Journal of Mammary Gland Biology and Neoplasia

, Volume 16, Issue 4, pp 421–432

Gene Polymorphisms: The Keys for Marker Assisted Selection and Unraveling Core Regulatory Pathways for Mastitis Resistance

Article

Abstract

One of the most frequent mammary diseases impacting lactating animals is mastitis, an inflammation of the mammary gland most commonly caused by bacterial infection. The severity of mastitis is greatly influenced by the invading organism and the subsequent immune response which must recognize the foreign organism, recruit immune cells, eliminate the invading pathogen, and resolve the inflammatory response. The speed, strength, and duration of this response and subsequent disease susceptibility are critically tied to the genetic background of an animal. However, the genetic contribution has been difficult to identify due to the complex interactions that must occur for effective disease resistance. Recent studies have utilized polymorphisms to better define the genes and chromosomal regions that contribute to mastitis resistance. This review will examine these studies with primary emphasis in bovine systems, as the most work regarding mastitis has been conducted in this species.

Keywords

SNP QTL Dairy Mastitis Immunity 

Abbreviations

SNP

single nucleotide polymorphism

QTL

quantitative trait loci

References

  1. 1.
    NMC. Laboratory handbook on bovine mastitis. 2nd ed. Madison: National Mastitis Council; 1999.Google Scholar
  2. 2.
    USDA. Dairy 2007, part III: reference of dairy cattle health and management practices in the Unites States, 2007. In: USDA-APHIS-VS-CEAH, editor. Fort Collins, CO2008.Google Scholar
  3. 3.
    WHO. Mastitis: Causes and management. In: Development DoCaAHa, editor. Geneva: World Health Organization; 2000.Google Scholar
  4. 4.
    Bannerman DD. Pathogen-dependent induction of cytokines and other soluble inflammatory mediators during intramammary infection of dairy cows. J Anim Sci. 2009;87(13 Suppl):10–25. doi:10.2527/jas.2008-1187.PubMedGoogle Scholar
  5. 5.
    Bannerman DD, Paape MJ, Lee JW, Zhao X, Hope JC, Rainard P. Escherichia coli and Staphylococcus aureus elicit differential innate immune responses following intramammary infection. Clin Diagn Lab Immunol. 2004;11(3):463–72. doi:10.1128/CDLI.11.3.463-472.2004.PubMedGoogle Scholar
  6. 6.
    Hogan JS, Smith KL, Hoblet KH, Schoenberger PS, Todhunter DA, Hueston WD, et al. Field survey of clinical mastitis in low somatic cell count herds. J Dairy Sci. 1989;72(6):1547–56.PubMedGoogle Scholar
  7. 7.
    Hogan JS, Weiss WP, Smith KL. Role of vitamin E and selenium in host defense against mastitis. J Dairy Sci. 1993;76(9):2795–803.PubMedGoogle Scholar
  8. 8.
    Burvenich C, Van Merris V, Mehrzad J, Diez-Fraile A, Duchateau L. Severity of E. coli mastitis is mainly determined by cow factors. Vet Res. 2003;34(5):521–64. doi:10.1051/vetres:2003023.PubMedGoogle Scholar
  9. 9.
    Rupp R, Boichard D. Genetics of resistance to mastitis in dairy cattle. Vet Res. 2003;34(5):671–88.PubMedGoogle Scholar
  10. 10.
    Nash DL, Rogers GW, Cooper JB, Hargrove GL, Keown JF. Heritability of intramammary infections at first parturition and relationships with sire transmitting abilities for somatic cell score, udder type traits, productive life, and protein yield. J Dairy Sci. 2003;86(8):2684–95.PubMedGoogle Scholar
  11. 11.
    Heringstad B, Rekaya R, Gianola D, Klemetsdal G, Weigel KA. Genetic change for clinical mastitis in Norwegian cattle: a threshold model analysis. J Dairy Sci. 2003;86(1):369–75.PubMedGoogle Scholar
  12. 12.
    Zwald NR, Weigel KA, Chang YM, Welper RD, Clay JS. Genetic analysis of clinical mastitis data from on-farm management software using threshold models. J Dairy Sci. 2006;89(1):330–6.PubMedGoogle Scholar
  13. 13.
