Consequences of Epithelial or Stromal TGFβ1 Depletion in the Mammary Gland

  • David H. Nguyen
  • Haydeliz Martinez-Ruiz
  • Mary Helen Barcellos-HoffEmail author


Transforming growth factor β1 (TGFβ) affects stroma and epithelial composition and interactions that mediate mammary development and determine the course of cancer. The reduction of TGFβ in Tgfβ1 heterozygote mice, which are healthy and long-lived, provides an important model to dissect the contribution of TGFβ in mammary gland biology and cancer. We used both intact mice and mammary chimeras in conjunction with Tgfβ1 genetic depletion and TGFβ neutralizing antibodies to evaluate how stromal or epithelial TGFβ depletion affect mammary development and response to physiological stimuli. Our studies of radiation carcinogenesis have revealed new aspects of TGFβ biology and suggest that the paradoxical TGFβ switch from tumor suppressor to tumor promoter can be resolved by assessing distinct stromal versus epithelial actions.


TGFβ Carcinogenesis Stromal-epithelial interactions Mammary gland Ionizing radiation 



Transforming growth factor β1


Latency associated peptide


Latent TGFβ binding proteins


Latent TGFβ


Estrogen receptor


Progesterone receptor


Reactive oxygen species


Ataxia telangiectasia mutated



The authors wish to acknowledge funding from the Bay Area Breast Cancer and the Environment Research Center grant number U01 ES012801 from the National Institute of Environmental Health Sciences, NIH and the National Cancer Institute, NIH and from the Department of Energy OBER Low Dose Radiation Program. DHN is recipient of a pre-doctoral fellowship from the DOD-Breast Cancer Research Program.


