Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Consequences of Epithelial or Stromal TGFβ1 Depletion in the Mammary Gland


Transforming growth factor β1 (TGFβ) affects stroma and epithelial composition and interactions that mediate mammary development and determine the course of cancer. The reduction of TGFβ in Tgfβ1 heterozygote mice, which are healthy and long-lived, provides an important model to dissect the contribution of TGFβ in mammary gland biology and cancer. We used both intact mice and mammary chimeras in conjunction with Tgfβ1 genetic depletion and TGFβ neutralizing antibodies to evaluate how stromal or epithelial TGFβ depletion affect mammary development and response to physiological stimuli. Our studies of radiation carcinogenesis have revealed new aspects of TGFβ biology and suggest that the paradoxical TGFβ switch from tumor suppressor to tumor promoter can be resolved by assessing distinct stromal versus epithelial actions.

This is a preview of subscription content, log in to check access.



Transforming growth factor β1


Latency associated peptide


Latent TGFβ binding proteins


Latent TGFβ


Estrogen receptor


Progesterone receptor


Reactive oxygen species


Ataxia telangiectasia mutated


  1. 1.

    Wakefield L, Colletta AA, McCune BK, Sporn MB. In: Dickson RB, Lippman ME, editors. Genes, oncogens, and hormones: advances in cellular and molecular biology of breast cancer. Boston: Kluwer Academic; 1991. p. 97–136.

  2. 2.

    Daniel CW, Robinson S, Silberstein GB. The role of TGF-β in patterning and growth of the mammary ductal tree. J Mammary Gland Biol Neoplasia. 1996;1:1331–41.

  3. 3.

    Barcellos-Hoff MH, Ewan KB. TGF-β and mammary gland development. Breast Cancer Res. 2000;2:92–100.

  4. 4.

    Derynck R, Akhurst RJ, Balmain A. TGF-β signaling in tumor suppression and cancer progression. Nat Genet. 2001;29:117–29.

  5. 5.

    Smith GH. TGF-β and functional differentiation. J Mammary Gland Biol Neoplasia. 1996;1:343–52.

  6. 6.

    Massagué J. TGF[beta] in Cancer. Cell. 2008;134(2):215–30.

  7. 7.

    Reiss M, Barcellos-Hoff MH. Transforming growth factor-β in breast cancer: a working hypothesis. Br Cancer Res Treat. 1997;45:81–95.

  8. 8.

    Knabbe C, Lippman ME, Wakefield LM, Flanders KC, Kasid A, Derynck R, et al. Evidence that transforming growth factor-beta is a hormonally regulated negative growth factor in human breast cancer cells. Cell. 1987;48(3):417–28.

  9. 9.

    Xie W, Mertens JC, Reiss DJ, Rimm DL, Camp RL, Haffty BG, et al. Alterations of Smad signaling in human breast carcinoma are associated with poor outcome: a tissue microarray study. Cancer Res. 2002;62:497–505.

  10. 10.

    Robinson SD, Silberstein GB, Roberts AB, Flanders KC, Daniel CD. Regulated expression and growth inhibitory effects of transforming growth factor-β isoforms in mouse mamary gland development. Development. 1991;113:867–78.

  11. 11.

    Romeo DS, Park K, Roberts AB, Sporn MB, Kim SJ. An element of the transforming growth factor-β1 5′ untranslated region represses translation and specifically binds a cytosolic factor. Mol Endocrinol. 1993;7(6):759–66.

  12. 12.

    Flaumenhaft R, Rifkin DB. The extracellular regulation of growth factor action. Mol Biol Cell. 1992;3:1057–65.

  13. 13.

    Massague J. Receptors for the TGF-β family. Cell. 1992;69:1067–70.

  14. 14.

    Miyazono K. TGF-b receptors and signal transduction. Int J Hematol. 1997;65:97–104.

  15. 15.

    Barcellos-Hoff MH, Dix TA. Redox-mediated activation of latent transforming growth factor-β1. Mol Endocrinol. 1996;10:1077–83.

  16. 16.

    Jobling MF, Mott JD, Finnegan M, Erickson AC, Taylor SE, Ledbetter S, et al. Isoform specificity of redox-mediated TGF-β activation. Radiat Res. 2006;166(6):839–48.

  17. 17.

    Pircher R, Jullien P, Lawrence DA. Beta-transforming growth factor is stored in human blood platelets as a latent high molecular weight complex. Biochem Biophys Res Commun. 1986;136:30–7.

  18. 18.

    Wakefield LM, Winokur TS, Hollands RS, Christopherson K, Levinson AD, Sporn MB. Recombinant latent transforming growth factor β1 has a longer plasma half-life in rats than active transforming growth factor β1, and a different tissue distribution. J Clin Invest. 1990;86:1976–84.

