Navigating Breast Cancer: Axon Guidance Molecules as Breast Cancer Tumor Suppressors and Oncogenes

Article

Abstract

Slit, Netrin, Ephrin, and Semaphorin’s roles in development have expanded greatly in the past decade from their original characterization as axon guidance molecules (AGMs) to include roles as regulators of tissue morphogenesis and development in diverse organs. In the mammary gland, AGMs are important for maintaining normal cell proliferation and adhesion during development. The frequent dysregulation of AGM expression during tumorigenesis and tumor progression suggests that AGMs also play a crucial role as tumor suppressors and oncogenes in breast cancer. Moreover, these findings suggest that AGMs may be excellent targets for new breast cancer prognostic tests and more effective therapeutic strategies.

Keywords

Axon guidance molecules Netrin Semaphorin Ephrin Slit Robo 

Abbreviations

AGM

Axon Guidance Molecule

CUB

Complement-Homology Domain

EGF

Epidermal Growth Factor

ER

Estrogen Receptor

Ig

Immunoglobulin

MAM

Meptin/A5/Mu-Phosphatase Homology Domain

TEB

Terminal End Bud

Notes

Acknowledgments

This work was supported by funds from the NIH RO1 (CA-128902, L.H.), Congressionally Directed Medical Research Program (W81XWH-08-1-0380, L.H.), Santa Cruz Cancer Benefit Group (L.H.) and the California Institute of Regenerative Medicine (TG2-01157, G.H.).

