Skip to main content

Advertisement

Log in

A Methodological Approach to Unravel Organ-Specific Breast Cancer Metastasis

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Breast cancer is the most commonly diagnosed and the second highest cause of cancer-related mortality. Although major breakthroughs have emerged during the past decades concerning the characterization of major malignant tumors hallmarks, little is known about the molecular process that sustains the most deadly feature of cancer: metastasis to distant organs. In fact, this colonization of tumor cells to secondary sites is not random but rather orientated, and depends on several signalling events that are not fully elucidated yet. Understanding the precise molecular and cellular mechanisms accountable for the specific invasion of tissues by breast cancer cells is likely to be important for developing new therapeutic strategies to effectively prevent metastasis in patients diagnosed with early cancer lesions. Here, we briefly describe a multidisciplinary approach based on the molecular profiling of breast cancer metastases, the elaboration of prognostic gene signatures, the clinical validation and the experimental confirmation using cell and animal models to better address breast cancer metastasis. This methodology can be considered as a useful workflow to identify and validate the genes that trigger and support organ tropism of breast cancer cells during metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

Abbreviations

IHC:

immunohistochemistry

EMT:

epithelial mesenchymal transition

References

  1. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. doi:10.1016/j.cell.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  2. Fidler IJ. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer. 2003;3(6):453–8. doi:10.1038/nrc1098.

    Article  CAS  PubMed  Google Scholar 

  3. Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer. 2002;2(8):563–72. doi:10.1038/nrc865.

    Article  CAS  PubMed  Google Scholar 

  4. Paget S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev. 1989;8(2):98–101.

    CAS  PubMed  Google Scholar 

  5. Lee YT. Breast carcinoma: pattern of metastasis at autopsy. J Surg Oncol. 1983;23(3):175–80.

    Article  CAS  PubMed  Google Scholar 

  6. Patanaphan V, Salazar OM, Risco R. Breast cancer: metastatic patterns and their prognosis. South Med J. 1988;81(9):1109–12.

    Article  CAS  PubMed  Google Scholar 

  7. Weigelt B, Peterse JL, Van’t Veer LJ. Breast cancer metastasis: markers and models. Nat Rev Cancer. 2005;5(8):591–602. doi:10.1038/nrc1670.

    Article  CAS  PubMed  Google Scholar 

  8. Nguyen DX, Bos PD, Massague J. Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer. 2009;9(4):274–84. doi:10.1038/nrc2622.

    Article  CAS  PubMed  Google Scholar 

  9. Hess KR, Varadhachary GR, Taylor SH, Wei W, Raber MN, Lenzi R, et al. Metastatic patterns in adenocarcinoma. Cancer. 2006;106(7):1624–33. doi:10.1002/cncr.21778.

    Article  PubMed  Google Scholar 

  10. van’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415(6871):530–6.

    Article  Google Scholar 

  11. van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347(25):1999–2009. doi:10.1056/NEJMoa021967.

    Article  PubMed  Google Scholar 

  12. Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351(27):2817–26. doi:10.1056/NEJMoa041588.

    Article  CAS  PubMed  Google Scholar 

  13. Driouch K, Landemaine T, Sin S, Wang S, Lidereau R. Gene arrays for diagnosis, prognosis and treatment of breast cancer metastasis. Clin Exp Metastasis. 2007;24(8):575–85. doi:10.1007/s10585-007-9110-x.

    Article  CAS  PubMed  Google Scholar 

  14. Sethi N, Kang Y. Unravelling the complexity of metastasis - molecular understanding and targeted therapies. Nat Rev Cancer. 2011;11(10):735–48. doi:10.1038/nrc3125.

    Article  CAS  PubMed  Google Scholar 

  15. Ding L, Ellis MJ, Li S, Larson DE, Chen K, Wallis JW, et al. Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature. 2010;464(7291):999–1005. doi:10.1038/nature08989.

    Article  CAS  PubMed  Google Scholar 

  16. Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, et al. High frequency of mutations of the PIK3CA gene in human cancers. Science. 2004;304(5670):554. doi:10.1126/science.1096502.

    Article  CAS  PubMed  Google Scholar 

  17. Campbell PJ, Yachida S, Mudie LJ, Stephens PJ, Pleasance ED, Stebbings LA, et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature. 2010;467(7319):1109–13. doi:10.1038/nature09460.