  1. 1.
    Wakefield L, Colletta AA, McCune BK, Sporn MB. In: Dickson RB, Lippman ME, editors. Genes, oncogens, and hormones: advances in cellular and molecular biology of breast cancer. Boston: Kluwer Academic; 1991. p. 97–136.Google Scholar
  2. 2.
    Daniel CW, Robinson S, Silberstein GB. The role of TGF-β in patterning and growth of the mammary ductal tree. J Mammary Gland Biol Neoplasia. 1996;1:1331–41.CrossRefGoogle Scholar
  3. 3.
    Barcellos-Hoff MH, Ewan KB. TGF-β and mammary gland development. Breast Cancer Res. 2000;2:92–100.PubMedCrossRefGoogle Scholar
  4. 4.
    Derynck R, Akhurst RJ, Balmain A. TGF-β signaling in tumor suppression and cancer progression. Nat Genet. 2001;29:117–29.PubMedCrossRefGoogle Scholar
  5. 5.
    Smith GH. TGF-β and functional differentiation. J Mammary Gland Biol Neoplasia. 1996;1:343–52.PubMedCrossRefGoogle Scholar
  6. 6.
    Massagué J. TGF[beta] in Cancer. Cell. 2008;134(2):215–30.PubMedCrossRefGoogle Scholar
  7. 7.
    Reiss M, Barcellos-Hoff MH. Transforming growth factor-β in breast cancer: a working hypothesis. Br Cancer Res Treat. 1997;45:81–95.CrossRefGoogle Scholar
  8. 8.
    Knabbe C, Lippman ME, Wakefield LM, Flanders KC, Kasid A, Derynck R, et al. Evidence that transforming growth factor-beta is a hormonally regulated negative growth factor in human breast cancer cells. Cell. 1987;48(3):417–28.PubMedCrossRefGoogle Scholar
  9. 9.
    Xie W, Mertens JC, Reiss DJ, Rimm DL, Camp RL, Haffty BG, et al. Alterations of Smad signaling in human breast carcinoma are associated with poor outcome: a tissue microarray study. Cancer Res. 2002;62:497–505.PubMedGoogle Scholar
  10. 10.
    Robinson SD, Silberstein GB, Roberts AB, Flanders KC, Daniel CD. Regulated expression and growth inhibitory effects of transforming growth factor-β isoforms in mouse mamary gland development. Development. 1991;113:867–78.PubMedGoogle Scholar
  11. 11.
    Romeo DS, Park K, Roberts AB, Sporn MB, Kim SJ. An element of the transforming growth factor-β1 5′ untranslated region represses translation and specifically binds a cytosolic factor. Mol Endocrinol. 1993;7(6):759–66.PubMedCrossRefGoogle Scholar
  12. 12.
    Flaumenhaft R, Rifkin DB. The extracellular regulation of growth factor action. Mol Biol Cell. 1992;3:1057–65.PubMedGoogle Scholar
  13. 13.
    Massague J. Receptors for the TGF-β family. Cell. 1992;69:1067–70.PubMedCrossRefGoogle Scholar
  14. 14.
    Miyazono K. TGF-b receptors and signal transduction. Int J Hematol. 1997;65:97–104.PubMedCrossRefGoogle Scholar
  15. 15.
    Barcellos-Hoff MH, Dix TA. Redox-mediated activation of latent transforming growth factor-β1. Mol Endocrinol. 1996;10:1077–83.PubMedCrossRefGoogle Scholar
  16. 16.
    Jobling MF, Mott JD, Finnegan M, Erickson AC, Taylor SE, Ledbetter S, et al. Isoform specificity of redox-mediated TGF-β activation. Radiat Res. 2006;166(6):839–48.PubMedCrossRefGoogle Scholar
  17. 17.
    Pircher R, Jullien P, Lawrence DA. Beta-transforming growth factor is stored in human blood platelets as a latent high molecular weight complex. Biochem Biophys Res Commun. 1986;136:30–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Wakefield LM, Winokur TS, Hollands RS, Christopherson K, Levinson AD, Sporn MB. Recombinant latent transforming growth factor β1 has a longer plasma half-life in rats than active transforming growth factor β1, and a different tissue distribution. J Clin Invest. 1990;86:1976–84.PubMedCrossRefGoogle Scholar
  19. 19.
    Odekon LE, Blasi F, Rifkin DB. Requirement for receptor-bound urokinase in plasmin-dependent cellular conversion of latent TGF-β to TGF-β. J Cell Physiol. 1994;158:398–407.PubMedCrossRefGoogle Scholar
  20. 20.
    Munger JS, Harpel JG, Giancotti FG, Rifkin DB. Interactions between growth factors and integrins: latent forms of transforming growth factor-beta are ligands for the integrin alpha vbeta1. Mol Biol Cell. 1998;9:2627–38.PubMedGoogle Scholar
  21. 21.