    Wiggans GR, VanRaden PM, Cooper TA. The genomic evaluation system in the United States: past, present, future. J Dairy Sci. 2011;94(6):3202–11. doi:10.3168/jds.2010-3866.PubMedGoogle Scholar
  14. 14.
    Cole JB, VanRaden PM, O’Connell JR, Van Tassell CP, Sonstegard TS, Schnabel RD, et al. Distribution and location of genetic effects for dairy traits. J Dairy Sci. 2009;92(6):2931–46. doi:10.3168/jds.2008-1762.PubMedGoogle Scholar
  15. 15.
    Hayes BJ, Pryce J, Chamberlain AJ, Bowman PJ, Goddard ME. Genetic architecture of complex traits and accuracy of genomic prediction: coat colour, milk-fat percentage, and type in holstein cattle as contrasting model traits. Plos Genet. 2010;6(9). doi:10.1371/journal.pgen.1001139.
  16. 16.
    Heringstad B, Klemetsdal G, Steine T. Selection responses for disease resistance in two selection experiments with Norwegian red cows. J Dairy Sci. 2007;90(5):2419–26.PubMedGoogle Scholar
  17. 17.
    Heringstad B, Gianola D, Chang YM, Odegard J, Klemetsdal G. Genetic associations between clinical mastitis and somatic cell score in early first-lactation cows. J Dairy Sci. 2006;89(6):2236–44.PubMedGoogle Scholar
  18. 18.
    Heringstad B, Klemetsdal G, Ruane J. Selection for mastitis resistance in dairy cattle: a review with focus on the situation in the Nordic countries. Livest Prod Sci. 2000;64:95–106.Google Scholar
  19. 19.
    Shook GE. Genetic improvement of mastitis through selection on somatic cell count. Vet Clin North Am Food Anim Prac. 1993;9:563–81.Google Scholar
  20. 20.
    de Haas Y, Ouweltjes W, ten Napel J, Windig JJ, de Jong G. Alternative somatic cell count traits as mastitis indicators for genetic selection. J Dairy Sci. 2008;91(6):2501–11. doi:10.3168/jds.2007-0459.PubMedGoogle Scholar
  21. 21.
    Windig JJ, Ouweltjes W, ten Napel J, de Jong G, Veerkamp RF, De Haas Y. Combining somatic cell count traits for optimal selection against mastitis. J Dairy Sci. 2010;93(4):1690–701. doi:10.3168/jds.2009-2052.PubMedGoogle Scholar
  22. 22.
    Tal-Stein R, Fontanesi L, Dolezal M, Scotti E, Bagnato A, Russo V, et al. A genome scan for quantitative trait loci affecting milk somatic cell score in Israeli and Italian Holstein cows by means of selective DNA pooling with single- and multiple-marker mapping. J Dairy Sci. 2010;93(10):4913–27. doi:10.3168/jds.2010-3254.PubMedGoogle Scholar
  23. 23.
    Schulman NF, Moisio SM, Koning DJd, Elo K, Maki-Tanila A, Vilkki J, et al. QTL for health traits in Finnish Ayrshire cattle. Proceedings of the 7th World Congress on Genetics Applied to Livestock Production, Montpellier, France, August, 2002. Session 9. 2002.Google Scholar
  24. 24.
    Schulman NF, Sahana G, Iso-Touru T, Lund MS, Andersson-Eklund L, Viitala SM, et al. Fine mapping of quantitative trait loci for mastitis resistance on bovine chromosome 11. Anim Genet. 2009;40(4):509–15. doi:10.1111/j.1365-2052.2009.01872.x.PubMedGoogle Scholar
  25. 25.
    Schulman NF, Viitala SM, de Koning DJ, Virta J, Maki-Tanila A, Vilkki JH. Quantitative trait loci for health traits in Finnish Ayrshire cattle. J Dairy Sci. 2004;87:443–9.PubMedGoogle Scholar
  26. 26.
    Rodriguez-Zas SL, Southey BR, Heyen DW, Lewin HA. Detection of quantitative trait loci influencing dairy traits using a model for longitudinal data. J Dairy Sci. 2002;85(10):2681–91. doi:10.3168/jds.S0022-0302(02)74354-3.PubMedGoogle Scholar
  27. 27.
    Klungland H, Sabry A, Heringstad B, Gro Olsen H, Gomez-Raya L, Inge Vage D, et al. Quantitative trait loci affecting clinical mastitis and somatic cell count in dairy cattle. Mamm Genome. 2001;12:837–42.PubMedGoogle Scholar
  28. 28.
    Schrooten C, Bink MCAM, Bovenhuis H. Whole genome scan to detect chromosomal regions affecting multiple traits in dairy cattle. J Dairy Sci. 2004;87:3550–60.PubMedGoogle Scholar
  29. 29.
