Crosstalk of TGF-β and Estrogen Receptor Signaling in Breast Cancer

  • Arja M. Band
  • Marikki Laiho


Estrogen receptor-α (ERα) and transforming growth factor (TGF)-β signaling pathways are major regulators during mammary gland development, function and tumorigenesis. Predominantly, they have opposing roles in proliferation and apoptosis. While ERα signaling supports growth and differentiation and is antiapoptotic, mammary gland epithelia cells are very sensitive to TGF-β—induced cell cycle arrest and apoptosis. Their regulatory pathways intersect, and ERα blocks TGF-β pathway by multiple means, including direct interactions of its signaling components, Smads. However, relatively little is known of the dysfunction of their interactions in cancer. A better understanding would help to develop new strategies for breast cancer treatment.


Estrogen receptor TGF-β signaling Breast cancer Smad SnoN 



Activation function


Epithelial-to-mesenchymal transition


Estrogen receptor-α


Estrogen receptor-β


Histone acetyltransferase


Histone deacetylase


Mitogen activated protein kinase


Phosphatidylinositol 3-OH kinase


Receptor regulated Smad


Ski-related novel gene




Transforming growth factor-β


  1. 1.
    Bocchinfuso WP, Korach KS. Mammary gland development and tumorigenesis in estrogen receptor knockout mice. J Mammary Gland Biol Neoplasia. 1997;2:323–34.PubMedCrossRefGoogle Scholar
  2. 2.
    Couse JF, Korach KS. Estrogen receptor null mice: what have we learned and where will they lead us? Endocr Rev. 1999;20:358–417.PubMedCrossRefGoogle Scholar
  3. 3.
    Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson JA. Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci U S A. 1996;93:5925–30.PubMedCrossRefGoogle Scholar
  4. 4.
    Hall JM, McDonnell DP. The estrogen receptor beta-isoform (ERbeta) of the human estrogen receptor modulates ERalpha transcriptional activity and is a key regulator of the cellular response to estrogens and antiestrogens. Endocrinology. 1999;140:5566–78.PubMedCrossRefGoogle Scholar
  5. 5.
    Mak P, Leav I, Pursell B, Bae D, Yang X, Taglienti CA, et al. ERbeta impedes prostate cancer EMT by destabilizing HIF-1alpha and inhibiting VEGF-mediated snail nuclear localization: implications for Gleason grading. Cancer Cell. 2010;17:319–32.PubMedCrossRefGoogle Scholar
  6. 6.
    Palmieri C, Saji S, Sakaguchi H, Cheng G, Sunters A, O'Hare MJ, et al. The expression of oestrogen receptor (ER)-beta and its variants, but not ERalpha, in adult human mammary fibroblasts. J Mol Endocrinol. 2004;33:35–50.PubMedCrossRefGoogle Scholar
  7. 7.
    Krege JH, Hodgin JB, Couse JF, Enmark E, Warner M, Mahler JF, et al. Generation and reproductive phenotypes of mice lacking estrogen receptor beta. Proc Natl Acad Sci U S A. 1998;95:15677–82.PubMedCrossRefGoogle Scholar
  8. 8.
    Ogawa S, Chan J, Chester AE, Gustafsson JA, Korach KS, Pfaff DW. Survival of reproductive behaviors in estrogen receptor beta gene-deficient (betaERKO) male and female mice. Proc Natl Acad Sci U S A. 1999;96:12887–92.PubMedCrossRefGoogle Scholar
  9. 9.
    Massagué J. TGFβ in cancer. Cell. 2008;134:215–30.PubMedCrossRefGoogle Scholar
  10. 10.