    Brunner AM, Marquardt H, Malacko AR, Lioubin MN, Purchio AF. Site-directed mutagenesis of cysteine residues in the pro region of the transforming growth factor β 1 precursor. J Biol Chem. 1989;264(23):13660–4.PubMedGoogle Scholar
  22. 22.
    Pierce DFJ, Johnson MD, Matsui Y, Robinson SD, Gold LI, Purchio AF, et al. Inhibition of mammary duct development but not alveolar outgrowth during pregnancy in transgenic mice expressing active TGF-β 1. Genes Dev. 1993;7:2308–17.PubMedCrossRefGoogle Scholar
  23. 23.
    Jhappan C, Geiser AG, Kordon EC, Bagheri D, Hennighausen L, Roberts AB, et al. Targeting expression of a transforming growth factor β1 transgene to the pregnant mammary gland inhibits alveolar development and lactation. EMBO J. 1993;12(5):1835–45.PubMedGoogle Scholar
  24. 24.
    Kordon EC, McKnight RA, Jhappan C, Hennighausen L, Merlino G, Smith GH. Ectopic TGF beta 1 expression in the secretory mammary epithelium induces early senescence of the epithelial stem cell population. Dev Biol. 1995;168(1):47–61.PubMedCrossRefGoogle Scholar
  25. 25.
    Silberstein GB, Daniel CW. Reversible inhibition of mammary gland growth by transforming growth factor-ß. Science. 1987;237:291–3.PubMedCrossRefGoogle Scholar
  26. 26.
    Daniel CW, Silberstein GB, Van Horn K, Strickland P, Robinson S. TGF-β1-induced inhibition of mouse mammary ductal growth: developmental specificity and characterization. Dev Biol. 1989;135:20–30.PubMedCrossRefGoogle Scholar
  27. 27.
    Barcellos-Hoff MH, Derynck R, Tsang ML-S, Weatherbee JA. Transforming growth factor-β activation in irradiated murine mammary gland. J Clin Invest. 1994;93:892–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Barcellos-Hoff MH, Ehrhart EJ, Kalia M, Jirtle R, Flanders K, Tsang ML-S. Immunohistochemical detection of active TGF-β in situ using engineered tissue. Am J Pathol. 1995;147:1228–37.PubMedGoogle Scholar
  29. 29.
    Ehrhart EJ, Carroll A, Segarini P, Tsang ML-S, Barcellos-Hoff MH. Latent transforming growth factor-β activation in situ: quantitative and functional evidence following low dose irradiation. FASEB J. 1997;11:991–1002.PubMedGoogle Scholar
  30. 30.
    Ewan KB, Henshall-Powell RL, Ravani SA, Pajares MJ, Arteaga CL, Warters RL, et al. Transforming growth factor-β1 mediates cellular response to DNA damage in situ. Cancer Res. 2002;62(20):5627–31.PubMedGoogle Scholar
  31. 31.
    Ewan KB, Shyamala G, Ravani SA, Tang Y, Akhurst RJ, Wakefield L, et al. Latent TGF-β activation in mammary gland: regulation by ovarian hormones affects ductal and alveolar proliferation. Am J Pathol. 2002;160(6):2081–93.PubMedCrossRefGoogle Scholar
  32. 32.
    Ewan KBR, Oketch-Rabah HA, Ravani SA, Shyamala G, Moses HL, Barcellos-Hoff MH. Proliferation of estrogen receptor-alpha-positive mammary epithelial cells is restrained by transforming growth factor-beta 1 in adult mice. Am J Pathol. 2005;167(2):409–17.PubMedCrossRefGoogle Scholar
  33. 33.
    Clarke RB, Howell A, Potten CS, Anderson E. Dissociation between steroid receptor expression and cell proliferation in the human breast. Cancer Res. 1997;57:4987–91.PubMedGoogle Scholar
  34. 34.
    Kirshner J, Jobling MF, Pajares MJ, Ravani SA, Glick A, Lavin M, et al. Inhibition of TGFβ1 signaling attenuates ATM activity in response to genotoxic stress. Cancer Res. 2006;66(22):10861–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Yan H, Blackburn AC, McLary SC, Tao L, Roberts AL, Xavier EA, et al. Pathways contributing to development of spontaneous mammary tumors in BALB/c-Trp53+/− Mice. Am J Pathol. 2010;176(3):1421–32.Google Scholar
  36. 36.
    Nguyen AV, Pollard JW. Transforming growth factor b3 induces cell death during the first stage of mammary gland involution. Development. 2000;127(14):3107–18.PubMedGoogle Scholar
  37. 37.