    Longeri M, Polli M, Strillacci MG, Samore AB, Zanotti M. Short communication: quantitative trait loci affecting the somatic cell score on chromosomes 4 and 26 in Italian Holstein cattle. J Dairy Sci. 2006;89(8):3175–7.PubMedGoogle Scholar
  30. 30.
    Heyen DW, Weller JI, Ron M, Band M, Beever JE, Feldmesser E, et al. A genome scan for QTL influencing milk production and health traits in dairy cattle. Physiol Genomics. 1999;1:165–75.PubMedGoogle Scholar
  31. 31.
    Sorensen LP, Guldbrandtsen B, Thomasen JR, Lund MS. Pathogen-specific effects of quantitative trait loci affecting clinical mastitis and somatic cell count in Danish Holstein cattle. J Dairy Sci. 2008;91(6):2493–500. doi:10.3168/jds.2007-0583.PubMedGoogle Scholar
  32. 32.
    Lund MS, Guldbrandtsen B, Buitenhuis AJ, Thomsen B, Bendixen C. Detection of quantitative trait loci in Danish Holstein cattle affecting clinical mastitis, somatic cell score, udder conformation traits, and assessment of associated effects on milk yield. J Dairy Sci. 2008;91(10):4028–36. doi:10.3168/jds.2007-0290.PubMedGoogle Scholar
  33. 33.
    Lund MS, Sahana G, Andersson-Eklund L, Hastings N, Fernandez A, Schulman N, et al. Joint analysis of quantitative trait loci for clinical mastitis and somatic cell score on five chromosomes in three Nordic dairy cattle breeds. J Dairy Sci. 2007;90(11):5282–90. doi:10.3168/jds.2007-0177.PubMedGoogle Scholar
  34. 34.
    Holmberg M, Andersson-Eklund L. Quantitative trait loci affecting health traits in Swedish dairy cattle. J Dairy Sci. 2004;87:2653–9.PubMedGoogle Scholar
  35. 35.
    Ashwell MS, Heyen DW, Sonstegard TS, Van Tassell CP, Da Y, VanRaden PM, et al. Detection of quantitative trait loci affecting milk production, health, and reproductive traits in Holstein cattle. J Dairy Sci. 2004;87:468–75.PubMedGoogle Scholar
  36. 36.
    Ashwell MS, Van Tassell CP. Detection of putative loci affecting milk, health, and type traits in a US Holstein population using 70 microsatellite markers in a genome scan. J Dairy Sci. 1999;82:2497–502.PubMedGoogle Scholar
  37. 37.
    Ron M, Feldmesser E, Golik M, Tager-Cohen I, Kliger D, Reiss V, et al. A complete genome scan of the Israeli Holstein population for quantitative trait loci by a daughter design. J Dairy Sci. 2004;87(2):476–90.PubMedGoogle Scholar
  38. 38.
    Weller JI. Power of daughter and granddaughter designs for determining linkage between marker loci and quantitative loci in dairy cattle. J Dairy Sci. 1990;73(9):2525–37.PubMedGoogle Scholar
  39. 39.
    Sahana G, Lund MS, Andersson-Eklund L, Hastings N, Fernandez A, Iso-Touru T, et al. Fine-mapping QTL for mastitis resistance on BTA9 in three Nordic red cattle breeds. Anim Genet. 2008;39(4):354–62. doi:10.1111/j.1365-2052.2008.01729.x.PubMedGoogle Scholar
  40. 40.
    Kuhn C, Bennewitz J, Reinsch N, Xu N, Thomsen H, Looft C, et al. Quantitative trait loci mapping of functional traits in the German Holstein cattle population. J Dairy Sci. 2003;86:360–8.PubMedGoogle Scholar
  41. 41.
    Baes C, Mayer M, Tetens J, Liu Z, Reinhardt F, Thaller G, et al. Refined mapping of a QTL for somatic cell score on BTA27 in the German Holstein using combined linkage and linkage disequilibrium analysis. Can J Anim Sci. 2010;90(2):169–78.Google Scholar
  42. 42.
    Hu Z-L, Park CA, Fritz ER, Reecy JM. QTLdb: a comprehensive database tool building bridges between genotypes and phenotypes. The 9th World Congress on Genetics Applied to Livestock Production; August 1–6, 2010; Leipzig, Germany 2010.Google Scholar
  43. 43.
    Khatkar MS, Thomson PC, Tammen I, Raadsma HW. Combined QTL map of dairy cattle traits. University of Sydney. 2005. http://www.vetsci.usyd.edu.au/reprogen/QTL_Map/?QTL=Yes. Accessed June 8, 2005.
  44. 44.
