Journal of Mammary Gland Biology and Neoplasia

, Volume 15, Issue 4, pp 381–387 | Cite as

Stromal Mediation of Radiation Carcinogenesis

  • Mary Helen Barcellos-Hoff


Ionizing radiation is a well-established carcinogen in human breast and rodent mammary gland. This review addresses evidence that radiation elicits the critical stromal context for cancer, affecting not only frequency but the type of cancer. Recent data from the breast tumors of women treated with radiation therapy and the cellular mechanisms evident in experimental models suggest that radiation effects on stromal-epithelial interactions and tissue composition are a major determinant of cancer development.


Ionizing radiation Carcinogenesis Stromal-epithelial interactions Mammary gland 



Transforming growth factor β


estrogen receptor


progesterone receptor


epithelial-mesenchymal transition



The author wishes to acknowledge funding from NASA Specialized Center for Research in Radiation Health Effects, the Low Dose Radiation Program of the Office of Biological and Environmental Research, United States Department of Energy DE AC03 76SF00098, and the Bay Area Breast Cancer and the Environment Research Center grant number U01 ES012801 from the National Institute of Environmental Health Sciences, NIH and the National Cancer Institute, NIH.


  1. 1.
    Rubin H. Cancer as a dynamic developmental disorder. Cancer Res. 1985;45:2935–42.PubMedGoogle Scholar
  2. 2.
    Barcellos-Hoff MH. The potential influence of radiation-induced microenvironments in neoplastic progression. J Mammary Gland Biol Neoplasia. 1998;3:165–75.CrossRefPubMedGoogle Scholar
  3. 3.
    Sonnenschein C, Soto AM. Somatic mutation theory of carcinogenesis: why it should be dropped and replaced. Mol Carcinog. 2000;29(4):205–11.CrossRefPubMedGoogle Scholar
  4. 4.
    Bissell MJ, Radisky D. Putting tumours in context. Nat Rev Cancer. 2001;1(1):1–11.CrossRefGoogle Scholar
  5. 5.
    Wiseman BS, Werb Z. Stromal effects on mammary gland development and breast cancer. Science. 2002;296(5570):1046–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Kuperwasser C, Chavarria T, Wu M, Magrane G, Gray JW, Carey L, et al. From the cover: reconstruction of functionally normal and malignant human breast tissues in mice. PNAS. 2004;101(14):4966–71.CrossRefPubMedGoogle Scholar
  7. 7.
    Bhowmick NA, Chytil A, Plieth D, Gorska AE, Dumont N, Shappell S, et al. TGF-{beta} signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science. 2004;303(5659):848–51.CrossRefPubMedGoogle Scholar
  8. 8.
    Maffini MV, Soto AM, Calabro JM, Ucci AA, Sonnenschein C. The stroma as a crucial target in rat mammary gland carcinogenesis. J Cell Sci. 2004;117(8):1495–502.CrossRefPubMedGoogle Scholar
  9. 9.
    de Visser KE, Eichten A, Coussens LM. Paradoxical roles of the immune system during cancer development. Nat Rev Cancer. 2006;6(1):24–37.CrossRefPubMedGoogle Scholar
  10. 10.
    Barcellos-Hoff MH, Ravani SA. Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells. Cancer Res. 2000;60:1254–60.PubMedGoogle Scholar
  11. 11.
    NAS/NRC. Health risks from exposure to low levels of ionizing radiation: phase 2. Washington: National Academy Press; 2006.Google Scholar
  12. 12.
    Barcellos-Hoff MH. Cancer as an emergent phenomenon in systems radiation biology. Radiat Env Biophys. 2007;47(1):33–8.CrossRefGoogle Scholar
  13. 13.
    Herskind C, Rodemann HP. Spontaneous and radiation-induced differentiationof fibroblasts. Exp Gerontol. 2000;35(6-7):747–55.CrossRefPubMedGoogle Scholar
  14. 14.
    Rave-Frank M, Virsik-Kopp P, Pradier O, Nitsche M, Grunefeld S. H. S. In vitro response of human dermal fibroblasts to X-irradiation: relationship between radiation-induced clonogenic cell death, chromosome aberrations and markers of proliferative senescence or differentiation. Int J Radiat Biol. 2001;77:1163–74.CrossRefPubMedGoogle Scholar
  15. 15.