    Clarke RB, Howell A, Potten CS, Anderson E. Dissociation between steroid receptor expression and cell proliferation in the human breast. Cancer Res. 1997;57:4987–91.PubMedGoogle Scholar
  11. 11.
    Dubik D, Dembinski TC, Shiu RP. Stimulation of c-myc oncogene expression associated with estrogen-induced proliferation of human breast cancer cells. Cancer Res. 1987;47:6517–21.PubMedGoogle Scholar
  12. 12.
    Musgrove EA, Lee CS, Buckley MF, Sutherland RL. Cyclin D1 induction in breast cancer cells shortens G1 and is sufficient for cells arrested in G1 to complete the cell cycle. Proc Natl Acad Sci U S A. 1994;91:8022–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Butt AJ, McNeil CM, Musgrove EA, Sutherland RL. Downstream targets of growth factor and oestrogen signalling and endocrine resistance: the potential roles of c-Myc, cyclin D1 and cyclin E. Endocr Relat Cancer. 2005;12:S47–59. PubMedCrossRefGoogle Scholar
  14. 14.
    Lewis-Wambi JS, Jordan VC. Estrogen regulation of apoptosis: how can one hormone stimulate and inhibit? Breast Cancer Res. 2009;11:206.PubMedCrossRefGoogle Scholar
  15. 15.
    Donovan J, Slingerland J. Transforming growth factor-beta and breast cancer: cell cycle arrest by transforming growth factor-beta and its disruption in cancer. Breast Cancer Res. 2000;2:116–24.PubMedCrossRefGoogle Scholar
  16. 16.
    Heldin CH, Landström M, Moustakas A. Mechanism of TGF-beta signaling to growth arrest, apoptosis, and epithelial-mesenchymal transition. Curr Opin Cell Biol. 2009;21:166–76.PubMedCrossRefGoogle Scholar
  17. 17.
    Schmierer B, Hill CS. TGFbeta-SMAD signal transduction: molecular specificity and functional flexibility. Nat Rev Mol Cell Biol. 2007;8:970–82.PubMedCrossRefGoogle Scholar
  18. 18.
    Lönn P, Morén A, Raja E, Dahl M, Moustakas A. Regulating the stability of TGFbeta receptors and Smads. Cell Res. 2009;19:21–35.PubMedCrossRefGoogle Scholar
  19. 19.
    Luo K. Ski and SnoN: negative regulators of TGF-beta signaling. Curr Opin Genet Dev. 2004;14:65–70.PubMedCrossRefGoogle Scholar
  20. 20.
    Hayashi H, Abdollah S, Qiu Y, Cai J, Xu YY, Grinnell BW, et al. The MAD-related protein Smad7 associates with the TGFbeta receptor and functions as an antagonist of TGFbeta signaling. Cell. 1997;89:1165–73.PubMedCrossRefGoogle Scholar
  21. 21.
    Kavsak P, Rasmussen RK, Causing CG, Bonni S, Zhu H, Thomsen GH, et al. Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol Cell. 2000;6:1365–75.PubMedCrossRefGoogle Scholar
  22. 22.
    Ebisawa T, Fukuchi M, Murakami G, Chiba T, Tanaka K, Imamura T, et al. Smurf1 interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation. J Biol Chem. 2001;276:12477–80.PubMedCrossRefGoogle Scholar
  23. 23.
    Shi W, Sun C, He B, Xiong W, Shi X, Yao D, et al. GADD34-PP1c recruited by Smad7 dephosphorylates TGFbeta type I receptor. J Cell Biol. 2004;164:291–300.PubMedCrossRefGoogle Scholar
  24. 24.
    Zhang S, Fei T, Zhang L, Zhang R, Chen F, Ning Y, et al. Smad7 antagonizes transforming growth factor beta signaling in the nucleus by interfering with functional Smad-DNA complex formation. Mol Cell Biol. 2007;27:4488–99.PubMedCrossRefGoogle Scholar
  25. 25.