References

  1. 1.
    Dickson BJ. Molecular mechanisms of axon guidance. Science. 2002;298(5600):1959–64. doi: 10.1126/science.1072165.PubMedCrossRefGoogle Scholar
  2. 2.
    Hinck L. The versatile roles of “axon guidance” cues in tissue morphogenesis. Dev Cell. 2004;7(6):783–93. doi: 10.1016/j.devcel.2004.11.002.PubMedCrossRefGoogle Scholar
  3. 3.
    Mehlen P, Delloye-Bourgeois C, Chedotal A. Novel roles for Slits and netrins: axon guidance cues as anticancer targets? Nat Rev Cancer. 2011;11(3):188–97. doi: 10.1038/nrc3005.PubMedCrossRefGoogle Scholar
  4. 4.
    Neufeld G, Kessler O. The semaphorins: versatile regulators of tumour progression and tumour angiogenesis. Nat Rev Cancer. 2008;8(8):632–45. doi: 10.1038/nrc2404.PubMedCrossRefGoogle Scholar
  5. 5.
    Pasquale EB. Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nat Rev Cancer. 2010;10(3):165–80. doi: 10.1038/nrc2806.PubMedCrossRefGoogle Scholar
  6. 6.
    Strickland P, Shin GC, Plump A, Tessier-Lavigne M, Hinck L. Slit2 and netrin 1 act synergistically as adhesive cues to generate tubular bi-layers during ductal morphogenesis. Development. 2006;133(5):823–32. doi: 10.1242/dev.02261.PubMedCrossRefGoogle Scholar
  7. 7.
    Brantley-Sieders DM, Zhuang G, Hicks D, Fang WB, Hwang Y, Cates JM, et al. The receptor tyrosine kinase EphA2 promotes mammary adenocarcinoma tumorigenesis and metastatic progression in mice by amplifying ErbB2 signaling. J Clin Invest. 2008;118(1):64–78. doi: 10.1172/JCI33154.PubMedCrossRefGoogle Scholar
  8. 8.
    Munarini N, Jager R, Abderhalden S, Zuercher G, Rohrbach V, Loercher S, et al. Altered mammary epithelial development, pattern formation and involution in transgenic mice expressing the EphB4 receptor tyrosine kinase. J Cell Sci. 2002;115(Pt 1):25–37.PubMedGoogle Scholar
  9. 9.
    Haldimann M, Custer D, Munarini N, Stirnimann C, Zurcher G, Rohrbach V, et al. Deregulated ephrin-B2 expression in the mammary gland interferes with the development of both the glandular epithelium and vasculature and promotes metastasis formation. Int J Oncol. 2009;35(3):525–36.PubMedGoogle Scholar
  10. 10.
    Marlow R, Strickland P, Lee JS, Wu X, Pebenito M, Binnewies M, et al. SLITs suppress tumor growth in vivo by silencing Sdf1/Cxcr4 within breast epithelium. Cancer Res. 2008;68(19):7819–27. doi: 10.1158/0008-5472.CAN-08-1357.PubMedCrossRefGoogle Scholar
  11. 11.
    Srinivasan K, Strickland P, Valdes A, Shin GC, Hinck L. Netrin-1/neogenin interaction stabilizes multipotent progenitor cap cells during mammary gland morphogenesis. Dev Cell. 2003;4(3):371–82.PubMedCrossRefGoogle Scholar
  12. 12.
    Dallol A, Da Silva NF, Viacava P, Minna JD, Bieche I, Maher ER, et al. SLIT2, a human homologue of the Drosophila Slit2 gene, has tumor suppressor activity and is frequently inactivated in lung and breast cancers. Cancer Res. 2002;62(20):5874–80.PubMedGoogle Scholar
  13. 13.
    Dickinson RE, Dallol A, Bieche I, Krex D, Morton D, Maher ER, et al. Epigenetic inactivation of SLIT3 and SLIT1 genes in human cancers. Br J Cancer. 2004;91(12):2071–8. doi: 10.1038/sj.bjc.6602222.PubMedCrossRefGoogle Scholar
  14. 14.
    Dallol A, Forgacs E, Martinez A, Sekido Y, Walker R, Kishida T, et al. Tumour specific promoter region methylation of the human homologue of the Drosophila Roundabout gene DUTT1 (ROBO1) in human cancers. Oncogene. 2002;21(19):3020–8. doi: 10.1038/sj.onc.1205421.PubMedCrossRefGoogle Scholar