    Article  CAS  PubMed  Google Scholar 

  18. Hunter K, Welch DR, Liu ET. Genetic background is an important determinant of metastatic potential. Nat Genet. 2003;34(1):23–4. doi:10.1038/ng0503-23b. author reply 5.

    Article  CAS  PubMed  Google Scholar 

  19. Hunter KW, Alsarraj J. Gene expression profiles and breast cancer metastasis: a genetic perspective. Clin Exp Metastasis. 2009;26(6):497–503. doi:10.1007/s10585-009-9249-8.

    Article  CAS  PubMed  Google Scholar 

  20. Dutertre M, Lacroix-Triki M, Driouch K, de la Grange P, Gratadou L, Beck S, et al. Exon-based clustering of murine breast tumor transcriptomes reveals alternative exons whose expression is associated with metastasis. Cancer Res. 2010;70(3):896–905. doi:10.1158/0008-5472.CAN-09-2703.

    Article  CAS  PubMed  Google Scholar 

  21. Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature. 2009;462(7271):315–22. doi:10.1038/nature08514.

    Article  CAS  PubMed  Google Scholar 

  22. Chen X, Jorgenson E, Cheung ST. New tools for functional genomic analysis. Drug Discov Today. 2009;14(15–16):754–60. doi:10.1016/j.drudis.2009.05.005.

    Article  CAS  PubMed  Google Scholar 

  23. Boehm JS, Hahn WC. Towards systematic functional characterization of cancer genomes. Nat Rev Genet. 2011;12(7):487–98. doi:10.1038/nrg3013.

    Article  CAS  PubMed  Google Scholar 

  24. Berns K, Horlings HM, Hennessy BT, Madiredjo M, Hijmans EM, Beelen K, et al. A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell. 2007;12(4):395–402. doi:10.1016/j.ccr.2007.08.030.

    Article  CAS  PubMed  Google Scholar 

  25. Gobeil S, Zhu X, Doillon CJ, Green MR. A genome-wide shRNA screen identifies GAS1 as a novel melanoma metastasis suppressor gene. Genes Dev. 2008;22(21):2932–40. doi:10.1101/gad.1714608.

    Article  CAS  PubMed  Google Scholar 

  26. Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF, et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature. 2009;462(7269):108–12. doi:10.1038/nature08460.

    Article  CAS  PubMed  Google Scholar 

  27. Johannessen CM, Boehm JS, Kim SY, Thomas SR, Wardwell L, Johnson LA, et al. COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature. 2010;468(7326):968–72. doi:10.1038/nature09627.

    Article  CAS  PubMed  Google Scholar 

  28. Kessler JD, Kahle KT, Sun T, Meerbrey KL, Schlabach MR, Schmitt EM, et al. A SUMOylation-dependent transcriptional subprogram is required for Myc-driven tumorigenesis. Science. 2012;335(6066):348–53. doi:10.1126/science.1212728.

    Article  CAS  PubMed  Google Scholar 

  29. Bric A, Miething C, Bialucha CU, Scuoppo C, Zender L, Krasnitz A, et al. Functional identification of tumor-suppressor genes through an in vivo RNA interference screen in a mouse lymphoma model. Cancer Cell. 2009;16(4):324–35. doi:10.1016/j.ccr.2009.08.015.

    Article  CAS  PubMed  Google Scholar 

  30. Premsrirut PK, Dow LE, Kim SY, Camiolo M, Malone CD, Miething C, et al. A rapid and scalable system for studying gene function in mice using conditional RNA interference. Cell. 2011;145(1):145–58. doi:10.1016/j.cell.2011.03.012.

    Article  CAS  PubMed  Google Scholar 

  31. Gumireddy K, Li A, Gimotty PA, Klein-Szanto AJ, Showe LC, Katsaros D, et al. KLF17 is a negative regulator of epithelial-mesenchymal transition and metastasis in breast cancer. Nat Cell Biol. 2009;11(11):1297–304. doi:10.1038/ncb1974.

    Article  CAS  PubMed  Google Scholar 

  32. Possemato R, Marks KM, Shaul YD, Pacold ME, Kim D, Birsoy K, et al. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature. 2011;476(7360):346–50. doi:10.1038/nature10350.