    Sun Y, Liu X, Ng-Eaton E, Lodish HF, Weinberg RA. SnoN and Ski protooncoproteins are rapidly degraded in response to transforming growth factor beta signaling. Proc Natl Acad Sci U S A. 1999;96:12442–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Bonni S, Wang HR, Causing CG, Kavsak P, Stroschein SL, Luo K, et al. TGF-beta induces assembly of a Smad2-Smurf2 ubiquitin ligase complex that targets SnoN for degradation. Nat Cell Biol. 2001;3:587–95.PubMedCrossRefGoogle Scholar
  27. 27.
    Stroschein SL, Bonni S, Wrana JL, Luo K. Smad3 recruits the anaphase-promoting complex for ubiquitination and degradation of SnoN. Genes Dev. 2001;15:2822–36.PubMedGoogle Scholar
  28. 28.
    Wan Y, Liu X, Kirschner MW. The anaphase-promoting complex mediates TGF-beta signaling by targeting SnoN for destruction. Mol Cell. 2001;8:1027–39.PubMedCrossRefGoogle Scholar
  29. 29.
    Levy L, Howell M, Das D, Harkin S, Episkopou V, Hill CS. Arkadia activates Smad3/Smad4-dependent transcription by triggering signal-induced SnoN degradation. Mol Cell Biol. 2007;27:6068–83.PubMedCrossRefGoogle Scholar
  30. 30.
    Band A, Laiho M. Proteasome in the control of TGF-β signaling during development and cancer. In Jakowlew S, editor. Transforming growth factor-beta in cancer therapy. Totowa, New Jersey; Humana Press; 2008. pp. 243–57.Google Scholar
  31. 31.
    Stroschein SL, Wang W, Zhou S, Zhou Q, Luo K. Negative feedback regulation of TGF-beta signaling by the SnoN oncoprotein. Science. 1999;286:771–4.PubMedCrossRefGoogle Scholar
  32. 32.
    Luo K, Stroschein SL, Wang W, Chen D, Martens E, Zhou S, et al. The Ski oncoprotein interacts with the Smad proteins to repress TGFbeta signaling. Genes Dev. 1999;13:2196–206.PubMedCrossRefGoogle Scholar
  33. 33.
    Nomura T, Khan MM, Kaul SC, Dong HD, Wadhwa R, Colmenares C, et al. Ski is a component of the histone deacetylase complex required for transcriptional repression by Mad and thyroid hormone receptor. Genes Dev. 1999;13:412–23.PubMedCrossRefGoogle Scholar
  34. 34.
    Suzuki H, Yagi K, Kondo M, Kato M, Miyazono K, Miyazawa K. c-Ski inhibits the TGF-beta signaling pathway through stabilization of inactive Smad complexes on Smad-binding elements. Oncogene. 2004;23:5068–76.PubMedCrossRefGoogle Scholar
  35. 35.
    Nagano Y, Mavrakis KJ, Lee KL, Fujii T, Koinuma D, Sase H, et al. Arkadia induces degradation of SnoN and c-Ski to enhance transforming growth factor-beta signaling. J Biol Chem. 2007;282:20492–501.PubMedCrossRefGoogle Scholar
  36. 36.
    Le Scolan E, Zhu Q, Wang L, Bandyopadhyay A, Javelaud D, Mauviel A, et al. Transforming growth factor-beta suppresses the ability of Ski to inhibit tumor metastasis by inducing its degradation. Cancer Res. 2008;68:3277–85.PubMedCrossRefGoogle Scholar
  37. 37.
    Denissova NG, Liu F. Repression of endogenous Smad7 by Ski. J Biol Chem. 2004;279:28143–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Tabata T, Kokura K, Ten Dijke P, Ishii S. Ski co-repressor complexes maintain the basal repressed state of the TGF-beta target gene, SMAD7, via HDAC3 and PRMT5. Genes Cells. 2009;14:17–28.PubMedCrossRefGoogle Scholar
  39. 39.