    Khatkar MS, Thomson PC, Tammen I, Raadsma HW. Quantitative trait loci mapping in dairy cattle: review and meta-analysis. Genet Sel Evol. 2004;36:163–90.PubMedGoogle Scholar
  45. 45.
    Ogorevc J, Kunej T, Razpet A, Dovc P. Database of cattle candidate genes and genetic markers for milk production and mastitis. Anim Genet. 2009;40(6):832–51. doi:10.1111/j.1365-2052.2009.01921.x.PubMedGoogle Scholar
  46. 46.
    Sodeland M, Kent MP, Olsen HG, Opsal MA, Svendsen M, Sehested E, et al. Quantitative trait loci for clinical mastitis on chromosomes 2, 6, 14, and 20 in Norwegian Red cattle. Animal Gen. 2011. doi:10.1111/j.1365-2052.2010.02165.x.
  47. 47.
    Grob PM, David E, Warren TC, DeLeon RP, Farina PR, Homon CA. Characterization of a receptor for human monocyte-derived neutrophil chemotactic factor/interleukin-8. J Biol Chem. 1990;265(14):8311–6.PubMedGoogle Scholar
  48. 48.
    Takata H, Tomiyama H, Fujiwara M, Kobayashi N, Takiguchi M. Cutting edge: expression of chemokine receptor CXCR1 on human effector CD8+ T cells. J Immunol. 2004;173:2231–5.PubMedGoogle Scholar
  49. 49.
    Zlotnik A, Yoshie O. Chemokines: a new classification system and their role in immunity. Immunity. 2000;12(2):121–7.PubMedGoogle Scholar
  50. 50.
    Nilsen H, Olsen HG, Hayes B, Nome T, Sehested E, Svendsen M, et al. Characterization of a QTL region affecting clinical mastitis and protein yield on BTA6. Anim Genet. 2009;40(5):701–12. doi:10.1111/j.1365-2052.2009.01908.x.PubMedGoogle Scholar
  51. 51.
    Koshland ME. The coming of age of the immunoglobulin J-Chain. Annu Rev Immunol. 1985;3:425–53.PubMedGoogle Scholar
  52. 52.
    Nickerson SC. Immune mechanisms of the bovine udder: an overview. J Am Vet Med Assoc. 1985;187(1):41–5.PubMedGoogle Scholar
  53. 53.
    Youngerman SM, Saxton AM, Oliver SP, Pighetti GM. Association of CXCR2 polymorphisms with subclinical and clinical mastitis in dairy cattle. J Dairy Sci. 2004;87:2442–8.PubMedGoogle Scholar
  54. 54.
    Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11(5):373–84. doi:10.1038/ni.1863.PubMedGoogle Scholar
  55. 55.
    Ip WK, Takahashi K, Ezekowitz RA, Stuart LM. Mannose-binding lectin and innate immunity. Immunol Rev. 2009;230(1):9–21.PubMedGoogle Scholar
  56. 56.
    Ingham A, Menzies M. Identification and expression of Toll-like receptors 1–10 in selected bovine and ovine tissues. Vet Immunol Immunopathol. 2006;109(1–2):23–30. doi:10.1016/j.vetimm.2005.06.014.PubMedGoogle Scholar
  57. 57.
    Smith KL, Todhunter DA, Schoenberger PS. Environmental mastitis: cause, prevalence, prevention. J Dairy Sci. 1985;68(6):1531–53.PubMedGoogle Scholar
  58. 58.
    Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med. 2007;13(9):1050–9.PubMedGoogle Scholar
  59. 59.
    White SN, Taylor KH, Abbey CA, Gill CA, Womack JE. Haplotype variation in bovine Toll-like receptor 4 and computational prediction of a positively selected ligand-binding domain. Proc Natl Acad Sci USA. 2003;100(18):10364–9. doi:10.1073/pnas.1333957100.PubMedGoogle Scholar
  60. 60.
    Sharma BS, Leyva I, Schenkel F, Karrow NA. Association of toll-like receptor 4 polymorphisms with somatic cell score and lactation persistency in Holstein bulls. J Dairy Sci. 2006;89(9):3626–35.PubMedGoogle Scholar
  61. 61.
    Opsal MA, Hayes B, Berget I, Lien S, Vage DI. Genomic organization and transcript profiling of the bovine toll-like receptor gene cluster TLR6-TLR1-TLR10. Gene. 2006;384:45–50. doi:10.1016/j.gene.2006.06.027.PubMedGoogle Scholar
  62. 62.
    Wang X, Xu S, Xue G, Ren H, Chen J. Genetic polymorphism of TLR4 gene and correlation with mastitis in cattle. J Genet Genomics. 2007;34(5):406–12.PubMedGoogle Scholar
  63. 63.
    Beecher C, Daly M, Childs S, Berry DP, Magee DA, McCarthy TV, et al. Polymorphisms in bovine immune genes and their associations with somatic cell count and milk production in dairy cattle. BMC Genet. 2010;11. doi:10.1186/1471-2156-11-99.