    Article  CAS  PubMed  Google Scholar 

  33. Quackenbush J. Computational analysis of microarray data. Nat Rev Genet. 2001;2(6):418–27. doi:10.1038/35076576.

    Article  CAS  PubMed  Google Scholar 

  34. Chin L, Hahn WC, Getz G, Meyerson M. Making sense of cancer genomic data. Genes Dev. 2011;25(6):534–55. doi:10.1101/gad.2017311.

    Article  CAS  PubMed  Google Scholar 

  35. Landemaine T, Jackson A, Bellahcene A, Rucci N, Sin S, Abad BM, et al. A six-gene signature predicting breast cancer lung metastasis. Cancer Res. 2008;68(15):6092–9. doi:10.1158/0008-5472.CAN-08-0436.

    Article  CAS  PubMed  Google Scholar 

  36. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 2001;98(19):10869–74. doi:10.1073/pnas.191367098.

    Article  CAS  PubMed  Google Scholar 

  37. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747–52. doi:10.1038/35021093.

    Article  CAS  PubMed  Google Scholar 

  38. Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A. 2003;100(14):8418–23. doi:10.1073/pnas.0932692100.

    Article  CAS  PubMed  Google Scholar 

  39. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science. 1999;286(5439):531–7. doi:7911.

    Article  CAS  PubMed  Google Scholar 

  40. Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A. 1998;95(25):14863–8.

    Article  CAS  PubMed  Google Scholar 

  41. Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C, et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell. 2003;3(6):537–49.

    Article  CAS  PubMed  Google Scholar 

  42. Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD, et al. Genes that mediate breast cancer metastasis to lung. Nature. 2005;436(7050):518–24. doi:10.1038/nature03799.

    Article  CAS  PubMed  Google Scholar 

  43. Bos PD, Zhang XH, Nadal C, Shu W, Gomis RR, Nguyen DX, et al. Genes that mediate breast cancer metastasis to the brain. Nature. 2009;459(7249):1005–9. doi:10.1038/nature08021.

    Article  CAS  PubMed  Google Scholar 

  44. Sanz-Pamplona R, Aragues R, Driouch K, Martin B, Oliva B, Gil M, et al. Expression of endoplasmic reticulum stress proteins is a candidate marker of brain metastasis in both ErbB-2+ and ErbB-2- primary breast tumors. Am J Pathol. 2011;179(2):564–79. doi:10.1016/j.ajpath.2011.04.037.

    Article  PubMed  Google Scholar 

  45. Sin S, Bonin F, Petit V, Meseure D, Lallemand F, Bieche I, et al. Role of the focal adhesion protein kindlin-1 in breast cancer growth and lung metastasis. J Natl Cancer Inst. 2011;103(17):1323–37. doi:10.1093/jnci/djr290.

    Article  CAS  PubMed  Google Scholar 

  46. West M, Blanchette C, Dressman H, Huang E, Ishida S, Spang R, et al. Predicting the clinical status of human breast cancer by using gene expression profiles. Proc Natl Acad Sci U S A. 2001;98(20):11462–7. doi:10.1073/pnas.201162998.

    Article  CAS  PubMed  Google Scholar 

  47. Beer DG, Kardia SL, Huang CC, Giordano TJ, Levin AM, Misek DE, et al. Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat Med. 2002;8(8):816–24. doi:10.1038/nm733.

    CAS  PubMed  Google Scholar 

  48. Kang Y, He W, Tulley S, Gupta GP, Serganova I, Chen CR, et al. Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proc Natl Acad Sci U S A. 2005;102(39):13909–14. doi:10.1073/pnas.0506517102.

    Article  CAS  PubMed  Google Scholar 

  49. Eckhardt BL, Parker BS, van Laar RK, Restall CM, Natoli AL, Tavaria MD, et al. Genomic analysis of a spontaneous model of breast cancer metastasis to bone reveals a role for the extracellular matrix. Mol Cancer Res. 2005;3(1):1–13.

    CAS  PubMed  Google Scholar 

  50. Lorger M, Lee H, Forsyth JS, Felding-Habermann B. Comparison of in vitro and in vivo approaches to studying brain colonization by breast cancer cells. J Neurooncol. 2011;104(3):689–96. doi:10.1007/s11060-011-0550-4.