    Band AM, Björklund M, Laiho M. The phosphatidylinositol 3-kinase/Akt pathway regulates transforming growth factor-beta signaling by destabilizing ski and inducing Smad7. J Biol Chem. 2009;284:35441–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Zhang YE. Non-Smad pathways in TGF-beta signaling. Cell Res. 2009;19:128–39.PubMedCrossRefGoogle Scholar
  41. 41.
    Hall JM, McDonnell DP. Coregulators in nuclear estrogen receptor action: from concept to therapeutic targeting. Mol Interv. 2005;5:343–57.PubMedCrossRefGoogle Scholar
  42. 42.
    Brzozowski AM, Pike AC, Dauter Z, Hubbard RE, Bonn T, Engström O, et al. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature. 1997;389:753–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Cheskis BJ, Greger JG, Nagpal S, Freedman LP. Signaling by estrogens. J Cell Physiol. 2007;213:610–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Métivier R, Penot G, Hübner MR, Reid G, Brand H, Kos M, et al. Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell. 2003;115:751–63.PubMedCrossRefGoogle Scholar
  45. 45.
    Heery DM, Kalkhoven E, Hoare S, Parker MG, Heery DM, Kalkhoven E, et al. A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature. 1997;387:733–6.PubMedCrossRefGoogle Scholar
  46. 46.
    Torchia J, Rose DW, Inostroza J, Kamei Y, Westin S, Glass CK, et al. The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature. 1997;387:677–84.PubMedCrossRefGoogle Scholar
  47. 47.
    Vega VB, Lin CY, Lai KS, Kong SL, Xie M, Su X, et al. Multiplatform genome-wide identification and modeling of functional human estrogen receptor binding sites. Genome Biol. 2006;7:R82.PubMedCrossRefGoogle Scholar
  48. 48.
    Lin CY, Vega VB, Thomsen JS, Zhang T, Kong SL, Xie M, et al. Whole-genome cartography of estrogen receptor alpha binding sites. PLoS Genet. 2007;3:e87.PubMedCrossRefGoogle Scholar
  49. 49.
    Stender JD, Kim K, Charn TH, Komm B, Chang KC, Kraus WL, et al. Genome-wide analysis of estrogen receptor alpha DNA binding and tethering mechanisms identifies Runx1 as a novel tethering factor in receptor-mediated transcriptional activation. Mol Cell Biol. 2010;30:3943–55.PubMedCrossRefGoogle Scholar
  50. 50.
    Hurtado A, Holmes KA, Ross-Innes CS, Schmidt D, Carroll JS. FOXA1 is a key determinant of estrogen receptor function and endocrine response. Nat Genet. 2011;43:27–33.PubMedCrossRefGoogle Scholar
  51. 51.
    Le Goff P, Montano MM, Schodin DJ, Katzenellenbogen BS. Phosphorylation of the human estrogen receptor. Identification of hormone-regulated sites and examination of their influence on transcriptional activity. J Biol Chem. 1994;269:4458–66.PubMedGoogle Scholar
  52. 52.
    Kato S, Endoh H, Masuhiro Y, Kitamoto T, Uchiyama S, Sasaki H, et al. Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science. 1995;270:1491–4.PubMedCrossRefGoogle Scholar
  53. 53.
    Trowbridge JM, Rogatsky I, Garabedian MJ. Regulation of estrogen receptor transcriptional enhancement by the cyclin A/Cdk2 complex. Proc Natl Acad Sci U S A. 1997;94:10132–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Wang C, Fu M, Angeletti RH, Siconolfi-Baez L, Reutens AT, Albanese C, et al. Direct acetylation of the estrogen receptor alpha hinge region by p300 regulates transactivation and hormone sensitivity. J Biol Chem. 2001;276:18375–83.PubMedCrossRefGoogle Scholar