  64. 64.
    Sharma BS, Mount J, Karrow NA. Functional characterization of a single gene nucleotide polymorphism in the 5′ UTR region of the bovine toll-like receptor 4 gene. Dev Biol. 2008;132:331–6.Google Scholar
  65. 65.
    Kutikhin AG. Impact of Toll-like receptor 4 polymorphisms on risk of cancer. Hum Immunol. 2011;72:193–206.PubMedGoogle Scholar
  66. 66.
    Franchi L, Park JH, Shaw MH, Marina-Garcia N, Chen G, Kim YG, et al. Intracellular NOD-like receptors in innate immunity, infection and disease. Cell Microbiol. 2008;10(1):1–8. doi:10.1111/j.1462-5822.2007.01059.x.PubMedGoogle Scholar
  67. 67.
    Pant SD, Schenkel FS, Leyva-Baca I, Sharma BS, Karrow NA. Identification of single nucleotide polymorphisms in bovine CARD15 and their associations with health and production traits in Canadian Holsteins. Bmc Genomics. 2007;8. doi:10.1186/1471-2164-8-421.
  68. 68.
    Tanabe T, Chamaillard M, Ogura Y, Zhu L, Qiu S, Masumoto J, et al. Regulatory regions and critical residues of NOD2 involved in muramyl dipeptide recognition. EMBO J. 2004;23(7):1587–97. doi:10.1038/sj.emboj.7600175.PubMedGoogle Scholar
  69. 69.
    Wang C, Liu M, Li Q, Ju Z, Huang J, Li J. Three novel single-nucleotide polymorphisms of MBL1 gene in Chinese native cattle and their associations with milk performance traits. Vet Immunol Immunopathol. 2011;139:229–36.PubMedGoogle Scholar
  70. 70.
    Bernig T, Breunis W, Brouwer N, Hutchinson A, Welch R, Roos D, et al. An analysis of genetic variation across the MBL2 locus in Dutch Caucasians indicates that 3′ haplotypes could modify circulating levels of mannose-binding lectin. Hum Genet. 2005;118:404–15.PubMedGoogle Scholar
  71. 71.
    Bernig T, Boersma BJ, Howe TM, Welch R, Yadavalli S, Staats B, et al. The mannose-binding lectin (MBL2) haplotype and breast cancer: an association study in African-American and Caucasian women. Carcinogenesis. 2007;28(4):828–36.PubMedGoogle Scholar
  72. 72.
    Hill AW. Factors influencing the outcome of Escherichia coli mastitis in dairy cows. Res Vet Sci. 1981;31:107–12.PubMedGoogle Scholar
  73. 73.
    Desbaillets I, Diserens AC, Tribolet N, Hamou MF, Van Meir EG. Upregulation of interleukin 8 by oxygen-deprived cells in glioblastoma suggests a role in leukocyte activation, chemotaxis, and angiogenesis. J Exp Med. 1997;186(8):1201–12.PubMedGoogle Scholar
  74. 74.
    Bobrovnikova-Marjon EV, Marjon PL, Barbash O, Vander Jagt DL, Abcouwer SF. Expression of angiogenic factors vascular endothelial growth factor and interleukin-8/CXCL8 is highly responsive to ambient glutamine availability: role of nuclear factor-kappaB and activating protein-1. Cancer Res. 2004;64(14):4858–69.PubMedGoogle Scholar
  75. 75.
    DeForge LE, Preston AM, Takeuchi E, Kenney J, Boxer LA, Remick DG. Regulation of interleukin 8 gene expression by oxidant stress. J Biol Chem. 1993;268(34):25568–76.PubMedGoogle Scholar
  76. 76.
    Bannerman DD, Paape MJ, Goff JP, Kimura K, Lippolis JD, Hope JC. Innate immune response to intramammary infection with Serratia marcescens and Streptococcus uberis. Vet Res. 2004;35(6):681–700. doi:10.1051/vetres:2004040.PubMedGoogle Scholar
  77. 77.
    Rambeaud M, Almeida RA, Pighetti GM, Oliver SP. Dynamics of leukocytes and cytokines during experimentally induced Streptococcus uberis mastitis. Vet Immunol Immunopathol. 2003;96:193–205.PubMedGoogle Scholar
  78. 78.
    Shuster DE, Kehrli Jr ME, Rainard P, Paape M. Complement fragment C5a and inflammatory cytokines in neutrophil recruitment during intramammary infection with Escherichia coli. Infect Immun. 1997;65(8):3286–92.PubMedGoogle Scholar
  79. 79.
    Kettritz R, Gaido ML, Haller H, Luft FC, Jennette CJ, Falk RJ. Interleukin-8 delays spontaneous and tumor necrosis factor-alpha-mediated apoptosis of human neutrophils. Kidney Int. 1998;53:84–91.PubMedGoogle Scholar