  15. 15.
    Macias H, Moran A, Samara Y, Moreno M, Compton JE, Harburg G, et al. SLIT/ROBO1 signaling suppresses mammary branching morphogenesis by limiting basal cell number. Dev Cell. 2011;20(6):827–40. doi: 10.1016/j.devcel.2011.05.012.PubMedCrossRefGoogle Scholar
  16. 16.
    Prasad A, Paruchuri V, Preet A, Latif F, Ganju RK. Slit-2 induces a tumor-suppressive effect by regulating beta-catenin in breast cancer cells. J Biol Chem. 2008;283(39):26624–33. doi: 10.1074/jbc.M800679200.PubMedCrossRefGoogle Scholar
  17. 17.
    Yuasa-Kawada J, Kinoshita-Kawada M, Rao Y, Wu JY. Deubiquitinating enzyme USP33/VDU1 is required for Slit signaling in inhibiting breast cancer cell migration. Proc Natl Acad Sci USA. 2009;106(34):14530–5. doi: 10.1073/pnas.0801262106.PubMedCrossRefGoogle Scholar
  18. 18.
    Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001;410(6824):50–6. doi: 10.1038/35065016.PubMedCrossRefGoogle Scholar
  19. 19.
    Schmid BC, Rudas M, Rezniczek GA, Leodolter S, Zeillinger R. CXCR4 is expressed in ductal carcinoma in situ of the breast and in atypical ductal hyperplasia. Breast Cancer Res Treat. 2004;84(3):247–50. doi: 10.1023/B:BREA.0000019962.18922.87.PubMedCrossRefGoogle Scholar
  20. 20.
    Prasad A, Fernandis AZ, Rao Y, Ganju RK. Slit protein-mediated inhibition of CXCR4-induced chemotactic and chemoinvasive signaling pathways in breast cancer cells. J Biol Chem. 2004;279(10):9115–24. doi: 10.1074/jbc.M308083200.PubMedCrossRefGoogle Scholar
  21. 21.
    Wu JY, Feng L, Park HT, Havlioglu N, Wen L, Tang H, et al. The neuronal repellent Slit inhibits leukocyte chemotaxis induced by chemotactic factors. Nature. 2001;410(6831):948–52. doi: 10.1038/35073616.PubMedCrossRefGoogle Scholar
  22. 22.
    Llambi F, Causeret F, Bloch-Gallego E, Mehlen P. Netrin-1 acts as a survival factor via its receptors UNC5H and DCC. EMBO J. 2001;20(11):2715–22. doi: 10.1093/emboj/20.11.2715.PubMedCrossRefGoogle Scholar
  23. 23.
    Fitamant J, Guenebeaud C, Coissieux MM, Guix C, Treilleux I, Scoazec JY, et al. Netrin-1 expression confers a selective advantage for tumor cell survival in metastatic breast cancer. Proc Natl Acad Sci USA. 2008;105(12):4850–5. doi: 10.1073/pnas.0709810105.PubMedCrossRefGoogle Scholar
  24. 24.
    Fazeli A, Dickinson SL, Hermiston ML, Tighe RV, Steen RG, Small CG, et al. Phenotype of mice lacking functional Deleted in colorectal cancer (Dcc) gene. Nature. 1997;386(6627):796–804. doi: 10.1038/386796a0.PubMedCrossRefGoogle Scholar
  25. 25.
    Thiebault K, Mazelin L, Pays L, Llambi F, Joly MO, Scoazec JY, et al. The netrin-1 receptors UNC5H are putative tumor suppressors controlling cell death commitment. Proc Natl Acad Sci USA. 2003;100(7):4173–8. doi: 10.1073/pnas.0738063100.PubMedCrossRefGoogle Scholar
  26. 26.
    Lee JE, Kim HJ, Bae JY, Kim SW, Park JS, Shin HJ, et al. Neogenin expression may be inversely correlated to the tumorigenicity of human breast cancer. BMC Cancer. 2005;5:154. doi: 10.1186/1471-2407-5-154.PubMedCrossRefGoogle Scholar
  27. 27.
    Nacht M, St Martin TB, Byrne A, Klinger KW, Teicher BA, Madden SL, et al. Netrin-4 regulates angiogenic responses and tumor cell growth. Exp Cell Res. 2009;315(5):784–94. doi: 10.1016/j.yexcr.2008.11.018.PubMedCrossRefGoogle Scholar