    Park CC, Henshall-Powell RL, Erickson AC, Talhouk R, Parvin B, Bissell MJ, et al. Ionizing radiation induces heritable disruption of epithelial cell interactions. Proc Natl Acad Sci USA. 2003;100(19):10728–33.CrossRefPubMedGoogle Scholar
  16. 16.
    Tsai KK, Chuang EY, Little JB, Yuan ZM. Cellular mechanisms for low-dose ionizing radiation-induced perturbation of the breast tissue microenvironment. Cancer Res. 2005;65(15):6734–44.CrossRefPubMedGoogle Scholar
  17. 17.
    Kadhim MA, Lorimore SA, Hepburn MD, Goodhead DT, Buckle VJ, Wright EG. Alpha-particle-induced chromosomal instability in human bone marrow cells. Lancet. 1994;344(8928):987–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Kadhim MA, Lorimore SA, Townsend KM, Goodhead DT, Buckle VJ, Wright EG. Radiation-induced genomic instability: delayed cytogenetic aberrations and apoptosis in primary human bone marrow cells. Int J Radiat Biol. 1995;67(3):287–93.CrossRefPubMedGoogle Scholar
  19. 19.
    Kadhim MA, Macdonald DA, Goodhead DT, Lorimore SA, Marsden SJ, Wright EG. Transmission of chromosomal instability after plutonium alpha-particle irradiation [see comments]. Nature. 1992;355(6362):738–40.CrossRefPubMedGoogle Scholar
  20. 20.
    Clutton SM, Townsend KM, Goodhead DT, Ansell JD, Wright EG. Differentiation and delayed cell death in embryonal stem cells exposed to low doses of ionising radiation. Cell Death Differ. 1996;3(1):141–8.PubMedGoogle Scholar
  21. 21.
    Limoli CL, Kaplan MI, Corcoran J, Meyers M, Boothman DA, Morgan WF. Chromosomal instability and its relationship to other end points of genomic instability. Cancer Res. 1997;57(24):5557–63.PubMedGoogle Scholar
  22. 22.
    Preston DL, Pierce DA, Shimizu Y, Ron E, Mabuchi K. Dose response and temporal patterns of radiation-associated solid cancer risks. Health Phys. 2003;85(1):43–6.CrossRefPubMedGoogle Scholar
  23. 23.
    Preston DL, Ron E, Tokuoka S, Funamoto S, Nishi N, Soda M, et al. Solid cancer incidence in atomic bomb survivors: 1958-1998. Radiat Res. 2007;168(1):1–64.CrossRefPubMedGoogle Scholar
  24. 24.
    Preston DL, Mattsson A, Holmberg E, Shore R, Hildreth NG, Boice Jr JD. Radiation effects on breast cancer risk: a pooled analysis of eight cohorts. Radiat Res. 2002;158(2):220–35.CrossRefPubMedGoogle Scholar
  25. 25.
    Castiglioni F, Terenziani M, Carcangiu ML, Miliano R, Aiello P, Bertola L, et al. Radiation effects on development of HER2-positive breast carcinomas. Clin Cancer Res. 2007;13(1):46–51.CrossRefPubMedGoogle Scholar
  26. 26.
    Van Leeuwen FE, Klokman WJ, Stovall M, Dahler EC, van’t Veer MB, Noordijk EM, et al. Roles of radiation dose, chemotherapy, and hormonal factors in breast cancer following Hodgkin’s disease. J Natl Cancer Inst. 2003;95(13):971–80.CrossRefPubMedGoogle Scholar
  27. 27.
    Broeks A, Braaf LM, Wessels LF, Van de Vjver M, De Bruin ML, Stovall M, et al. Radiation-associated breast tumors display a distinct gene expression profile. Int J Radiat Oncol Biol Phys. 2010;76(2):540–7.CrossRefPubMedGoogle Scholar
  28. 28.
    Barcellos-Hoff MH. Integrative radiation carcinogenesis: interactions between cell and tissue responses to DNA damage. Semin Cancer Biol. 2005;15(2):138–48.CrossRefPubMedGoogle Scholar
  29. 29.
    Kaplan HS, Carnes WH, Brown MB, Hirsch BB. Indirect induction of lymphomas in irradiated mice: I. Tumor incidence and morphology in mice bearing nonirradiated thymic grafts. Cancer Res. 1956;16(5):422–5.PubMedGoogle Scholar
  30. 30.
    Kaplan HS, Brown MB, Hirsch BB, Carnes WH. Indirect induction of lymphomas in irradiated mice: II. Factor of irradiation of the host. Cancer Res. 1956;16(5):426–8.PubMedGoogle Scholar
  31. 31.
    Carnes WH, Kaplan HS, Brown MB, Hirsch BB. Indirect induction of lymphomas in irradiated mice: III. Role of the thymic graft. Cancer Res. 1956;16(5):429–33.PubMedGoogle Scholar
  32. 32.
    Billingham RE, Orr JW, Woodhouse DL. Transplantation of skin components during chemical carcinogenesis with 20-methylcholanthrene. Br J Cancer. 1951;5:417–32.PubMedGoogle Scholar