  55. 55.
    Cui Y, Zhang M, Pestell R, Curran EM, Welshons WV, Fuqua SA. Phosphorylation of estrogen receptor alpha blocks its acetylation and regulates estrogen sensitivity. Cancer Res. 2004;64:9199–208.PubMedCrossRefGoogle Scholar
  56. 56.
    Kim MY, Woo EM, Chong YT, Homenko DR, Kraus WL. Acetylation of estrogen receptor alpha by p300 at lysines 266 and 268 enhances the deoxyribonucleic acid binding and transactivation activities of the receptor. Mol Endocrinol. 2006;20:1479–93.PubMedCrossRefGoogle Scholar
  57. 57.
    Subramanian K, Jia D, Kapoor-Vazirani P, Powell DR, Collins RE, Sharma D, et al. Regulation of estrogen receptor alpha by the SET7 lysine methyltransferase. Mol Cell. 2008;30:336–47.PubMedCrossRefGoogle Scholar
  58. 58.
    Levin ER. Plasma membrane estrogen receptors. Trends Endocrinol Metab. 2009;20:477–82.PubMedCrossRefGoogle Scholar
  59. 59.
    Ewan KB, Oketch-Rabah HA, Ravani SA, Shyamala G, Moses HL, Barcellos-Hoff MH, et al. Proliferation of estrogen receptor-alpha-positive mammary epithelial cells is restrained by transforming growth factor-beta1 in adult mice. Am J Pathol. 2005;167:409–17.PubMedCrossRefGoogle Scholar
  60. 60.
    Matsuda T, Yamamoto T, Muraguchi A, Saatcioglu F. Cross-talk between transforming growth factor-beta and estrogen receptor signaling through Smad3. J Biol Chem. 2001;276:42908–14.PubMedCrossRefGoogle Scholar
  61. 61.
    Malek D, Gust R, Kleuser B. 17-Beta-estradiol inhibits transforming-growth-factor-beta-induced MCF-7 cell migration by Smad3-repression. Eur J Pharmacol. 2006;534:39–47.PubMedCrossRefGoogle Scholar
  62. 62.
    Cherlet T, Murphy LC. Estrogen receptors inhibit Smad3 transcriptional activity through Ap-1 transcription factors. Mol Cell Biochem. 2007;306:33–42.PubMedCrossRefGoogle Scholar
  63. 63.
    Ito I, Hanyu A, Wayama M, Goto N, Katsuno Y, Kawasaki S, et al. Estrogen inhibits transforming growth factor beta signaling by promoting Smad2/3 degradation. J Biol Chem. 2010;285:14747–55.PubMedCrossRefGoogle Scholar
  64. 64.
    Burdette JE, Woodruff TK. Activin and estrogen crosstalk regulates transcription in human breast cancer cells. Endocr Relat Cancer. 2007;14:679–89.PubMedCrossRefGoogle Scholar
  65. 65.
    Dhasarathy A, Kajita M, Wade PA. The transcription factor snail mediates epithelial to mesenchymal transitions by repression of estrogen receptor-alpha. Mol Endocrinol. 2007;21:2907–18.PubMedCrossRefGoogle Scholar
  66. 66.
    Buck MB, Pfizenmaier K, Knabbe C. Antiestrogens induce growth inhibition by sequential activation of p38 mitogen-activated protein kinase and transforming growth factor-beta pathways in human breast cancer cells. Mol Endocrinol. 2004;18:1643–57.PubMedCrossRefGoogle Scholar
  67. 67.
    Chen H, Tritton TR, Kenny N, Absher M, Chiu JF. Tamoxifen induces TGF-beta 1 activity and apoptosis of human MCF-7 breast cancer cells in vitro. J Cell Biochem. 1996;61:9–17.PubMedCrossRefGoogle Scholar
  68. 68.
    Buck MB, Knabbe C. TGF-beta signaling in breast cancer. Ann N Y Acad Sci. 2006;1089:119–26.PubMedCrossRefGoogle Scholar
  69. 69.