  28. 28.
    Qin S, Yu L, Gao Y, Zhou R, Zhang C. Characterization of the receptors for axon guidance factor netrin-4 and identification of the binding domains. Mol Cell Neurosci. 2007;34(2):243–50. doi: 10.1016/j.mcn.2006.11.002.PubMedCrossRefGoogle Scholar
  29. 29.
    Lejmi E, Leconte L, Pedron-Mazoyer S, Ropert S, Raoul W, Lavalette S, et al. Netrin-4 inhibits angiogenesis via binding to neogenin and recruitment of Unc5B. Proc Natl Acad Sci USA. 2008;105(34):12491–6. doi: 10.1073/pnas.0804008105.PubMedCrossRefGoogle Scholar
  30. 30.
    Esseghir S, Kennedy A, Seedhar P, Nerurkar A, Poulsom R, Reis-Filho JS, et al. Identification of NTN4, TRA1, and STC2 as prognostic markers in breast cancer in a screen for signal sequence encoding proteins. Clin Cancer Res. 2007;13(11):3164–73. doi: 10.1158/1078-0432.CCR-07-0224.PubMedCrossRefGoogle Scholar
  31. 31.
    Fujikane T, Nishikawa N, Toyota M, Suzuki H, Nojima M, Maruyama R, et al. Genomic screening for genes upregulated by demethylation revealed novel targets of epigenetic silencing in breast cancer. Breast Cancer Res Treat. 2010;122(3):699–710. doi: 10.1007/s10549-009-0600-1.PubMedCrossRefGoogle Scholar
  32. 32.
    Noren NK, Lu M, Freeman AL, Koolpe M, Pasquale EB. Interplay between EphB4 on tumor cells and vascular ephrin-B2 regulates tumor growth. Proc Natl Acad Sci USA. 2004;101(15):5583–8. doi: 10.1073/pnas.0401381101.PubMedCrossRefGoogle Scholar
  33. 33.
    Walker-Daniels J, Riese 2nd DJ, Kinch MS. c-Cbl-dependent EphA2 protein degradation is induced by ligand binding. Mol Cancer Res. 2002;1(1):79–87.PubMedGoogle Scholar
  34. 34.
    Zelinski DP, Zantek ND, Stewart JC, Irizarry AR, Kinch MS. EphA2 overexpression causes tumorigenesis of mammary epithelial cells. Cancer Res. 2001;61(5):2301–6.PubMedGoogle Scholar
  35. 35.
    Noblitt LW, Bangari DS, Shukla S, Knapp DW, Mohammed S, Kinch MS, et al. Decreased tumorigenic potential of EphA2-overexpressing breast cancer cells following treatment with adenoviral vectors that express EphrinA1. Cancer Gene Ther. 2004;11(11):757–66. doi: 10.1038/sj.cgt.7700761.PubMedCrossRefGoogle Scholar
  36. 36.
    Macrae M, Neve RM, Rodriguez-Viciana P, Haqq C, Yeh J, Chen C, et al. A conditional feedback loop regulates Ras activity through EphA2. Cancer Cell. 2005;8(2):111–8. doi: 10.1016/j.ccr.2005.07.005.PubMedCrossRefGoogle Scholar
  37. 37.
    Zantek ND, Azimi M, Fedor-Chaiken M, Wang B, Brackenbury R, Kinch MS. E-cadherin regulates the function of the EphA2 receptor tyrosine kinase. Cell Growth Differ. 1999;10(9):629–38.PubMedGoogle Scholar
  38. 38.
    Wykosky J, Palma E, Gibo DM, Ringler S, Turner CP, Debinski W. Soluble monomeric EphrinA1 is released from tumor cells and is a functional ligand for the EphA2 receptor. Oncogene. 2008;27(58):7260–73. doi: 10.1038/onc.2008.328.PubMedCrossRefGoogle Scholar
  39. 39.
    Brantley-Sieders DM, Fang WB, Hicks DJ, Zhuang G, Shyr Y, Chen J. Impaired tumor microenvironment in EphA2-deficient mice inhibits tumor angiogenesis and metastatic progression. FASEB J. 2005;19(13):1884–6. doi: 10.1096/fj.05-4038fje.PubMedGoogle Scholar
  40. 40.
    Gokmen-Polar Y, Toroni RA, Hocevar BA, Badve S, Zhao Q, Shen C et al. Dual targeting of EphA2 and ER restores tamoxifen sensitivity in ER/EphA2-positive breast cancer. Breast Cancer Res Treat. 2010. doi: 10.1007/s10549-010-1004-y.