    Tang B, Bottinger EP, Jakowlew SB, Bagnall KM, Mariano J, Anver MR, et al. Transforming growth factor-beta1 is a new form of tumor suppressor with true haploid insufficiency. Nat Med. 1998;4(7):802–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Ingman WV, Robertson SA. Mammary gland development in transforming growth factor beta1 null mutant mice: systemic and epithelial effects. Biol Reprod. 2008;79(4):711–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Letterio JJ, Roberts AB. Regulation of immune responses by TGF-β. Annu Rev Immunol. 1998;16:137–61.PubMedCrossRefGoogle Scholar
  40. 40.
    Wrzesinski SH, Wan YY, Flavell RA. Transforming growth factor-β and the immune response: implications for anticancer therapy. Clin Cancer Res. 2007;13(18):5262–70.PubMedCrossRefGoogle Scholar
  41. 41.
    Yang L, Pang Y, Moses HL. TGF-beta and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol. 2010;31(6):220–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Letterio JJ, Geiser AG, Kulkarni AB, Roche NS, Sporn MB, Roberts AB. Maternal rescue of transforming growth factor-β1 null mice. Science. 1994;264:1936–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Gouon-Evans V, Rothenberg ME, Pollard JW. Postnatal mammary gland development requires macrophages and eosinophils. Development. 2000;127(11):2269–82.PubMedGoogle Scholar
  44. 44.
    Lilla JN, Joshi RV, Craik CS, Werb Z. Active plasma kallikrein localizes to mast cells and regulates epithelial cell apoptosis, adipocyte differentiation, and stromal remodeling during mammary gland involution. J Biol Chem. 2009;284(20):13792–803.PubMedCrossRefGoogle Scholar
  45. 45.
    Lilla JN, Werb Z. Mast cells contribute to the stromal microenvironment in mammary gland branching morphogenesis. Dev Biol. 2010;337(1):124–33.PubMedCrossRefGoogle Scholar
  46. 46.
    Annes JP, Munger JS, Rifkin DB. Making sense of latent TGF{beta} activation. J Cell Sci. 2003;116(2):217–24.PubMedCrossRefGoogle Scholar
  47. 47.
    Rifkin D. Latent transforming growth factor-β (TGF-β) binding proteins: orchestrators of TGF-β availability. J Biol Chem. 2005;280(9):7409–12.PubMedCrossRefGoogle Scholar
  48. 48.
    Brown PD, Wakefield LM, Levinson AD, Sporn MB. Physiochemical activation of recombinant latent transforming growth factor-beta’s 1, 2, and 3. Growth Factors. 1990;3:35–43.PubMedCrossRefGoogle Scholar
  49. 49.
    Barcellos-Hoff MH. A novel redox mechanism for TGF-beta activation. Mol Biol Cell. 1994;5(Suppl):139a.Google Scholar
  50. 50.
    Barcellos-Hoff MH. Radiation-induced transforming growth factor β and subsequent extracellular matrix reorganization in murine mammary gland. Cancer Res. 1993;53:3880–6.PubMedGoogle Scholar
  51. 51.
    Pociask DA, Sime PJ, Brody AR. Asbestos-derived reactive oxygen species activate TGF-beta1. Lab Invest. 2004;84(8):1013–23.PubMedCrossRefGoogle Scholar
  52. 52.
    Ehrhart EJ, Gillette EL, Barcellos-Hoff MH. Immunohistochemical evidence of rapid extracellular matrix remodeling after iron-particle irradiation of mouse mammary gland. Radiat Res. 1996;145:157–62.PubMedCrossRefGoogle Scholar
  53. 53.
    Brenner DJ, Hall EJ. Computed tomography–an increasing source of radiation exposure. N Engl J Med. 2007;357(22):2277–84.PubMedCrossRefGoogle Scholar
  54. 54.
    Ronckers CM, Erdmann CA, Land CE. Radiation and breast cancer: a review of current evidence. Breast Cancer Res. 2005;7:21–32.PubMedCrossRefGoogle Scholar
  55. 55.
    NAS/NRC. In Board on Radiation Effects Research (BEIRVII), National Academy Press, Washington; 2006.Google Scholar
  56. 56.
    Amundson SA, Bittner M, Chen Y, Trent J, Meltzer P, Fornace AJJ. Fluorescent cDNA microarray hybridization reveals complexity and heterogeneity of cellular genotoxic stress responses. Oncogene. 1999;18(24):3666–72.PubMedCrossRefGoogle Scholar
  57. 57.
    Amundson SA, Do KT, Fornace AJJ. Induction of stress genes by low doses of gamma rays. Radiat Res. 1999;152(3):225–31.PubMedCrossRefGoogle Scholar
  58. 58.