  19. 19.

    Odekon LE, Blasi F, Rifkin DB. Requirement for receptor-bound urokinase in plasmin-dependent cellular conversion of latent TGF-β to TGF-β. J Cell Physiol. 1994;158:398–407.

  20. 20.

    Munger JS, Harpel JG, Giancotti FG, Rifkin DB. Interactions between growth factors and integrins: latent forms of transforming growth factor-beta are ligands for the integrin alpha vbeta1. Mol Biol Cell. 1998;9:2627–38.

  21. 21.

    Brunner AM, Marquardt H, Malacko AR, Lioubin MN, Purchio AF. Site-directed mutagenesis of cysteine residues in the pro region of the transforming growth factor β 1 precursor. J Biol Chem. 1989;264(23):13660–4.

  22. 22.

    Pierce DFJ, Johnson MD, Matsui Y, Robinson SD, Gold LI, Purchio AF, et al. Inhibition of mammary duct development but not alveolar outgrowth during pregnancy in transgenic mice expressing active TGF-β 1. Genes Dev. 1993;7:2308–17.

  23. 23.

    Jhappan C, Geiser AG, Kordon EC, Bagheri D, Hennighausen L, Roberts AB, et al. Targeting expression of a transforming growth factor β1 transgene to the pregnant mammary gland inhibits alveolar development and lactation. EMBO J. 1993;12(5):1835–45.

  24. 24.

    Kordon EC, McKnight RA, Jhappan C, Hennighausen L, Merlino G, Smith GH. Ectopic TGF beta 1 expression in the secretory mammary epithelium induces early senescence of the epithelial stem cell population. Dev Biol. 1995;168(1):47–61.

  25. 25.

    Silberstein GB, Daniel CW. Reversible inhibition of mammary gland growth by transforming growth factor-ß. Science. 1987;237:291–3.

  26. 26.

    Daniel CW, Silberstein GB, Van Horn K, Strickland P, Robinson S. TGF-β1-induced inhibition of mouse mammary ductal growth: developmental specificity and characterization. Dev Biol. 1989;135:20–30.

  27. 27.

    Barcellos-Hoff MH, Derynck R, Tsang ML-S, Weatherbee JA. Transforming growth factor-β activation in irradiated murine mammary gland. J Clin Invest. 1994;93:892–9.

  28. 28.

    Barcellos-Hoff MH, Ehrhart EJ, Kalia M, Jirtle R, Flanders K, Tsang ML-S. Immunohistochemical detection of active TGF-β in situ using engineered tissue. Am J Pathol. 1995;147:1228–37.

  29. 29.

    Ehrhart EJ, Carroll A, Segarini P, Tsang ML-S, Barcellos-Hoff MH. Latent transforming growth factor-β activation in situ: quantitative and functional evidence following low dose irradiation. FASEB J. 1997;11:991–1002.

  30. 30.

    Ewan KB, Henshall-Powell RL, Ravani SA, Pajares MJ, Arteaga CL, Warters RL, et al. Transforming growth factor-β1 mediates cellular response to DNA damage in situ. Cancer Res. 2002;62(20):5627–31.

  31. 31.

    Ewan KB, Shyamala G, Ravani SA, Tang Y, Akhurst RJ, Wakefield L, et al. Latent TGF-β activation in mammary gland: regulation by ovarian hormones affects ductal and alveolar proliferation. Am J Pathol. 2002;160(6):2081–93.

  32. 32.

    Ewan KBR, Oketch-Rabah HA, Ravani SA, Shyamala G, Moses HL, Barcellos-Hoff MH. Proliferation of estrogen receptor-alpha-positive mammary epithelial cells is restrained by transforming growth factor-beta 1 in adult mice. Am J Pathol. 2005;167(2):409–17.

  33. 33.

    Clarke RB, Howell A, Potten CS, Anderson E. Dissociation between steroid receptor expression and cell proliferation in the human breast. Cancer Res. 1997;57:4987–91.

  34. 34.

    Kirshner J, Jobling MF, Pajares MJ, Ravani SA, Glick A, Lavin M, et al. Inhibition of TGFβ1 signaling attenuates ATM activity in response to genotoxic stress. Cancer Res. 2006;66(22):10861–8.

  35. 35.

    Yan H, Blackburn AC, McLary SC, Tao L, Roberts AL, Xavier EA, et al. Pathways contributing to development of spontaneous mammary tumors in BALB/c-Trp53+/− Mice. Am J Pathol. 2010;176(3):1421–32.

  36. 36.

    Nguyen AV, Pollard JW. Transforming growth factor b3 induces cell death during the first stage of mammary gland involution. Development. 2000;127(14):3107–18.

  37. 37.

    Tang B, Bottinger EP, Jakowlew SB, Bagnall KM, Mariano J, Anver MR, et al. Transforming growth factor-beta1 is a new form of tumor suppressor with true haploid insufficiency. Nat Med. 1998;4(7):802–7.

  38. 38.

    Ingman WV, Robertson SA. Mammary gland development in transforming growth factor beta1 null mutant mice: systemic and epithelial effects. Biol Reprod. 2008;79(4):711–7.

  39. 39.

    Letterio JJ, Roberts AB. Regulation of immune responses by TGF-β. Annu Rev Immunol. 1998;16:137–61.

  40. 40.

    Wrzesinski SH, Wan YY, Flavell RA. Transforming growth factor-β and the immune response: implications for anticancer therapy. Clin Cancer Res. 2007;13(18):5262–70.

  41. 41.

    Yang L, Pang Y, Moses HL. TGF-beta and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol. 2010;31(6):220–7.

  42. 42.

    Letterio JJ, Geiser AG, Kulkarni AB, Roche NS, Sporn MB, Roberts AB. Maternal rescue of transforming growth factor-β1 null mice. Science. 1994;264:1936–8.

  43. 43.

    Gouon-Evans V, Rothenberg ME, Pollard JW. Postnatal mammary gland development requires macrophages and eosinophils. Development. 2000;127(11):2269–82.

  44. 44.

    Lilla JN, Joshi RV, Craik CS, Werb Z. Active plasma kallikrein localizes to mast cells and regulates epithelial cell apoptosis, adipocyte differentiation, and stromal remodeling during mammary gland involution. J Biol Chem. 2009;284(20):13792–803.

  45. 45.

    Lilla JN, Werb Z. Mast cells contribute to the stromal microenvironment in mammary gland branching morphogenesis. Dev Biol. 2010;337(1):124–33.

  46. 46.

    Annes JP, Munger JS, Rifkin DB. Making sense of latent TGF{beta} activation. J Cell Sci. 2003;116(2):217–24.

  47. 47.

    Rifkin D. Latent transforming growth factor-β (TGF-β) binding proteins: orchestrators of TGF-β availability. J Biol Chem. 2005;280(9):7409–12.

  48. 48.

    Brown PD, Wakefield LM, Levinson AD, Sporn MB. Physiochemical activation of recombinant latent transforming growth factor-beta’s 1, 2, and 3. Growth Factors. 1990;3:35–43.

  49. 49.

    Barcellos-Hoff MH. A novel redox mechanism for TGF-beta activation. Mol Biol Cell. 1994;5(Suppl):139a.

  50. 50.

    Barcellos-Hoff MH. Radiation-induced transforming growth factor β and subsequent extracellular matrix reorganization in murine mammary gland. Cancer Res. 1993;53:3880–6.

  51. 51.

    Pociask DA, Sime PJ, Brody AR. Asbestos-derived reactive oxygen species activate TGF-beta1. Lab Invest. 2004;84(8):1013–23.

  52. 52.

    Ehrhart EJ, Gillette EL, Barcellos-Hoff MH. Immunohistochemical evidence of rapid extracellular matrix remodeling after iron-particle irradiation of mouse mammary gland. Radiat Res. 1996;145:157–62.

  53. 53.

    Brenner DJ, Hall EJ. Computed tomography–an increasing source of radiation exposure. N Engl J Med. 2007;357(22):2277–84.

  54. 54.

    Ronckers CM, Erdmann CA, Land CE. Radiation and breast cancer: a review of current evidence. Breast Cancer Res. 2005;7:21–32.

  55. 55.

    NAS/NRC. In Board on Radiation Effects Research (BEIRVII), National Academy Press, Washington; 2006.

  56. 56.

    Amundson SA, Bittner M, Chen Y, Trent J, Meltzer P, Fornace AJJ. Fluorescent cDNA microarray hybridization reveals complexity and heterogeneity of cellular genotoxic stress responses. Oncogene. 1999;18(24):3666–72.

  57. 57.

    Amundson SA, Do KT, Fornace AJJ. Induction of stress genes by low doses of gamma rays. Radiat Res. 1999;152(3):225–31.

  58. 58.

    Andarawewa KL, Erickson AC, Chou WS, Costes SV, Gascard P, Mott JD, et al. Ionizing radiation predisposes nonmalignant human mammary epithelial cells to undergo transforming growth factor beta Induced epithelial to mesenchymal transition. Cancer Res. 2007;67:8662–70.

  59. 59.