  41. 41.
    Hiramoto-Yamaki N, Takeuchi S, Ueda S, Harada K, Fujimoto S, Negishi M, et al. Ephexin4 and EphA2 mediate cell migration through a RhoG-dependent mechanism. J Cell Biol. 2010;190(3):461–77. doi: 10.1083/jcb.201005141.PubMedCrossRefGoogle Scholar
  42. 42.
    Zelinski DP, Zantek ND, Walker-Daniels J, Peters MA, Taparowsky EJ, Kinch MS. Estrogen and Myc negatively regulate expression of the EphA2 tyrosine kinase. J Cell Biochem. 2002;85(4):714–20. doi: 10.1002/jcb.10186.PubMedCrossRefGoogle Scholar
  43. 43.
    Lu M, Miller KD, Gokmen-Polar Y, Jeng MH, Kinch MS. EphA2 overexpression decreases estrogen dependence and tamoxifen sensitivity. Cancer Res. 2003;63(12):3425–9.PubMedGoogle Scholar
  44. 44.
    Kumar SR, Singh J, Xia G, Krasnoperov V, Hassanieh L, Ley EJ, et al. Receptor tyrosine kinase EphB4 is a survival factor in breast cancer. Am J Pathol. 2006;169(1):279–93. doi: 10.2353/ajpath.2006.050889.PubMedCrossRefGoogle Scholar
  45. 45.
    Noren NK, Foos G, Hauser CA, Pasquale EB. The EphB4 receptor suppresses breast cancer cell tumorigenicity through an Abl-Crk pathway. Nat Cell Biol. 2006;8(8):815–25. doi: 10.1038/ncb1438.PubMedCrossRefGoogle Scholar
  46. 46.
    Nikolova Z, Djonov V, Zuercher G, Andres AC, Ziemiecki A. Cell-type specific and estrogen dependent expression of the receptor tyrosine kinase EphB4 and its ligand ephrin-B2 during mammary gland morphogenesis. J Cell Sci. 1998;111(Pt 18):2741–51.PubMedGoogle Scholar
  47. 47.
    Berclaz G, Andres AC, Albrecht D, Dreher E, Ziemiecki A, Gusterson BA, et al. Expression of the receptor protein tyrosine kinase myk-1/htk in normal and malignant mammary epithelium. Biochem Biophys Res Commun. 1996;226(3):869–75. doi: 10.1006/bbrc.1996.1442.PubMedCrossRefGoogle Scholar
  48. 48.
    Wu Q, Suo Z, Risberg B, Karlsson MG, Villman K, Nesland JM. Expression of Ephb2 and Ephb4 in breast carcinoma. Pathol Oncol Res. 2004;10(1):26–33. doi: PAOR.2004.10.1.0026.PubMedCrossRefGoogle Scholar
  49. 49.
    Kaenel P, Schwab C, Mulchi K, Wotzkow C, Andres AC. Preponderance of cells with stem cell characteristics in metastasising mouse mammary tumours induced by deregulated EphB4 and ephrin-B2 expression. Int J Oncol. 2011;38(1):151–60.PubMedGoogle Scholar
  50. 50.
    Lee HS, Nishanian TG, Mood K, Bong YS, Daar IO. EphrinB1 controls cell-cell junctions through the Par polarity complex. Nat Cell Biol. 2008;10(8):979–86. doi: 10.1038/ncb1758.PubMedCrossRefGoogle Scholar
  51. 51.
    Lee HS, Daar IO. EphrinB reverse signaling in cell-cell adhesion: is it just par for the course? Cell Adh Migr. 2009;3(3):250–5.PubMedCrossRefGoogle Scholar
  52. 52.
    Gu C, Limberg BJ, Whitaker GB, Perman B, Leahy DJ, Rosenbaum JS, et al. Characterization of neuropilin-1 structural features that confer binding to semaphorin 3A and vascular endothelial growth factor 165. J Biol Chem. 2002;277(20):18069–76. doi: 10.1074/jbc.M201681200.PubMedCrossRefGoogle Scholar
  53. 53.
    Vander Kooi CW, Jusino MA, Perman B, Neau DB, Bellamy HD, Leahy DJ. Structural basis for ligand and heparin binding to neuropilin B domains. Proc Natl Acad Sci USA. 2007;104(15):6152–7. doi: 10.1073/pnas.0700043104.CrossRefGoogle Scholar
  54. 54.