    Article  CAS  PubMed  Google Scholar 

  51. Sahai E. Mechanisms of cancer cell invasion. Curr Opin Genet Dev. 2005;15(1):87–96. doi:10.1016/j.gde.2004.12.002.

    Article  CAS  PubMed  Google Scholar 

  52. Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2(6):442–54. doi:10.1038/nrc822.

    Article  CAS  PubMed  Google Scholar 

  53. Moreno-Bueno G, Peinado H, Molina P, Olmeda D, Cubillo E, Santos V, et al. The morphological and molecular features of the epithelial-to-mesenchymal transition. Nat Protoc. 2009;4(11):1591–613. doi:10.1038/nprot.2009.152.

    Article  CAS  PubMed  Google Scholar 

  54. Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C. Clonogenic assay of cells in vitro. Nat Protoc. 2006;1(5):2315–9. doi:10.1038/nprot.2006.339.

    Article  CAS  PubMed  Google Scholar 

  55. Friedl P, Wolf K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer. 2003;3(5):362–74. doi:10.1038/nrc1075.

    Article  CAS  PubMed  Google Scholar 

  56. Lu X, Kang Y. Organotropism of breast cancer metastasis. J Mammary Gland Biol Neoplasia. 2007;12(2–3):153–62. doi:10.1007/s10911-007-9047-3.

    Article  PubMed  Google Scholar 

  57. Kim IS, Baek SH. Mouse models for breast cancer metastasis. Biochem Biophys Res Commun. 2010;394(3):443–7. doi:10.1016/j.bbrc.2010.03.070.

    Article  CAS  PubMed  Google Scholar 

  58. Fantozzi A, Christofori G. Mouse models of breast cancer metastasis. Breast Cancer Res. 2006;8(4):212. doi:10.1186/bcr1530.

    Article  PubMed  Google Scholar 

  59. Hong Y, Downey T, Eu KW, Koh PK, Cheah PY. A ‘metastasis-prone’ signature for early-stage mismatch-repair proficient sporadic colorectal cancer patients and its implications for possible therapeutics. Clin Exp Metastasis. 2010;27(2):83–90. doi:10.1007/s10585-010-9305-4.

    Article  CAS  PubMed  Google Scholar 

  60. Pei H, Li L, Fridley BL, Jenkins GD, Kalari KR, Lingle W, et al. FKBP51 affects cancer cell response to chemotherapy by negatively regulating Akt. Cancer Cell. 2009;16(3):259–66. doi:10.1016/j.ccr.2009.07.016.

    Article  CAS  PubMed  Google Scholar 

  61. Sengupta S, den Boon JA, Chen IH, Newton MA, Dahl DB, Chen M, et al. Genome-wide expression profiling reveals EBV-associated inhibition of MHC class I expression in nasopharyngeal carcinoma. Cancer Res. 2006;66(16):7999–8006. doi:10.1158/0008-5472.CAN-05-4399.

    Article  CAS  PubMed  Google Scholar 

  62. Cailleau R, Olive M, Cruciger QV. Long-term human breast carcinoma cell lines of metastatic origin: preliminary characterization. In Vitro. 1978;14(11):911–5.

  63. Kuperwasser C, Dessain S, Bierbaum BE, Garnet D, Sperandio K, Gauvin GP, et al. A mouse model of human breast cancer metastasis to human bone. Cancer Res. 2005;65(14):6130–8. doi:10.1158/0008-5472.CAN-04-1408.

    Article  CAS  PubMed  Google Scholar 

  64. Yoneda T, Sasaki A, Mundy GR. Osteolytic bone metastasis in breast cancer. Breast Cancer Res Treat. 1994;32(1):73–84.

    Article  CAS  PubMed  Google Scholar 

  65. Yoneda T, Williams PJ, Hiraga T, Niewolna M, Nishimura R. A bone-seeking clone exhibits different biological properties from the MDA-MB-231 parental human breast cancer cells and a brain-seeking clone in vivo and in vitro. J Bone Miner Res. 2001;16(8):1486–95. doi:10.1359/jbmr.2001.16.8.1486.

    Article  CAS  PubMed  Google Scholar 

  66. Munoz R, Man S, Shaked Y, Lee CR, Wong J, Francia G, et al. Highly efficacious nontoxic preclinical treatment for advanced metastatic breast cancer using combination oral UFT-cyclophosphamide metronomic chemotherapy. Cancer Res. 2006;66(7):3386–91. doi:10.1158/0008-5472.CAN-05-4411.

    Article  CAS  PubMed  Google Scholar 

  67. Bonnomet A, Syne L, Brysse A, Feyereisen E, Thompson EW, Noel A, et al. A dynamic in vivo model of epithelial-to-mesenchymal transitions in circulating tumor cells and metastases of breast cancer. Oncogene. 2011. doi:10.1038/onc.2011.540.

  68. Vantyghem SA, Allan AL, Postenka CO, Al-Katib W, Keeney M, Tuck AB, et al. A new model for lymphatic metastasis: development of a variant of the MDA-MB-468 human breast cancer cell line that aggressively metastasizes to lymph nodes. Clin Exp Metastasis. 2005;22(4):351–61. doi:10.1007/s10585-005-0745-1.

    Article  CAS  PubMed  Google Scholar 

  69. Charafe-Jauffret E, Ginestier C, Iovino F, Wicinski J, Cervera N, Finetti P, et al. Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res. 2009;69(4):1302–13. doi:10.1158/0008-5472.CAN-08-2741.

    Article  CAS  PubMed  Google Scholar 

  70. Xia TS, Wang GZ, Ding Q, Liu XA, Zhou WB, Zhang YF et al. Bone metastasis in a novel breast cancer mouse model containing human breast and human bone. Breast Cancer Res Treat. 2011. doi:10.1007/s10549-011-1496-0

  71. Khalili P, Arakelian A, Chen G, Singh G, Rabbani SA. Effect of Herceptin on the development and progression of skeletal metastases in a xenograft model of human breast cancer. Oncogene. 2005;24(44):6657–66. doi:10.1038/sj.onc.1208790.

    Article  CAS  PubMed  Google Scholar 

  72. Harrell JC, Dye WW, Allred DC, Jedlicka P, Spoelstra NS, Sartorius CA, et al. Estrogen receptor positive breast cancer metastasis: altered hormonal sensitivity and tumor aggressiveness in lymphatic vessels and lymph nodes. Cancer Res. 2006;66(18):9308–15. doi:10.1158/0008-5472.CAN-06-1769.

    Article  CAS  PubMed  Google Scholar 

  73. Rucci N, Ricevuto E, Ficorella C, Longo M, Perez M, Di Giacinto C, et al. In vivo bone metastases, osteoclastogenic ability, and phenotypic characterization of human breast cancer cells. Bone. 2004;34(4):697–709. doi:10.1016/j.bone.2003.07.012.

    Article  CAS  PubMed  Google Scholar 

  74. Care A, Felicetti F, Meccia E, Bottero L, Parenza M, Stoppacciaro A, et al. HOXB7: a key factor for tumor-associated angiogenic switch. Cancer Res. 2001;61(17):6532–9.

    CAS  PubMed  Google Scholar 

  75. Couillard S, Labrie C, Gauthier S, Merand Y, Singh SM, Candas B, et al. Long-term inhibitory effect of the orally active and pure antiestrogen EM-800 on the growth of human breast cancer xenografts in nude mice. Int J Cancer. 2000;85(3):424–9. doi:10.1002/(SICI)1097-0215(20000201)85:3<424::AID-IJC20>3.0.CO;2-S.

    Article  CAS  PubMed  Google Scholar 

  76. Aslakson CJ, Miller FR. Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res. 1992;52(6):1399–405.

    CAS  PubMed  Google Scholar 

  77. Lelekakis M, Moseley JM, Martin TJ, Hards D, Williams E, Ho P, et al. A novel orthotopic model of breast cancer metastasis to bone. Clin Exp Metastasis. 1999;17(2):163–70.

    Article  CAS  PubMed  Google Scholar 

  78. Li Z, Schem C, Shi YH, Medina D, Zhang M. Increased COX2 expression enhances tumor-induced osteoclastic lesions in breast cancer bone metastasis. Clin Exp Metastasis. 2008;25(4):389–400. doi:10.1007/s10585-007-9117-3.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keltouma Driouch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nola, S., Sin, S., Bonin, F. et al. A Methodological Approach to Unravel Organ-Specific Breast Cancer Metastasis. J Mammary Gland Biol Neoplasia 17, 135–145 (2012). https://doi.org/10.1007/s10911-012-9256-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-012-9256-2

Keywords

Navigation