  33. 33.
    Morgan JE, Gross JG, Pagel CN, Beauchamp JR, Fassati A, Thrasher AJ, et al. Myogenic cell proliferation and generation of a reversible tumorigenic phenotype are triggered by preirradiation of the recipient site. J Cell Biol. 2002;157(4):693–702.CrossRefPubMedGoogle Scholar
  34. 34.
    Ohuchida K, Mizumoto K, Murakami M, Qian L-W, Sato N, Nagai E, et al. Radiation to stromal fibroblasts increases invasiveness of pancreatic cancer cells through tumor-stromal interactions. Cancer Res. 2004;64(9):3215–22.CrossRefPubMedGoogle Scholar
  35. 35.
    Terzaghi M, Little JB. X-radiation-induced transformation in C3H mouse embryo-derived cell line. Cancer Res. 1976;36:1367–74.PubMedGoogle Scholar
  36. 36.
    Terzaghi M, Nettesheim P. Dynamics of neoplastic development in carcinogen-exposed tracheal mucosa. Cancer Res. 1979;39:3004–10.Google Scholar
  37. 37.
    Kennedy AR, Fox M, Murphy G, Little JB. Relationship between x-ray exposure and malignant transformation in C3H 10 T1/2 cells. Proc Natl Acad Sci USA. 1980;77(12):7262–6.CrossRefPubMedGoogle Scholar
  38. 38.
    Bauer G. Elimination of transformed cells by normal cells: a novel concept for the control of carcinogenesis. Histol Histopathol. 1996;11(1):237–55.PubMedGoogle Scholar
  39. 39.
    Engelmann I, Eichholtz-Wirth H, Bauer G. Ex vivo tumor cell lines are resistant to intercellular induction of apoptosis and independent of exogenous survival factors. Anticancer Res. 2000;20(4):2361–70.PubMedGoogle Scholar
  40. 40.
    Terzaghi-Howe M. Inhibition of carcinogen-altered rat tracheal epithelial cell proliferation by normal epithelial cells in vivo. Carcinogenesis. 1986;8:145–50.CrossRefGoogle Scholar
  41. 41.
    Häufel T, Dormann S, Hanusch J, Schwieger A, Bauer G. Three distinct roles for TGF-beta during intercellular induction of apoptosis: a review. Anticancer Res. 1999;19(1A):105–11.PubMedGoogle Scholar
  42. 42.
    Portess DI, Bauer G, Hill MA, O’Neill P. Low dose irradiation of non-transformed cells stimulates the selective removal of pre-cancerous cells via intercellular induction of apoptosis. Cancer Res. 2007;67(3):1246–53.CrossRefPubMedGoogle Scholar
  43. 43.
    Barcellos-Hoff MH. Radiation-induced transforming growth factor β and subsequent extracellular matrix reorganization in murine mammary gland. Cancer Res. 1993;53:3880–6.PubMedGoogle Scholar
  44. 44.
    Ehrhart EJ, Gillette EL, Barcellos-Hoff MH. Immunohistochemical evidence of rapid extracellular matrix remodeling after iron-particle irradiation of mouse mammary gland. Rad Res. 1996;145:157–62.CrossRefGoogle Scholar
  45. 45.
    Ehrhart EJ, Carroll A, Segarini P, Tsang ML-S, Barcellos-Hoff MH. Latent transforming growth factor-β activation in situ: quantitative and functional evidence following low dose irradiation. FASEB J. 1997;11:991–1002.PubMedGoogle Scholar
  46. 46.
    Barcellos-Hoff MH, Derynck R, Tsang ML-S, Weatherbee JA. Transforming growth factor-β activation in irradiated murine mammary gland. J Clin Invest. 1994;93:892–9.CrossRefPubMedGoogle Scholar
  47. 47.
    Barcellos-Hoff MH. How do tissues respond to damage at the cellular level? The role of cytokines in irradiated tissues. Radiat Res. 1998;150(5):S109–20.CrossRefPubMedGoogle Scholar
  48. 48.
    Jerry DJ, Medina D, Butel JS. p53 mutations in COMMA-D cells. In Vitro Cell. Dev Biol. 1994;30A:87–9.Google Scholar
  49. 49.
    Medina D, Kittrell FS. Stroma is not a major target in 7, 12-dimethlybenzanthracene mediated tumorigenesis of mouse mammary preneoplasia. J Cell Sci. 2005;118:123–7.CrossRefPubMedGoogle Scholar
  50. 50.
    Jerry DJ, Kittrell FS, Kuperwasser C, Laucirica R, Dickinson ES, Bonilla PJ, et al. A mammary-specific model demonstrates the role of the p53 tumor suppressor gene in tumor development. Oncogene. 2000;19(8):1052–8.CrossRefPubMedGoogle Scholar
  51. 51.
    Medina D, Kittrell FS, Shepard A, Stephens LC, Jiang C, Lu J, et al. Biological and genetic properties of the p53 null preneoplastic mammary epithelium. FASEB J. 2002;16(8):881–3.PubMedGoogle Scholar
  52. 52.
    Tokunaga M, Land CE, Aoki Y, Yamamoto T, Asano M, Sato E, et al. Proliferative and nonproliferative breast disease in atomic bomb survivors. Results of a histopathologic review of autopsy breast tissue. Cancer. 1993;72(5):1657–65.CrossRefPubMedGoogle Scholar
  53. 53.
    Boice JD Jr, Preston D, Davis FG, Monson RR. Frequent chest x-ray fluoroscopy and breast cancer incidence among tuberculosis patients in Massachusetts. Radiat Res. 1991;125:214–22.Google Scholar
  54. 54.
    Hancock SL, Tucker MA, Hoppe RT. Breast cancer after treatment of Hodgkin's disease. J Natl Cancer Inst. 1993;85(1):25–31.CrossRefPubMedGoogle Scholar
  55. 55.
    Howe GR, McLaughlin J. Breast cancer mortality between 1950 and 1987 after exposure to fractionated moderate-dose-rate ionizing radiation in the Canadian fluoroscopy cohort study and a comparison with breast cancer mortality in the atomic bomb survivor study. Radiat Res. 1996;145:694–707.CrossRefPubMedGoogle Scholar
  56. 56.
    Booth C, Potten CS. Gut instincts: thoughts on intestinal epithelial stem cells. J Clin Invest. 2000;105(11):1493–9.CrossRefPubMedGoogle Scholar
  57. 57.
    Potten CS, Loeffler M. Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development. 1990;110(4):1001–20.PubMedGoogle Scholar
  58. 58.
    Gyorki D, Asselin-Labat M-L, van Rooijen N, Lindeman G, Visvader J. Resident macrophages influence stem cell activity in the mammary gland. Breast Cancer Res. 2009;11(4):R62.CrossRefPubMedGoogle Scholar
  59. 59.
    Psaila B, Lyden D. The metastatic niche: adapting the foreign soil. Nat Rev Cancer. 2009;9(4):285–93.CrossRefPubMedGoogle Scholar
  60. 60.
    Hatsell S, Rowlands T, Hiremath M, Cowin P. beta-Catenin and Tcfs in mammary development and cancer. J Mammary Gland Biol Neoplasia. 2003;8:145–58.CrossRefPubMedGoogle Scholar
  61. 61.
    Liu BY, McDermott SP, Khwaja SS, Alexander CM. The transforming activity of Wnt effectors correlates with their ability to induce the accumulation of mammary progenitor cells. PNAS. 2004;101(12):4158–63.CrossRefPubMedGoogle Scholar
  62. 62.
    Teissedre B, Pinderhughes A, Incassati A, Hatsell S, Hiremath M, Cowin P. MMTV-Wnt1 and -DeltaN89beta-catenin induce canonical signaling in distinct progenitors and differentially activate Hedgehog signaling within mammary tumors. PLoS ONE. 2009;4:e4537.CrossRefPubMedGoogle Scholar
  63. 63.
    Incassati A, Pinderhughes A, Eelkema R, Cowin P. Links between transforming growth factor-beta and canonical Wnt signaling yield new insights into breast cancer susceptibility, suppression and tumor heterogeneity. Breast Cancer Res. 2009;11(3):103.CrossRefPubMedGoogle Scholar
  64. 64.
    Booth BW, Mack DL, Androutsellis-Theotokis A, McKay RDG, Boulanger CA, Smith GH. The mammary microenvironment alters the differentiation repertoire of neural stem cells. Proc Natl Acad Sci. 2008;105(39):14891–6.CrossRefPubMedGoogle Scholar
  65. 65.
    Boulanger CA, Mack DL, Booth BW, Smith GH. Interaction with the mammary microenvironment redirects spermatogenic cell fate in vivo 10.1073/pnas.0611637104. PNAS. 2007;104(10):3871–6.CrossRefPubMedGoogle Scholar
  66. 66.
    Smith G, Medina D. Re-evaluation of mammary stem cell biology based on in vivo transplantation. Breast Cancer Res. 2008;10(1):203.CrossRefPubMedGoogle Scholar
  67. 67.
    Andarawewa KL, Erickson AC, Chou WS, Costes SV, Gascard P, Mott JD, et al. Ionizing radiation predisposes nonmalignant human mammary epithelial cells to undergo transforming growth factor beta Induced epithelial to mesenchymal transition. Cancer Res. 2007;67:8662–70.CrossRefPubMedGoogle Scholar
  68. 68.
    Mani SA, Guo W, Liao M-J, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133(4):704–15.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Departments of Radiation Oncology and Cell BiologyNew York University School of MedicineNew YorkUSA

Personalised recommendations