    Maxwell CA, Fleisch MC, Costes SV, Erickson AC, Boissiere A, Gupta R, et al. Targeted and nontargeted effects of ionizing radiation that impact genomic instability. Cancer Res. 2008;68(20):8304–11.

  60. 60.

    Wright EG, Coates PJ. Untargeted effects of ionizing radiation: implications for radiation pathology. Mutat Res. 2006;597(1–2):119–32.

  61. 61.

    Barcellos-Hoff MH, Park C, Wright EG. Radiation and the microenvironment—tumorigenesis and therapy. Nat Rev Cancer. 2005;5(11):867–75.

  62. 62.

    Barcellos-Hoff MH, Ravani SA. Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells. Cancer Res. 2000;60:1254–60.

  63. 63.

    Mancuso M, Pasquali E, Leonardi S, Tanori M, Rebessi S, Di Majo V, et al. Oncogenic bystander radiation effects in Patched heterozygous mouse cerebellum. Proc Natl Acad Sci USA. 2008;105(34):12445–50.

  64. 64.

    Kaplan HS, Carnes WH, Brown MB, Hirsch BB. Indirect Induction of Lymphomas in Irradiated Mice: I. tumor incidence and morphology in mice bearing nonirradiated thymic grafts. Cancer Res. 1956;16(5):422–5.

  65. 65.

    Nguyen NH, Oketch HA, Geyer FC, Reis-Filho JS, Mao J-H, Ravani SA, et al. Radiation acts on the microenvironment to affect breast carcinogenesis by distinct mechanisms that decrease breast cancer latency and affect tumor type. Cancer Cell. 2011. doi:10.1016/j.ccr.2011.03.011.

  66. 66.

    Jerry DJ, Kittrell FS, Kuperwasser C, Laucirica R, Dickinson ES, Bonilla PJ, et al. A mammary-specific model demonstrates the role of the p53 tumor suppressor gene in tumor development. Oncogene. 2000;19(8):1052–8.

  67. 67.

    Medina D, Kittrell FS, Shepard A, Stephens LC, Jiang C, Lu J, et al. Biological and genetic properties of the p53 null preneoplastic mammary epithelium. FASEB J. 2002;16(8):881–3.

  68. 68.

    Bakkenist CJ, Kastan MB. Initiating cellular stress responses. Cell. 2004;118(1):9–17.

  69. 69.

    Shiloh Y. ATM: sounding the double-strand break alarm. Cold Spring Harb Symp Quant Biol. 2000;65:527–33.

  70. 70.

    Fynan TM, Reiss M. Resistance to inhibition of cell growth by transforming growth factor-β and its role in oncogenesis. Crit Rev Oncog. 1993;4:493–540.

  71. 71.

    Lingle WL, Barrett SL, Negron VC, D’Assoro AB, Boeneman K, Liu WM, et al. Centrosome amplification drives chromosomal instability in breast tumor development. PNAS. 2002;99(4):1978–83.

  72. 72.

    Akhurst RJ. TGF-{beta} antagonists: why suppress a tumor suppressor? J Clin Invest. 2002;109(12):1533–6.

  73. 73.

    Ganapathy V, Ge R, Grazioli A, Xie W, Banach-Petrosky W, Kang Y, et al. Targeting the transforming growth factor-beta pathway inhibits human basal-like breast cancer metastasis. Mol Cancer. 2010;9(1):122.

  74. 74.

    Tan AR, Alexe G, Reiss M. Transforming growth factor-beta signaling: emerging stem cell target in metastatic breast cancer? Breast Cancer Res Treat. 2009;115(3):453–95.

  75. 75.

    Barcellos-Hoff MH, Akhurst RJ. Transforming growth factor-beta in breast cancer: too much, too late. Breast Cancer Res Treat. 2010;11(1):202–8.

Download references


The authors wish to acknowledge funding from the Bay Area Breast Cancer and the Environment Research Center grant number U01 ES012801 from the National Institute of Environmental Health Sciences, NIH and the National Cancer Institute, NIH and from the Department of Energy OBER Low Dose Radiation Program. DHN is recipient of a pre-doctoral fellowship from the DOD-Breast Cancer Research Program.

Author information

Correspondence to Mary Helen Barcellos-Hoff.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nguyen, D.H., Martinez-Ruiz, H. & Barcellos-Hoff, M.H. Consequences of Epithelial or Stromal TGFβ1 Depletion in the Mammary Gland. J Mammary Gland Biol Neoplasia 16, 147–155 (2011). https://doi.org/10.1007/s10911-011-9218-0

Download citation


  • TGFβ
  • Carcinogenesis
  • Stromal-epithelial interactions
  • Mammary gland
  • Ionizing radiation