    Bierie B, Moses HL. Gain or loss of TGFbeta signaling in mammary carcinoma cells can promote metastasis. Cell Cycle. 2009;8:3319–27.PubMedCrossRefGoogle Scholar
  70. 70.
    Bierie B, Chung CH, Parker JS, Stover DG, Cheng N, Chytil A, et al. Abrogation of TGF-beta signaling enhances chemokine production and correlates with prognosis in human breast cancer. J Clin Invest. 2009;119:1571–82.PubMedCrossRefGoogle Scholar
  71. 71.
    Joffroy CM, Buck MB, Stope MB, Popp SL, Pfizenmaier K, Knabbe C. Antiestrogens induce transforming growth factor beta-mediated immunosuppression in breast cancer. Cancer Res. 2010;70:1314–22.PubMedCrossRefGoogle Scholar
  72. 72.
    Wu L, Wu Y, Gathings B, Wan M, Li X, Grizzle W, et al. Smad4 as a transcription corepressor for estrogen receptor alpha. J Biol Chem. 2003;278:15192–200.PubMedCrossRefGoogle Scholar
  73. 73.
    Ren Y, Wu L, Frost AR, Grizzle W, Cao X, Wan M. Dual effects of TGF-beta on ERalpha-mediated estrogenic transcriptional activity in breast cancer. Mol Cancer. 2009;8:111.PubMedCrossRefGoogle Scholar
  74. 74.
    Li Q, Wu L, Oelschlager DK, Wan M, Stockard CR, Grizzle WE, et al. Smad4 inhibits tumor growth by inducing apoptosis in estrogen receptor-alpha-positive breast cancer cells. J Biol Chem. 2005;280:27022–8.PubMedCrossRefGoogle Scholar
  75. 75.
    Deheuninck J, Luo K. Ski and SnoN, potent negative regulators of TGF-beta signaling. Cell Res. 2009;19:47–57.PubMedCrossRefGoogle Scholar
  76. 76.
    Jahchan NS, Luo K. SnoN in mammalian development, function and diseases. Curr Opin Pharmacol. 2010;10:670–5.PubMedCrossRefGoogle Scholar
  77. 77.
    Edmiston JS, Yeudall WA, Chung TD, Lebman DA. Inability of transforming growth factor-beta to cause SnoN degradation leads to resistance to transforming growth factor-beta-induced growth arrest in esophageal cancer cells. Cancer Res. 2005;65:4782–8.PubMedCrossRefGoogle Scholar
  78. 78.
    Zhang F, Lundin M, Ristimäki A, Heikkilä P, Lundin J, Isola J, et al. Ski-related novel protein N (SnoN), a negative controller of transforming growth factor-beta signaling, is a prognostic marker in estrogen receptor-positive breast carcinomas. Cancer Res. 2003;63:5005–10.PubMedGoogle Scholar
  79. 79.
    Zhu Q, Krakowski AR, Dunham EE, Wang L, Bandyopadhyay A, Berdeaux R, et al. Dual role of SnoN in mammalian tumorigenesis. Mol Cell Biol. 2007;27:324–39.PubMedCrossRefGoogle Scholar
  80. 80.
    Jahchan NS, You YH, Muller WJ, Luo K. Transforming growth factor-beta regulator SnoN modulates mammary gland branching morphogenesis, postlactational involution, and mammary tumorigenesis. Cancer Res. 2010;70:4204–13.PubMedCrossRefGoogle Scholar
  81. 81.
    Shinagawa T, Dong HD, Xu M, Maekawa T, Ishii S. The sno gene, which encodes a component of the histone deacetylase complex, acts as a tumor suppressor in mice. EMBO J. 2000;19:2280–91.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Molecular Cancer Biology Program, Biomedicum Helsinki and Haartman InstituteUniversity of HelsinkiHelsinkiFinland
  2. 2.Sidney Kimmel Comprehensive Cancer CenterThe Johns Hopkins University School of MedicineBaltimoreUSA
  3. 3.Department of Radiation Oncology and Molecular Radiation SciencesThe Johns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations