. 2012;12(3):159–69. doi: 10.1038/nrc3215.PubMedGoogle Scholar
  44. 44.
    Belfiore A, Malaguarnera R. Insulin receptor and cancer. Endocr Relat Canc. 2011;18(4):R125–47. doi: 10.1530/ERC-11-0074.Google Scholar
  45. 45.
    Qiu J, Yang R, Rao Y, Du Y, Kalembo FW. Risk factors for breast cancer and expression of insulin-like growth factor-2 (IGF-2) in women with breast cancer in Wuhan City, China. PLoS One. 2012;7(5):e36497. doi: 10.1371/journal.pone.0036497.PubMedGoogle Scholar
  46. 46.
    Ward A, Bates P, Fisher R, Richardson L, Graham CF. Disproportionate growth in mice with Igf-2 transgenes. Proc Natl Acad Sci U S A. 1994;91(22):10365–9.PubMedGoogle Scholar
  47. 47.
    Mitsiades CS, Mitsiades NS, McMullan CJ, Poulaki V, Shringarpure R, Akiyama M, et al. Inhibition of the insulin-like growth factor receptor-1 tyrosine kinase activity as a therapeutic strategy for multiple myeloma, other hematologic malignancies, and solid tumors. Canc Cell. 2004;5(3):221–30.Google Scholar
  48. 48.
    Garcia-Echeverria C, Pearson MA, Marti A, Meyer T, Mestan J, Zimmermann J, et al. In vivo antitumor activity of NVP-AEW541-A novel, potent, and selective inhibitor of the IGF-IR kinase. Canc Cell. 2004;5(3):231–9.Google Scholar
  49. 49.
    Carboni JM, Wittman M, Yang Z, Lee F, Greer A, Hurlburt W, et al. BMS-754807, a small molecule inhibitor of insulin-like growth factor-1R/IR. Mol Cancer Ther. 2009;8(12):3341–9. doi: 10.1158/1535-7163.MCT-09-0499.PubMedGoogle Scholar
  50. 50.
    Hou X, Huang F, Macedo LF, Harrington SC, Reeves KA, Greer A, et al. Dual IGF-1R/InsR inhibitor BMS-754807 synergizes with hormonal agents in treatment of estrogen-dependent breast cancer. Cancer Res. 2011;71(24):7597–607. doi: 10.1158/0008-5472.CAN-11-1080.PubMedGoogle Scholar
  51. 51.
    Durfort T, Tkach M, Meschaninova MI, Rivas MA, Elizalde PV, Venyaminova AG, et al. Small interfering RNA targeted to IGF-IR delays tumor growth and induces proinflammatory cytokines in a mouse breast cancer model. PLoS One. 2012;7(1):e29213. doi: 10.1371/journal.pone.0029213.PubMedGoogle Scholar
  52. 52.
    Whitehead KA, Langer R, Anderson DG. Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov. 2009;8(2):129–38. doi: 10.1038/nrd2742.PubMedGoogle Scholar
  53. 53.
    Jones RA, Campbell CI, Wood GA, Petrik JJ, Moorehead RA. Reversibility and recurrence of IGF-IR-induced mammary tumors. Oncogene. 2009;28(21):2152–62. doi: 10.1038/onc.2009.79.PubMedGoogle Scholar
  54. 54.
    Shen K, Liang Q, Xu K, Cui D, Jiang L, Yin P, et al. MiR-139 inhibits invasion and metastasis of colorectal cancer by targeting the type I insulin-like growth factor receptor. Biochem Pharmacol. 2012;84(3):320–30. doi: 10.1016/j.bcp. 2012.04.017.PubMedGoogle Scholar
  55. 55.
    Kong KL, Kwong DL, Chan TH, Law SY, Chen L, Li Y, et al. MicroRNA-375 inhibits tumour growth and metastasis in oesophageal squamous cell carcinoma through repressing insulin-like growth factor 1 receptor. Gut. 2012;61(1):33–42. doi: 10.1136/gutjnl-2011-300178.PubMedGoogle Scholar
  56. 56.
    Kalebic T, Blakesley V, Slade C, Plasschaert S, Leroith D, Helman LJ. Expression of a kinase-deficient IGF-I-R suppresses tumorigenicity of rhabdomyosarcoma cells constitutively expressing a wild type IGF-I-R. Int J Cancer. 1998;76(2):223–7. doi:10.1002/(SICI)1097-0215(19980413)76:2<223::AID-IJC9>3.0.CO;2-Z.PubMedGoogle Scholar
  57. 57.
    Becker MA, Ibrahim YH, Cui X, Lee AV, Yee D. The IGF pathway regulates ERalpha through a S6K1-dependent mechanism in breast cancer cells. Mol Endocrinol. 2011;25(3):516–28. doi: 10.1210/me.2010-0373.PubMedGoogle Scholar
  58. 58.
    Liu H, Scholz C, Zang C, Schefe JH, Habbel P, Regierer AC, et al. Metformin and the mTOR inhibitor everolimus (RAD001) sensitize breast cancer cells to the cytotoxic effect of chemotherapeutic drugs in vitro. Anticancer Res. 2012;32(5):1627–37.PubMedGoogle Scholar
  59. 59.
    Noh WC, Mondesire WH, Peng J, Jian W, Zhang H, Dong J, et al. Determinants of rapamycin sensitivity in breast cancer cells. Clin Cancer Res. 2004;10(3):1013–23.PubMedGoogle Scholar
  60. 60.
    Rivera VM, Squillace RM, Miller D, Berk L, Wardwell SD, Ning Y, et al. Ridaforolimus (AP23573; MK-8669), a potent mTOR inhibitor, has broad antitumor activity and can be optimally administered using intermittent dosing regimens. Mol Cancer Ther. 2011;10(6):1059–71. doi: 10.1158/1535-7163.MCT-10-0792.PubMedGoogle Scholar
  61. 61.
    Yu K, Toral-Barza L, Discafani C, Zhang WG, Skotnicki J, Frost P, et al. mTOR, a novel target in breast cancer: the effect of CCI-779, an mTOR inhibitor, in preclinical models of breast cancer. Endocr Relat Canc. 2001;8(3):249–58.Google Scholar
  62. 62.
    Bachelot T, Bourgier C, Cropet C, Ray-Coquard I, Ferrero JM, Freyer G et al. Randomized Phase II Trial of Everolimus in Combination With Tamoxifen in Patients With Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Metastatic Breast Cancer With Prior Exposure to Aromatase Inhibitors: A GINECO Study. J Clin Oncol. 2012. doi:  10.1200/JCO.2011.39.0708.
  63. 63.
    Baselga J, Campone M, Piccart M, Burris 3rd HA, Rugo HS, Sahmoud T, et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med. 2012;366(6):520–9. doi: 10.1056/NEJMoa1109653.PubMedGoogle Scholar
  64. 64.
    Harrington LS, Findlay GM, Gray A, Tolkacheva T, Wigfield S, Rebholz H, et al. The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J Cell Biol. 2004;166(2):213–23. doi: 10.1083/jcb.200403069.PubMedGoogle Scholar
  65. 65.
    Shi Y, Yan H, Frost P, Gera J, Lichtenstein A. Mammalian target of rapamycin inhibitors activate the AKT kinase in multiple myeloma cells by up-regulating the insulin-like growth factor receptor/insulin receptor substrate-1/phosphatidylinositol 3-kinase cascade. Mol Cancer Ther. 2005;4(10):1533–40. doi: 10.1158/1535-7163.MCT-05-0068.PubMedGoogle Scholar
  66. 66.
    Clark AS, West K, Streicher S, Dennis PA. Constitutive and inducible Akt activity promotes resistance to chemotherapy, trastuzumab, or tamoxifen in breast cancer cells. Mol Cancer Ther. 2002;1(9):707–17.PubMedGoogle Scholar
  67. 67.
    Casa AJ, Potter AS, Malik S, Lazard Z, Kuiatse I, Kim HT, et al. Estrogen and insulin-like growth factor-I (IGF-I) independently down-regulate critical repressors of breast cancer growth. Breast Canc Res Treat. 2012;132(1):61–73. doi: 10.1007/s10549-011-1540-0.Google Scholar
  68. 68.
    Brachmann SM, Hofmann I, Schnell C, Fritsch C, Wee S, Lane H, et al. Specific apoptosis induction by the dual PI3K/mTor inhibitor NVP-BEZ235 in HER2 amplified and PIK3CA mutant breast cancer cells. Proc Natl Acad Sci U S A. 2009;106(52):22299–304. doi: 10.1073/pnas.0905152106.PubMedGoogle Scholar
  69. 69.
    O'Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D, et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 2006;66(3):1500–8. doi: 10.1158/0008-5472.CAN-05-2925.PubMedGoogle Scholar
  70. 70.
    Wan X, Harkavy B, Shen N, Grohar P, Helman LJ. Rapamycin induces feedback activation of Akt signaling through an IGF-1R-dependent mechanism. Oncogene. 2007;26(13):1932–40. doi: 10.1038/sj.onc.1209990.PubMedGoogle Scholar
  71. 71.
    Di Cosimo S, Bendell JC, Cervantes-Ruiperez A, Roda D, Prudkin L, Stein MN et al. A phase I study of the oral mTOR inhibitor ridaforolimus (RIDA) in combination with the IGF-1R antibody dalotozumab (DALO) in patients (pts) with advanced solid tumors. J Clin Oncol. 2010;28(15):abstr 3008.Google Scholar
  72. 72.
    Leung E, Kim JE, Rewcastle GW, Finlay GJ, Baguley BC. Comparison of the effects of the PI3K/mTOR inhibitors NVP-BEZ235 and GSK2126458 on tamoxifen-resistant breast cancer cells. Canc Biol Ther. 2011;11(11):938–46.Google Scholar
  73. 73.
    Cho DC, Cohen MB, Panka DJ, Collins M, Ghebremichael M, Atkins MB, et al. The efficacy of the novel dual PI3-kinase/mTOR inhibitor NVP-BEZ235 compared with rapamycin in renal cell carcinoma. Clin Cancer Res. 2010;16(14):3628–38. doi: 10.1158/1078-0432.CCR-09-3022.PubMedGoogle Scholar
  74. 74.
    Hamelers IH, Steenbergh PH. Interactions between estrogen and insulin-like growth factor signaling pathways in human breast tumor cells. Endocr Relat Canc. 2003;10(2):331–45.Google Scholar
  75. 75.
    Tremblay GB, Tremblay A, Copeland NG, Gilbert DJ, Jenkins NA, Labrie F, et al. Cloning, chromosomal localization, and functional analysis of the murine estrogen receptor beta. Mol Endocrinol. 1997;11(3):353–65.PubMedGoogle Scholar
  76. 76.
    Campbell RA, Bhat-Nakshatri P, Patel NM, Constantinidou D, Ali S, Nakshatri H. Phosphatidylinositol 3-kinase/AKT-mediated activation of estrogen receptor alpha: a new model for anti-estrogen resistance. J Biol Chem. 2001;276(13):9817–24. doi: 10.1074/jbc.M010840200.PubMedGoogle Scholar
  77. 77.
    Martin MB, Franke TF, Stoica GE, Chambon P, Katzenellenbogen BS, Stoica BA, et al. A role for Akt in mediating the estrogenic functions of epidermal growth factor and insulin-like growth factor I. Endocrinology. 2000;141(12):4503–11.PubMedGoogle Scholar
  78. 78.
    Lee AV, Darbre P, King RJ. Processing of insulin-like growth factor-II (IGF-II) by human breast cancer cells. Mol Cell Endocrinol. 1994;99(2):211–20.PubMedGoogle Scholar
  79. 79.
    Lee AV, Jackson JG, Gooch JL, Hilsenbeck SG, Coronado-Heinsohn E, Osborne CK, et al. Enhancement of insulin-like growth factor signaling in human breast cancer: estrogen regulation of insulin receptor substrate-1 expression in vitro and in vivo. Mol Endocrinol. 1999;13(5):787–96.PubMedGoogle Scholar
  80. 80.
    Huynh H, Yang X, Pollak M. Estradiol and antiestrogens regulate a growth inhibitory insulin-like growth factor binding protein 3 autocrine loop in human breast cancer cells. J Biol Chem. 1996;271(2):1016–21.PubMedGoogle Scholar
  81. 81.
    Mathieu M, Vignon F, Capony F, Rochefort H. Estradiol down-regulates the mannose-6-phosphate/insulin-like growth factor-II receptor gene and induces cathepsin-D in breast cancer cells: a receptor saturation mechanism to increase the secretion of lysosomal proenzymes. Mol Endocrinol. 1991;5(6):815–22.PubMedGoogle Scholar
  82. 82.
    Song RX, Chen Y, Zhang Z, Bao Y, Yue W, Wang JP, et al. Estrogen utilization of IGF-1-R and EGF-R to signal in breast cancer cells. J Steroid Biochem Mol Biol. 2010;118(4–5):219–30. doi: 10.1016/j.jsbmb.2009.09.018.PubMedGoogle Scholar
  83. 83.
    Kaufman PA, Ferrero JM, Bourgeois H, Kennecke H, De Boer R, Jacot W et al. A Randomized, Double-Blind, Placebo-Controlled, Phase 2 Study of AMG 479 With Exemestane (E) or Fulvestrant (F) in Postmenopausal Women With Hormone-Receptor Positive (HR+) Metastatic (M) or Locally Advanced (LA) Breast Cancer (BC). Cancer Res. 2010;70(76 s).Google Scholar
  84. 84.
    Drury SC, Detre S, Leary A, Salter J, Reis-Filho J, Barbashina V, et al. Changes in breast cancer biomarkers in the IGF1R/PI3K pathway in recurrent breast cancer after tamoxifen treatment. Endocr Relat Canc. 2011;18(5):565–77. doi: 10.1530/ERC-10-0046.Google Scholar
  85. 85.
    Tan M, Yu D. Molecular mechanisms of erbB2-mediated breast cancer chemoresistance. Adv Exp Med Biol. 2007;608:119–29.PubMedGoogle Scholar
  86. 86.
    Nahta R, Yuan LX, Zhang B, Kobayashi R, Esteva FJ. Insulin-like growth factor-I receptor/human epidermal growth factor receptor 2 heterodimerization contributes to trastuzumab resistance of breast cancer cells. Cancer Res. 2005;65(23):11118–28. doi: 10.1158/0008-5472.CAN-04-3841.PubMedGoogle Scholar
  87. 87.
    Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235(4785):177–82.PubMedGoogle Scholar
  88. 88.
    Carter P, Presta L, Gorman CM, Ridgway JB, Henner D, Wong WL, et al. Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc Natl Acad Sci U S A. 1992;89(10):4285–9.PubMedGoogle Scholar
  89. 89.
    Esteva FJ, Valero V, Booser D, Guerra LT, Murray JL, Pusztai L, et al. Phase II study of weekly docetaxel and trastuzumab for patients with HER-2-overexpressing metastatic breast cancer. J Clin Oncol. 2002;20(7):1800–8.PubMedGoogle Scholar
  90. 90.
    Albanell J, Baselga J. Unraveling resistance to trastuzumab (Herceptin): insulin-like growth factor-I receptor, a new suspect. J Natl Canc Inst. 2001;93(24):1830–2.Google Scholar
  91. 91.
    Browne BC, Crown J, Venkatesan N, Duffy MJ, Clynes M, Slamon D, et al. Inhibition of IGF1R activity enhances response to trastuzumab in HER-2-positive breast cancer cells. Ann Oncol. 2011;22(1):68–73. doi: 10.1093/annonc/mdq349.PubMedGoogle Scholar
  92. 92.
    Rowe DL, Ozbay T, Bender LM, Nahta R. Nordihydroguaiaretic acid, a cytotoxic insulin-like growth factor-I receptor/HER2 inhibitor in trastuzumab-resistant breast cancer. Mol Cancer Ther. 2008;7(7):1900–8. doi: 10.1158/1535-7163.MCT-08-0012.PubMedGoogle Scholar
  93. 93.
    Zeng X, Zhang H, Oh A, Zhang Y, Yee D. Enhancement of doxorubicin cytotoxicity of human cancer cells by tyrosine kinase inhibition of insulin receptor and type I IGF receptor. Breast Canc Res Treat. 2012;133(1):117–26. doi: 10.1007/s10549-011-1713-x.Google Scholar
  94. 94.
    Ma J, Giovannucci E, Pollak M, Leavitt A, Tao Y, Gaziano JM, et al. A prospective study of plasma C-peptide and colorectal cancer risk in men. J Natl Canc Inst. 2004;96(7):546–53.Google Scholar
  95. 95.
    Yee D. Targeting insulin-like growth factor pathways. Br J Cancer. 2006;94(4):465–8. doi: 10.1038/sj.bjc.6602963.PubMedGoogle Scholar
  96. 96.
    Lee AV, Yee D. Targeting IGF-1R: at a crossroad. Oncol (Williston Park). 2011;25(6):535–6. discussion 51.Google Scholar
  97. 97.
    Barker AD, Sigman CC, Kelloff GJ, Hylton NM, Berry DA, Esserman LJ. I-SPY 2: an adaptive breast cancer trial design in the setting of neoadjuvant chemotherapy. Clin Pharmacol Ther. 2009;86(1):97–100. doi: 10.1038/clpt.2009.68.PubMedGoogle Scholar
  98. 98.
    Algire C, Moiseeva O, Deschenes-Simard X, Amrein L, Petruccelli L, Birman E, et al. Metformin reduces endogenous reactive oxygen species and associated DNA damage. Canc Prev Res (Phila). 2012;5(4):536–43. doi: 10.1158/1940-6207.CAPR-11-0536.Google Scholar
  99. 99.
    Litzenburger BC, Creighton CJ, Tsimelzon A, Chan BT, Hilsenbeck SG, Wang T, et al. High IGF-IR activity in triple-negative breast cancer cell lines and tumorgrafts correlates with sensitivity to anti-IGF-IR therapy. Clin Cancer Res. 2011;17(8):2314–27. doi: 10.1158/1078-0432.CCR-10-1903.PubMedGoogle Scholar
  100. 100.
    Huang F, Greer A, Hurlburt W, Han X, Hafezi R, Wittenberg GM, et al. The mechanisms of differential sensitivity to an insulin-like growth factor-1 receptor inhibitor (BMS-536924) and rationale for combining with EGFR/HER2 inhibitors. Cancer Res. 2009;69(1):161–70. doi: 10.1158/0008-5472.CAN-08-0835.PubMedGoogle Scholar
  101. 101.
    Pitts TM, Tan AC, Kulikowski GN, Tentler JJ, Brown AM, Flanigan SA, et al. Development of an integrated genomic classifier for a novel agent in colorectal cancer: approach to individualized therapy in early development. Clin Cancer Res. 2010;16(12):3193–204. doi: 10.1158/1078-0432.CCR-09-3191.PubMedGoogle Scholar
  102. 102.
    Carboni JM, Lee AV, Hadsell DL, Rowley BR, Lee FY, Bol DK, et al. Tumor development by transgenic expression of a constitutively active insulin-like growth factor I receptor. Cancer Res. 2005;65(9):3781–7.PubMedGoogle Scholar
  103. 103.
    Shaw LM. Identification of insulin receptor substrate 1 (IRS-1) and IRS-2 as signaling intermediates in the alpha6beta4 integrin-dependent activation of phosphoinositide 3-OH kinase and promotion of invasion. Mol Cell Biol. 2001;21(15):5082–93. doi: 10.1128/MCB.21.15.5082-5093.2001.PubMedGoogle Scholar
  104. 104.
    Jackson JG, Zhang X, Yoneda T, Yee D. Regulation of breast cancer cell motility by insulin receptor substrate-2 (IRS-2) in metastatic variants of human breast cancer cell lines. Oncogene. 2001;20(50):7318–25. doi: 10.1038/sj.onc.1204920.PubMedGoogle Scholar
  105. 105.
    Jackson JG, White MF, Yee D. Insulin receptor substrate-1 is the predominant signaling molecule activated by insulin-like growth factor-I, insulin, and interleukin-4 in estrogen receptor-positive human breast cancer cells. J Biol Chem. 1998;273(16):9994–10003.PubMedGoogle Scholar
  106. 106.
    Byron SA, Horwitz KB, Richer JK, Lange CA, Zhang X, Yee D. Insulin receptor substrates mediate distinct biological responses to insulin-like growth factor receptor activation in breast cancer cells. Br J Cancer. 2006;95(9):1220–8. doi: 10.1038/sj.bjc.6603354.PubMedGoogle Scholar
  107. 107.
    Gualberto A, Hixon ML, Karp DD, Li D, Green S, Dolled-Filhart M, et al. Pre-treatment levels of circulating free IGF-1 identify NSCLC patients who derive clinical benefit from figitumumab. Br J Cancer. 2011;104(1):68–74. doi: 10.1038/sj.bjc.6605972.PubMedGoogle Scholar
  108. 108.
    Asmane I, Watkin E, Alberti L, Duc A, Marec-Berard P, Ray-Coquard I et al. Insulin-like growth factor type 1 receptor (IGF-1R) exclusive nuclear staining: A predictive biomarker for IGF-1R monoclonal antibody (Ab) therapy in sarcomas. Eur J Cancer. 2012. doi:  10.1016/j.ejca.2012.05.009.
  109. 109.
    Becker MA, Hou X, Harrington SC, Weroha SJ, Gonzalez SE, Jacob KA, et al. IGFBP ratio confers resistance to IGF targeting and correlates with increased invasion and poor outcome in breast tumors. Clin Cancer Res. 2012;18(6):1808–17. doi: 10.1158/1078-0432.CCR-11-1806.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of PharmacologyUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of MedicineUniversity of MinnesotaMinneapolisUSA
  3. 3.Masonic Cancer CenterUniversity of MinnesotaMinneapolisUSA

Personalised recommendations