  80. 80.
    Mitchell GB, Albright BN, Casewell JL. Effect of interleukin-8 and granulocyte colony stimulating factor on priming and activation of bovine neutrophils. Infect Immun. 2003;71(4):1643–9.PubMedGoogle Scholar
  81. 81.
    Lahouassa H, Rainard P, Caraty A, Riollet C. Identification and characterization of a new interleukin-8 receptor in bovine species. Mol Immunol. 2008;45(4):1153–64.PubMedGoogle Scholar
  82. 82.
    Gabellini C, Trisciuoglio D, Desideri M, Candiloro A, Ragazzoni Y, Orlandi A, et al. Functional activity of CXCL8 receptors, CXCR1 and CXCR2, on human malignant melanoma progression. Eur J Cancer. 2009;45(14):2618–27. doi:10.1016/j.ejca.2009.07.007.PubMedGoogle Scholar
  83. 83.
    Shamaladevi N, Lyn DA, Escudero DO, Lokeshwar BL. CXC receptor-1 silencing inhibits androgen-independent prostate cancer. Cancer Res. 2009;69(21):8265–74. doi:10.1158/0008-5472.CAN-09-0374.PubMedGoogle Scholar
  84. 84.
    Charafe-Jauffret E, Ginestier C, Iovino F, Wicinski J, Cervera N, Finetti P, et al. Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res. 2009;69(4):1302–13. doi:10.1158/0008-5472.can-08-2741.PubMedGoogle Scholar
  85. 85.
    Gasser O, Schmid TA, Zenhaeusern G, Hess C. Cyclooxygenase regulates cell surface expression of CXCR3/1-storing granules in human CD4+ T cells. J Immunol. 2006;177(12):8806–12.PubMedGoogle Scholar
  86. 86.
    Murdoch C, Monk PN, Finn A. CXC chemokine receptor expression on human endothelial cells. Cytokine. 1999;11(9):704–12. doi:10.1006/cyto.1998.0465.PubMedGoogle Scholar
  87. 87.
    Sallusto F, Schaerli P, Loetscher P, Schaniel C, Lenig D, Mackay CR, et al. Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. Eur J Immunol. 1998;28(9):2760–9. doi:10.1002/(SICI)1521-4141(199809)28:09<2760::AID-IMMU2760>3.0.CO;2-N.PubMedGoogle Scholar
  88. 88.
    Berahovich RD, Lai NL, Wei Z, Lanier LL, Schall TJ. Evidence for NK cell subsets based on chemokine receptor expression. J Immunol. 2006;177(11):7833–40.PubMedGoogle Scholar
  89. 89.
    Youngerman SM, Saxton AM, Pighetti GM. Novel single nucleotide polymorphisms and haplotypes within the bovine CXCR2 gene. Immunogenetics. 2004;56:355–9.PubMedGoogle Scholar
  90. 90.
    Pighetti GM, Rambeaud M. Genome conservation between the bovine and human interleukin-8 receptor complex: Improper annotation of bovine interleukin-8 receptor b identified. Immunogenetics. 2006;114:335–40.Google Scholar
  91. 91.
    Pighetti GM, Kojima CJ, Wojakiewicz L, Rambeaud M. The bovine CXCR1 gene is highly polymorphic. Vet Immunol Immunopathol. 2011. doi:10.1016/j.vetimm.2011.09.012.
  92. 92.
    Leyva-Baca I, Schenkel F, Martin J, Karrow NA. Polymorphisms in the 5′ upstream region of the CXCR1 chemokine receptor gene, and their association with somatic cell score in Holstein cattle in Canada. J Dairy Sci. 2008;91(1):407–17.PubMedGoogle Scholar
  93. 93.
    Leyva-Baca I, Schenkel F, Sharma BS, Jansen GB, Karrow NA. Identification of single nucleotide polymorphisms in the bovine CCL2, IL8, CCR2 and IL8RA genes and their association with health and production in Canadian Holsteins. Anim Genet. 2007;38(3):198–202. doi:10.1111/j.1365-2052.2007.01588.x.PubMedGoogle Scholar
  94. 94.
    Goertz I, Baes C, Weimann C, Reinsch N, Erhardt G. Association between single nucleotide polymorphisms in the CXCR1 gene and somatic cell score in Holstein dairy cattle. J Dairy Sci. 2009;92:4018–22.PubMedGoogle Scholar
  95. 95.
    Rambeaud M, Clift R, Pighetti GM. Association of a bovine CXCR2 gene polymorphism with neutrophil survival and killing ability. Vet Immunol Immunopathol. 2006;111:231–8.PubMedGoogle Scholar
  96. 96.
    Rambeaud M, Pollock A, Clift R, Pighetti GM, editors. Differential intracellular calcium release in neutrophils of cattle with different CXCR2 genotypes upon interleukin-8 activation. Conference Research Workers in Animal Disease; 2005.Google Scholar
  97. 97.
    Rambeaud M, Pighetti GM. Differential calcium signaling in dairy cows with specific CXCR1 genotypes potentially related to interleukin-8 receptor functionality. Immunogenetics. 2007;59(1):53–8. doi:10.1007/s00251-006-0170-x.PubMedGoogle Scholar
  98. 98.
    Burton JL, Madsen SA, Chang LC, Weber PS, Buckham KR, van Dorp R, et al. Gene expression signatures in neutrophils exposed to glucocorticoids: a new paradigm to help explain “neutrophil dysfunction” in parturient dairy cows. Vet Immunol Immunopathol. 2005;105(3–4):197–219.PubMedGoogle Scholar
  99. 99.
    Feng J, Li Y, Hashad M, Schur E, Gros P, Adams LG, et al. Bovine natural resistance associated macrophage protein 1 (Nramp1) gene. Genome Res. 1996;6:956–64.PubMedGoogle Scholar
  100. 100.
    Wessling-Resnick M. Iron homeostasis and the inflammatory response. Annu Rev Nutr. 2010;30:105–22. doi:10.1146/annurev.nutr.012809.104804.PubMedGoogle Scholar
  101. 101.
    Martinez R, Dunner S, Barrera G, Canon J. Novel variants within the coding regions of the Slc11A1 gene identifed in Bos taurus and Bos indicus breeds. J Anim Breed Genet. 2008;125(1):57–62.PubMedGoogle Scholar
  102. 102.
    Zhang C, Wang Y, Chen H, Gu C, Fang X. SLC11A1 gene polymorphisms are not associated to somatic cell score and milk yield in Chinese Holstein. Vet Immunol Immunopathol. 2009;127:389–92.PubMedGoogle Scholar
  103. 103.
    Kelm SC, Detilleux JC, Freeman AE, Kehrli Jr ME, Dietz AB, Fox LK, et al. Genetic association between parameters of innate immunity and measures of mastitis in periparturient Holstein cattle. J Dairy Sci. 1997;80(8):1767–75.PubMedGoogle Scholar
  104. 104.
    Starkenburg RJ, Hansen LB, Kehrli MEJ, Chester-Jones H. Frequencies and effects of alternative DRB3.2 alleles of bovine lymphocyte antigen for Holsteins in milk selection and control lines. J Dairy Sci. 1997;80:3411–9.PubMedGoogle Scholar
  105. 105.
    Rupp R, Hernandez A, Mallard BA. Association of bovine leukocyte antigen (BoLA) DRB3.2 with immune response, mastitis, and production and type traits in Canadian Holsteins. J Dairy Sci. 2007;90(2):1029–38.PubMedGoogle Scholar
  106. 106.
    Sharif SB, Mallard BA, Wilkie BN, Sargeant JM, Scott HM, Dekkers JCM, et al. Associations of the bovine major histocompatibility complex DRB3 (BoLA-DRB3) alleles with occurrence of disease and milk somatic cell score in Canadian dairy cattle. Anim Genet. 1998;29:185–93.PubMedGoogle Scholar
  107. 107.
    Taub DD, Murphy WJ, Longo DL. Rejuvenation of the aging thymus: growth hormone-mediated and ghrelin-mediated signaling pathways. Curr Opin Pharmacol. 2010;10(4):408–24.PubMedGoogle Scholar
  108. 108.
    Shuster DE, Kehrli Jr ME, Baumrucker CR. Relationship of inflammatory cytokines, growth hormone, and insulin-like growth factor-I to reduced performance during infectious disease. Proc Soc Exp Biol Med. 1995;210(2):140–9.PubMedGoogle Scholar
  109. 109.
    Waters SM, McCabe MS, Howard DJ, Giblin L, Magee DA, MacHugh DE, et al. Associations between newly discovered polymorphisms in the Bos taurus growth hormone receptor gene and performance traits in Holstein-Friesian dairy cattle. Anim Genet. 2010;42:39–49.Google Scholar
  110. 110.
    Banos G, Woolliams JA, Woodward BW, Forbes AB, Coffey MP. Impact of single nucleotide polymorphisms in leptin, leptin receptor, growth hormone receptor, and diacylglycerol acyltransferase (DGAT1) gene loci on milk production, feed, and body energy traits of UK dairy cows. J Dairy Sci. 2008;91:3190–200.PubMedGoogle Scholar
  111. 111.
    Magee DA, Sikora KM, Berkowicz EW, Berry DP, Howard DJ, Mullen MP, et al. DNA sequence polymorphisms in a panel of eight candidate bovine imprinted genes and their association with performance traits in Irish Holstein-Friesian cattle. BMC Genet. 2010;11:93.PubMedGoogle Scholar
