Advertisement

If You Don’t Look, You Won’t See: Intravital Multiphoton Imaging of Primary and Metastatic Breast Cancer

  • Laura Bonapace
  • Jeffrey Wyckoff
  • Thomas Oertner
  • Jacco Van Rheenen
  • Tobias Junt
  • Mohamed Bentires-AljEmail author
Article

Abstract

A fundamental hallmark of cancer is progression to metastasis and the growth of breast cancer metastases in lung, bone, liver and/or brain causes fatal complications. Unfortunately, the cellular and biochemical mechanisms of the metastatic process remain ill-defined. Recent application of intravital multiphoton microscopy (MP-IVM) to image fluorescently labeled cells in mouse models of cancer has allowed dynamic observation of this multi-step process at the cellular and subcellular levels. In this article, we discuss the use of MP-IVM in studies of breast cancer metastasis, as well as surgical techniques for exposing tumors prior to imaging. We also describe a versatile multiphoton microscope for imaging tumor-stroma interactions.

Keywords

Multiphoton microscopy Intravital imaging Breast cancer Metastasis 

Abbreviations

MP-IVM

Multiphoton intravital microscopy

MPM

Multiphoton microscopy

SHG

Second harmonic generation

PMT

Photomultiplier tube

FLIM

Fluorescence-lifetime imaging microscopy

FRET

Fluorescence resonance energy transfer

Notes

Acknowledgments

We thank J. Rietdorf and S. Bundschuh (FMI) for helping us set up the MPM and R. Friedrich (FMI) and J. Stein (Theodor Kocher Institute, Bern) for helpful discussions. We thank A. de Graaff and the Hubrecht Imaging Center for their support. Research in the lab of JvR is supported by VIDI fellowships (91710330), equipment grants (175.010.2007.00) and (834.11.002) from the Dutch Organization of Scientific Research (NWO), and a grant from the Dutch Cancer Society (KWF: HUBR 2009–4621). Research in the lab of M.B-A. is supported by the Novartis Research Foundation, the European Research Council (ERC starting grant 243211-PTPsBDC), the Swiss Cancer League, and the Krebsliga Beider Basel.

References

  1. 1.
    Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms. Cell. 2011;147(2):275–92.PubMedCrossRefGoogle Scholar
  2. 2.
    Fidler IJ. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer. 2003;3(6):453–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Nguyen DX, Bos PD, Massague J. Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer. 2009;9(4):274–84.PubMedCrossRefGoogle Scholar
  4. 4.
    Friedl P, Alexander S. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell. 2011;147(5):992–1009.PubMedCrossRefGoogle Scholar
  5. 5.
    Beerling E, Ritsma L, Vrisekoop N, Derksen PW, van Rheenen J. Intravital microscopy: new insights into metastasis of tumors. J Cell Sci. 2011;124(Pt 3):299–310.PubMedCrossRefGoogle Scholar
  6. 6.
    Zomer A, Beerling E, Vlug EJ, van Rheenen J. Real-time intravital imaging of cancer models. Clin Transl Oncol. 2011;13(12):848–54.PubMedCrossRefGoogle Scholar
  7. 7.
    Condeelis J, Weissleder R. In vivo imaging in cancer. Cold Spring Harb Perspect Biol. 2010 Dec;2(12).Google Scholar
  8. 8.
    Pittet MJ, Weissleder R. Intravital imaging. Cell. 2011;147(5):983–91.PubMedCrossRefGoogle Scholar
  9. 9.
    Mahmood U, Tung CH, Bogdanov Jr A, Weissleder R. Near-infrared optical imaging of protease activity for tumor detection. Radiology. 1999;213(3):866–70.PubMedGoogle Scholar
  10. 10.
    Sahai E. Illuminating the metastatic process. Nat Rev Cancer. 2007;7(10):737–49.PubMedCrossRefGoogle Scholar
  11. 11.
    Giampieri S, Manning C, Hooper S, Jones L, Hill CS, Sahai E. Localized and reversible TGFbeta signalling switches breast cancer cells from cohesive to single cell motility. Nat Cell Biol. 2009;11(11):1287–96.PubMedCrossRefGoogle Scholar
  12. 12.
    Wyckoff J, Wang W, Lin EY, Wang Y, Pixley F, Stanley ER, et al. A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res. 2004;64(19):7022–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Borowsky AD. Choosing a mouse model: experimental biology in context—the utility and limitations of mouse models of breast cancer. Cold Spring Harb Perspect Biol. 2011;3(9):a009670.PubMedCrossRefGoogle Scholar
  14. 14.
    Jain RK, Munn LL, Fukumura D. Dissecting tumour pathophysiology using intravital microscopy. Nat Rev Cancer. 2002;2(4):266–76.PubMedCrossRefGoogle Scholar
  15. 15.
    Kedrin D, Wyckoff J, Sahai E, Condeelis J, Segall JE. Imaging tumor cell movement in vivo. Curr Protoc Cell Biol. 2007 Jun;Chapter 19:Unit 19 7.Google Scholar
  16. 16.
    Egeblad M, Ewald AJ, Askautrud HA, Truitt ML, Welm BE, Bainbridge E, et al. Visualizing stromal cell dynamics in different tumor microenvironments by spinning disk confocal microscopy. Dis Model Mechanobiol. 2008;1(2–3):155–67. discussion 65.CrossRefGoogle Scholar
  17. 17.
    Wyckoff J, Gligorijevic B, Entenberg D, Segall J, Condeelis J. High-resolution multiphoton imaging of tumors in vivo. Cold Spring Harb Protoc. 2011;2011(10):1167–84.PubMedGoogle Scholar
  18. 18.
    Ahmed F, Wyckoff J, Lin EY, Wang W, Wang Y, Hennighausen L, et al. GFP expression in the mammary gland for imaging of mammary tumor cells in transgenic mice. Cancer Res. 2002;62(24):7166–9.PubMedGoogle Scholar
  19. 19.
    Lohela M, Werb Z. Intravital imaging of stromal cell dynamics in tumors. Curr Opin Genet Dev. 2010;20(1):72–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Eggeling C, Volkmer A, Seidel CA. Molecular photobleaching kinetics of Rhodamine 6G by one- and two-photon induced confocal fluorescence microscopy. ChemPhysChem. 2005;6(5):791–804.PubMedCrossRefGoogle Scholar
  21. 21.
    Helmchen F, Denk W. Deep tissue two-photon microscopy. Nat Methods. 2005;2(12):932–40.PubMedCrossRefGoogle Scholar
  22. 22.
    Sipkins DA, Wei X, Wu JW, Runnels JM, Cote D, Means TK, et al. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature. 2005;435(7044):969–73.PubMedCrossRefGoogle Scholar
  23. 23.
    Euler T, Hausselt SE, Margolis DJ, Breuninger T, Castell X, Detwiler PB, et al. Eyecup scope—optical recordings of light stimulus-evoked fluorescence signals in the retina. Pflugers Arch. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. 2009 Apr;457(6):1393–414.Google Scholar
  24. 24.
    Wyckoff JB, Jones JG, Condeelis JS, Segall JE. A critical step in metastasis: in vivo analysis of intravasation at the primary tumor. Cancer Res. 2000;60(9):2504–11.PubMedGoogle Scholar
  25. 25.
    Lehr HA, Leunig M, Menger MD, Nolte D, Messmer K. Dorsal skinfold chamber technique for intravital microscopy in nude mice. Am J Pathol. 1993;143(4):1055–62.PubMedGoogle Scholar
  26. 26.
    Alexander S, Koehl GE, Hirschberg M, Geissler EK, Friedl P. Dynamic imaging of cancer growth and invasion: a modified skin-fold chamber model. Histochem Cell Biol. 2008;130(6):1147–54.PubMedCrossRefGoogle Scholar
  27. 27.
    Yang M, Baranov E, Wang JW, Jiang P, Wang X, Sun FX, et al. Direct external imaging of nascent cancer, tumor progression, angiogenesis, and metastasis on internal organs in the fluorescent orthotopic model. Proc Natl Acad Sci U S A. 2002;99(6):3824–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Moy AJ, White SM, Indrawan ES, Lotfi J, Nudelman MJ, Costantini SJ, et al. Wide-field functional imaging of blood flow and hemoglobin oxygen saturation in the rodent dorsal window chamber. Microvasc Res. 2011;82(3):199–209.PubMedCrossRefGoogle Scholar
  29. 29.
    Kedrin D, Gligorijevic B, Wyckoff J, Verkhusha VV, Condeelis J, Segall JE, et al. Intravital imaging of metastatic behavior through a mammary imaging window. Nat Methods. 2008;5(12):1019–21.PubMedCrossRefGoogle Scholar
  30. 30.
    Looney MR, Thornton EE, Sen D, Lamm WJ, Glenny RW, Krummel MF. Stabilized imaging of immune surveillance in the mouse lung. Nat Methods. 2011;8(1):91–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Kreisel D, Nava RG, Li W, Zinselmeyer BH, Wang B, Lai J, et al. In vivo two-photon imaging reveals monocyte-dependent neutrophil extravasation during pulmonary inflammation. Proc Natl Acad Sci U S A. 2010;107(42):18073–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Laura Bonapace
    • 1
    • 2
  • Jeffrey Wyckoff
    • 1
  • Thomas Oertner
    • 1
  • Jacco Van Rheenen
    • 3
  • Tobias Junt
    • 2
  • Mohamed Bentires-Alj
    • 1
    Email author
  1. 1.Friedrich Miescher Institute for Biomedical Research (FMI)BaselSwitzerland
  2. 2.Novartis Institutes for Biomedical ResearchBaselSwitzerland
  3. 3.Hubrecht Institute-KNAW and University Medical Center UtrechtUtrechtThe Netherlands

Personalised recommendations