    Appleton BA, Wu P, Maloney J, Yin J, Liang WC, Stawicki S, et al. Structural studies of neuropilin/antibody complexes provide insights into semaphorin and VEGF binding. EMBO J. 2007;26(23):4902–12. doi: 10.1038/sj.emboj.7601906.PubMedCrossRefGoogle Scholar
  55. 55.
    Bachelder RE, Crago A, Chung J, Wendt MA, Shaw LM, Robinson G, et al. Vascular endothelial growth factor is an autocrine survival factor for neuropilin-expressing breast carcinoma cells. Cancer Res. 2001;61(15):5736–40.PubMedGoogle Scholar
  56. 56.
    Castro-Rivera E, Ran S, Brekken RA, Minna JD. Semaphorin 3B inhibits the phosphatidylinositol 3-kinase/Akt pathway through neuropilin-1 in lung and breast cancer cells. Cancer Res. 2008;68(20):8295–303. doi: 10.1158/0008-5472.CAN-07-6601.PubMedCrossRefGoogle Scholar
  57. 57.
    Castro-Rivera E, Ran S, Thorpe P, Minna JD. Semaphorin 3B (SEMA3B) induces apoptosis in lung and breast cancer, whereas VEGF165 antagonizes this effect. Proc Natl Acad Sci USA. 2004;101(31):11432–7. doi: 10.1073/pnas.0403969101.PubMedCrossRefGoogle Scholar
  58. 58.
    Pan H, Wanami LS, Dissanayake TR, Bachelder RE. Autocrine semaphorin3A stimulates alpha2 beta1 integrin expression/function in breast tumor cells. Breast Cancer Res Treat. 2009;118(1):197–205. doi: 10.1007/s10549-008-0179-y.PubMedCrossRefGoogle Scholar
  59. 59.
    Nasarre P, Constantin B, Rouhaud L, Harnois T, Raymond G, Drabkin HA, et al. Semaphorin SEMA3F and VEGF have opposing effects on cell attachment and spreading. Neoplasia. 2003;5(1):83–92.PubMedGoogle Scholar
  60. 60.
    Nasarre P, Kusy S, Constantin B, Castellani V, Drabkin HA, Bagnard D, et al. Semaphorin SEMA3F has a repulsing activity on breast cancer cells and inhibits E-cadherin-mediated cell adhesion. Neoplasia. 2005;7(2):180–9. doi: 10.1593/neo.04481.PubMedCrossRefGoogle Scholar
  61. 61.
    Rolny C, Capparuccia L, Casazza A, Mazzone M, Vallario A, Cignetti A, et al. The tumor suppressor semaphorin 3B triggers a prometastatic program mediated by interleukin 8 and the tumor microenvironment. J Exp Med. 2008;205(5):1155–71. doi: 10.1084/jem.20072509.PubMedCrossRefGoogle Scholar
  62. 62.
    Esselens C, Malapeira J, Colome N, Casal C, Rodriguez-Manzaneque JC, Canals F, et al. The cleavage of semaphorin 3C induced by ADAMTS1 promotes cell migration. J Biol Chem. 2010;285(4):2463–73. doi: 10.1074/jbc.M109.055129.PubMedCrossRefGoogle Scholar
  63. 63.
    Basile JR, Castilho RM, Williams VP, Gutkind JS. Semaphorin 4D provides a link between axon guidance processes and tumor-induced angiogenesis. Proc Natl Acad Sci USA. 2006;103(24):9017–22. doi: 10.1073/pnas.0508825103.PubMedCrossRefGoogle Scholar
  64. 64.
    Swiercz JM, Worzfeld T, Offermanns S. ErbB-2 and met reciprocally regulate cellular signaling via plexin-B1. J Biol Chem. 2008;283(4):1893–901. doi: 10.1074/jbc.M706822200.PubMedCrossRefGoogle Scholar
  65. 65.
    Ramesh G, Berg A, Jayakumar C. Plasma netrin-1 is a diagnostic biomarker of human cancers. Biomarkers. 2011;16(2):172–80. doi: 10.3109/1354750X.2010.541564.PubMedCrossRefGoogle Scholar
  66. 66.
    Sharma G, Mirza S, Prasad CP, Srivastava A, Gupta SD, Ralhan R. Promoter hypermethylation of p16INK4A, p14ARF, CyclinD2 and Slit2 in serum and tumor DNA from breast cancer patients. Life Sci. 2007;80(20):1873–81. doi: 10.1016/j.lfs.2007.02.026.PubMedCrossRefGoogle Scholar