  112. 112.
    Drake NM, Park YJ, Shirali AS, Cleland TA, Soloway PD. Imprint switch mutations at Rasgrf1 support conflict hypothesis of imprinting and define a growth control mechanism upstream of IGF1. Mamm Genome. 2009;20(9–10):654–63. doi:10.1007/s00335-009-9192-7.PubMedGoogle Scholar
  113. 113.
    Chebel RC, Susca F, Santos JEP. Leptin genotype is associated with lactation performance and health of Holstein cows. J Dairy Sci. 2008;91(7):2893–900. doi:10.3168/jds.2007-0891.PubMedGoogle Scholar
  114. 114.
    Buchanan FC, Van Kessel AG, Waldner C, Christensen DA, Laarveld B, Schmutz SM. Hot topic: an association between a leptin single nucleotide polymorphism and milk and protein yield. J Dairy Sci. 2003;86:3164–6.PubMedGoogle Scholar
  115. 115.
    Fernandez-Riejos P, Najib S, Santos-Alvarez J, Martin-Romero C, Perez-Perez A, Gonzalez-Yanes C, et al. Role of leptin in the activation of immune cells. Mediators Inflamm. 2010;2010:568343.PubMedGoogle Scholar
  116. 116.
    Giblin L, Butler ST, Kearney B, Waters SM, Callanan MJ, Berry DP. Association of bovine leptin polymorphisms with energy output and energy storage traits in progeny tested Holstein-Friesian dairy cattle sires. BMC Genet. 2010;11:73.PubMedGoogle Scholar
  117. 117.
    Liefers SC, Veerkamp RF, te Pas MFW, Delavaud C, Chilliard Y, Platje M, et al. Leptin promoter mutations affect leptin levels and performance traits in dairy cows. Anim Genet. 2005;36:111–8.PubMedGoogle Scholar
  118. 118.
    Alain K, Karrow NA, Thibault C, St-Pierre J, Lessard M, Bissonnette N. Osteopontin: an early innate immune marker of Escherichia coli mastitis harbors genetic polymorphisms with possible links with resistance to mastitis. BMC Genomics. 2009;10. doi:10.1186/1471-2164-10-444.
  119. 119.
    Quirion MR, Gregory GD, Umetsu SE, Winandy S, Brown MA. Cutting edge: Ikaros is a regulator of Th2 cell differentiation. J Immunol. 2009;182(2):741–5.PubMedGoogle Scholar
  120. 120.
    Morimoto J, Kon S, Matsui Y, Uede T. Osteopontin; as a target molecule for the treatment of inflammatory diseases. Curr Drug Targets. 2010;11(4):494–505.PubMedGoogle Scholar
  121. 121.
    Lutzow YC, Donaldson L, Gray CP, Vuocolo T, Pearson RD, Reverter A, et al. Identification of immune genes and proteins involved in the response of bovine mammary tissue to Staphylococcus aureus infection. BMC Vet Res. 2008;4:18.PubMedGoogle Scholar
  122. 122.
    Zhu J, Paul WE. CD4 T cells: fates, functions, and faults. Blood. 2008;112(5):1557–69. doi:10.1182/blood-2008-05-078154.PubMedGoogle Scholar
  123. 123.
    Skelding A, Schenkel FS, Sharma BS, Verschoor C, Pant S, Biggar G, et al. Identification of single nucleotide polymorphisms in the bovine interleukin-12 and interleukin-23 receptor genes and their associations with health and production traits in Holstein cows. J Dairy Sci. 2010;93(10):4860–71. doi:10.3168/jds.2009-2392.PubMedGoogle Scholar
  124. 124.
    Verschoor CP, Pant SD, Biggar GA, Schenkel FS, Sharma BS, Karrow NA. Identification of SNPs in interferon gamma, interleukin-22, and their receptors and associations with health and production-related traits in Canadian Holstein bulls. Anim Biotechnol. 2011;22(1):7–15. doi:10.1080/10495398.2011.536078.PubMedGoogle Scholar
  125. 125.
    Verschoor CP, Pant SD, Schenkel FS, Sharma BS, Karrow NA. SNPs in the bovine IL-10 receptor are associated with somatic cell score in Canadian dairy bulls. Mamm Genome. 2009;20(7):447–54. doi:10.1007/s00335-009-9198-1.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Animal ScienceThe University of TennesseeKnoxvilleUSA
  2. 2.Department of Veterinary PathobiologyUniversity of MissouriColumbiaUSA

Personalised recommendations