    Andarawewa KL, Erickson AC, Chou WS, Costes SV, Gascard P, Mott JD, et al. Ionizing radiation predisposes nonmalignant human mammary epithelial cells to undergo transforming growth factor beta Induced epithelial to mesenchymal transition. Cancer Res. 2007;67:8662–70.PubMedCrossRefGoogle Scholar
  59. 59.
    Maxwell CA, Fleisch MC, Costes SV, Erickson AC, Boissiere A, Gupta R, et al. Targeted and nontargeted effects of ionizing radiation that impact genomic instability. Cancer Res. 2008;68(20):8304–11.PubMedCrossRefGoogle Scholar
  60. 60.
    Wright EG, Coates PJ. Untargeted effects of ionizing radiation: implications for radiation pathology. Mutat Res. 2006;597(1–2):119–32.PubMedGoogle Scholar
  61. 61.
    Barcellos-Hoff MH, Park C, Wright EG. Radiation and the microenvironment—tumorigenesis and therapy. Nat Rev Cancer. 2005;5(11):867–75.PubMedCrossRefGoogle Scholar
  62. 62.
    Barcellos-Hoff MH, Ravani SA. Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells. Cancer Res. 2000;60:1254–60.PubMedGoogle Scholar
  63. 63.
    Mancuso M, Pasquali E, Leonardi S, Tanori M, Rebessi S, Di Majo V, et al. Oncogenic bystander radiation effects in Patched heterozygous mouse cerebellum. Proc Natl Acad Sci USA. 2008;105(34):12445–50.PubMedCrossRefGoogle Scholar
  64. 64.
    Kaplan HS, Carnes WH, Brown MB, Hirsch BB. Indirect Induction of Lymphomas in Irradiated Mice: I. tumor incidence and morphology in mice bearing nonirradiated thymic grafts. Cancer Res. 1956;16(5):422–5.PubMedGoogle Scholar
  65. 65.
    Nguyen NH, Oketch HA, Geyer FC, Reis-Filho JS, Mao J-H, Ravani SA, et al. Radiation acts on the microenvironment to affect breast carcinogenesis by distinct mechanisms that decrease breast cancer latency and affect tumor type. Cancer Cell. 2011. doi: 10.1016/j.ccr.2011.03.011.
  66. 66.
    Jerry DJ, Kittrell FS, Kuperwasser C, Laucirica R, Dickinson ES, Bonilla PJ, et al. A mammary-specific model demonstrates the role of the p53 tumor suppressor gene in tumor development. Oncogene. 2000;19(8):1052–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Medina D, Kittrell FS, Shepard A, Stephens LC, Jiang C, Lu J, et al. Biological and genetic properties of the p53 null preneoplastic mammary epithelium. FASEB J. 2002;16(8):881–3.PubMedGoogle Scholar
  68. 68.
    Bakkenist CJ, Kastan MB. Initiating cellular stress responses. Cell. 2004;118(1):9–17.PubMedCrossRefGoogle Scholar
  69. 69.
    Shiloh Y. ATM: sounding the double-strand break alarm. Cold Spring Harb Symp Quant Biol. 2000;65:527–33.PubMedCrossRefGoogle Scholar
  70. 70.
    Fynan TM, Reiss M. Resistance to inhibition of cell growth by transforming growth factor-β and its role in oncogenesis. Crit Rev Oncog. 1993;4:493–540.PubMedGoogle Scholar
  71. 71.
    Lingle WL, Barrett SL, Negron VC, D’Assoro AB, Boeneman K, Liu WM, et al. Centrosome amplification drives chromosomal instability in breast tumor development. PNAS. 2002;99(4):1978–83.PubMedCrossRefGoogle Scholar
  72. 72.
    Akhurst RJ. TGF-{beta} antagonists: why suppress a tumor suppressor? J Clin Invest. 2002;109(12):1533–6.PubMedGoogle Scholar
  73. 73.
    Ganapathy V, Ge R, Grazioli A, Xie W, Banach-Petrosky W, Kang Y, et al. Targeting the transforming growth factor-beta pathway inhibits human basal-like breast cancer metastasis. Mol Cancer. 2010;9(1):122.PubMedCrossRefGoogle Scholar
  74. 74.
    Tan AR, Alexe G, Reiss M. Transforming growth factor-beta signaling: emerging stem cell target in metastatic breast cancer? Breast Cancer Res Treat. 2009;115(3):453–95.PubMedCrossRefGoogle Scholar
  75. 75.
    Barcellos-Hoff MH, Akhurst RJ. Transforming growth factor-beta in breast cancer: too much, too late. Breast Cancer Res Treat. 2010;11(1):202–8.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • David H. Nguyen
    • 1
    • 2
  • Haydeliz Martinez-Ruiz
    • 2
  • Mary Helen Barcellos-Hoff
    • 2
    Email author
  1. 1.Endocrinology Graduate GroupUniversity of CaliforniaBerkeleyUSA
  2. 2.Departments of Radiation Oncology and Cell BiologyNew York University School of MedicineNew YorkUSA

Personalised recommendations