  67. 67.
    Wykosky J, Gibo DM, Debinski W. A novel, potent, and specific ephrinA1-based cytotoxin against EphA2 receptor expressing tumor cells. Mol Cancer Ther. 2007;6(12 Pt 1):3208–18. doi: 10.1158/1535-7163.MCT-07-0200.PubMedCrossRefGoogle Scholar
  68. 68.
    Mille F, Llambi F, Guix C, Delloye-Bourgeois C, Guenebeaud C, Castro-Obregon S, et al. Interfering with multimerization of netrin-1 receptors triggers tumor cell death. Cell Death Differ. 2009;16(10):1344–51. doi: 10.1038/cdd.2009.75.PubMedCrossRefGoogle Scholar
  69. 69.
    Ho KY, Kalle WH, Lo TH, Lam WY, Tang CM. Reduced expression of APC and DCC gene protein in breast cancer. Histopathology. 1999;35(3):249–56.PubMedCrossRefGoogle Scholar
  70. 70.
    Vaught D, Chen J, Brantley-Sieders DM. Regulation of mammary gland branching morphogenesis by EphA2 receptor tyrosine kinase. Mol Biol Cell. 2009;20(10):2572–81. doi: 10.1091/mbc.E08-04-0378.PubMedCrossRefGoogle Scholar
  71. 71.
    Kouros-Mehr H, Werb Z. Candidate regulators of mammary branching morphogenesis identified by genome-wide transcript analysis. Dev Dyn. 2006;235(12):3404–12. doi: 10.1002/dvdy.20978.PubMedCrossRefGoogle Scholar
  72. 72.
    Chodosh LA, Gardner HP, Rajan JV, Stairs DB, Marquis ST, Leder PA. Protein kinase expression during murine mammary development. Dev Biol. 2000;219(2):259–76. doi: 10.1006/dbio.2000.9614.PubMedCrossRefGoogle Scholar
  73. 73.
    Fox BP, Kandpal RP. EphB6 receptor significantly alters invasiveness and other phenotypic characteristics of human breast carcinoma cells. Oncogene. 2009;28(14):1706–13. doi: 10.1038/onc.2009.18.PubMedCrossRefGoogle Scholar
  74. 74.
    Morris JS, Stein T, Pringle MA, Davies CR, Weber-Hall S, Ferrier RK, et al. Involvement of axonal guidance proteins and their signaling partners in the developing mouse mammary gland. J Cell Physiol. 2006;206(1):16–24. doi: 10.1002/jcp.20427.PubMedCrossRefGoogle Scholar
  75. 75.
    Xiang RH, Hensel CH, Garcia DK, Carlson HC, Kok K, Daly MC, et al. Isolation of the human semaphorin III/F gene (SEMA3F) at chromosome 3p21, a region deleted in lung cancer. Genomics. 1996;32(1):39–48. doi: 10.1006/geno.1996.0074.PubMedCrossRefGoogle Scholar
  76. 76.
    Clarkson RW, Wayland MT, Lee J, Freeman T, Watson CJ. Gene expression profiling of mammary gland development reveals putative roles for death receptors and immune mediators in post-lactational regression. Breast Cancer Res. 2004;6(2):R92–R109. doi: 10.1186/bcr754.PubMedCrossRefGoogle Scholar
  77. 77.
    Qu X, Wei H, Zhai Y, Que H, Chen Q, Tang F, et al. Identification, characterization, and functional study of the two novel human members of the semaphorin gene family. J Biol Chem. 2002;277(38):35574–85. doi: 10.1074/jbc.M206451200.PubMedCrossRefGoogle Scholar
  78. 78.
    Bachelder RE, Lipscomb EA, Lin X, Wendt MA, Chadborn NH, Eickholt BJ, et al. Competing autocrine pathways involving alternative neuropilin-1 ligands regulate chemotaxis of carcinoma cells. Cancer Res. 2003;63(17):5230–3.PubMedGoogle Scholar
  79. 79.
    Rody A, Holtrich U, Gaetje R, Gehrmann M, Engels K, von Minckwitz G, et al. Poor outcome in estrogen receptor-positive breast cancers predicted by loss of plexin B1. Clin Cancer Res. 2007;13(4):1115–22. doi: 10.1158/1078-0432.CCR-06-2433.PubMedCrossRefGoogle Scholar
  80. 80.
    Schmid BC, Rezniczek GA, Fabjani G, Yoneda T, Leodolter S, Zeillinger R. The neuronal guidance cue Slit2 induces targeted migration and may play a role in brain metastasis of breast cancer cells. Breast Cancer Res Treat. 2007;106(3):333–42. doi: 10.1007/s10549-007-9504-0.PubMedCrossRefGoogle Scholar
  81. 81.
    Sundaresan V, Chung G, Heppell-Parton A, Xiong J, Grundy C, Roberts I, et al. Homozygous deletions at 3p12 in breast and lung cancer. Oncogene. 1998;17(13):1723–9. doi: 10.1038/sj.onc.1202103.PubMedCrossRefGoogle Scholar
  82. 82.
    Kashiwaba M, Tamura G, Ishida M. Frequent loss of heterozygosity at the deleted in colorectal carcinoma gene locus and its association with histologic phenotypes in breast carcinoma. Virchows Arch. 1995;426(5):441–6.PubMedCrossRefGoogle Scholar
  83. 83.
    Reale MA, Hu G, Zafar AI, Getzenberg RH, Levine SM, Fearon ER. Expression and alternative splicing of the deleted in colorectal cancer (DCC) gene in normal and malignant tissues. Cancer Res. 1994;54(16):4493–501.PubMedGoogle Scholar
  84. 84.
    Thompson AM, Morris RG, Wallace M, Wyllie AH, Steel CM, Carter DC. Allele loss from 5q21 (APC/MCC) and 18q21 (DCC) and DCC mRNA expression in breast cancer. Br J Cancer. 1993;68(1):64–8.PubMedCrossRefGoogle Scholar
  85. 85.
    Wakita K, Kohno N, Sakoda Y, Ishikawa Y, Sakaue M. Decreased expression of the DCC gene in human breast carcinoma. Surg Today. 1996;26(11):900–3.PubMedCrossRefGoogle Scholar
  86. 86.
    Ogawa K, Pasqualini R, Lindberg RA, Kain R, Freeman AL, Pasquale EB. The ephrin-A1 ligand and its receptor, EphA2, are expressed during tumor neovascularization. Oncogene. 2000;19(52):6043–52. doi: 10.1038/sj.onc.1204004.PubMedCrossRefGoogle Scholar
  87. 87.
    Somiari SB, Shriver CD, He J, Parikh K, Jordan R, Hooke J, et al. Global search for chromosomal abnormalities in infiltrating ductal carcinoma of the breast using array-comparative genomic hybridization. Cancer Genet Cytogenet. 2004;155(2):108–18. doi: 10.1016/j.cancergencyto.2004.02.023.PubMedCrossRefGoogle Scholar
  88. 88.
    Fox BP, Kandpal RP. DNA-based assay for EPHB6 expression in breast carcinoma cells as a potential diagnostic test for detecting tumor cells in circulation. Cancer Genomics Proteomics. 2010;7(1):9–16.PubMedGoogle Scholar
  89. 89.
    Fox BP, Kandpal RP. Transcriptional silencing of EphB6 receptor tyrosine kinase in invasive breast carcinoma cells and detection of methylated promoter by methylation specific PCR. Biochem Biophys Res Commun. 2006;340(1):268–76. doi: 10.1016/j.bbrc.2005.11.174.PubMedCrossRefGoogle Scholar
  90. 90.
    Christensen C, Ambartsumian N, Gilestro G, Thomsen B, Comoglio P, Tamagnone L, et al. Proteolytic processing converts the repelling signal Sema3E into an inducer of invasive growth and lung metastasis. Cancer Res. 2005;65(14):6167–77. doi: 10.1158/0008-5472.CAN-04-4309.PubMedCrossRefGoogle Scholar
  91. 91.
    Rody A, Karn T, Ruckhaberle E, Hanker L, Metzler D, Muller V, et al. Loss of Plexin B1 is highly prognostic in low proliferating ER positive breast cancers–results of a large scale microarray analysis. Eur J Cancer. 2009;45(3):405–13. doi: 10.1016/j.ejca.2008.10.016.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Molecular, Cell and Developmental BiologyUniversity of CaliforniaSanta CruzUSA

Personalised recommendations