Journal of Mammary Gland Biology and Neoplasia

, Volume 15, Issue 3, pp 319–328 | Cite as

The Mammary Gland Vasculature Revisited



Concomitant with the extensive growth and differentiation of the mammary epithelium during pregnancy and lactation, and epithelial involution after weaning, the vasculature of the mammary gland undergoes repeated cycles of expansion and regression. Vascular expansion is effected by sprouting angiogenesis, intussusception and conceivably also vasculogenesis. The capacity of the epithelial cells to stimulate vascular growth and differentiation is dependent on the constellation of systemic and local hormones and growth factors as well as the changing demands for oxygenation and nutrient supply. This results in the release of angiogenic factors which stimulate endothelial cell growth and regulate vascular architecture. In contrast to the angiogenic phase of the mammary gland cycle, little is known about the control of vascular regression although this would possibly offer new insights into therapeutic possibilities against breast cancer. In this review we summarize knowledge regarding the mechanisms regulating the vasculature of the mammary gland and delineate the importance of the vasculature in the attainment of organ function. In addition, we discuss the angiogenic mechanisms observed during mammary carcinogenesis and their consequences for breast cancer therapy.


Breast carcinogenesis Eph-ephrin Estrogen Intussusceptive angiogenesis Prolactin Vasculogenesis VEGF 



vascular endothelial growth factor


matrix metalloprotease


hypoxia-inducible factor


hexamethylene bisacetamid-inducible protein


cell adhesion molecule


mouse mammary tumor virus


stroma-derived factor


chemokine (C-C motif) ligand



The authors wish to thank Robert Strange for helpful discussions and critical reading of the manuscript.

Conflict of interest

The authors have no conflict of interest.


  1. 1.
    Carmeliet P. Angiogenesis in health and disease. Nat Med. 2003;9:653–60.CrossRefPubMedGoogle Scholar
  2. 2.
    Adams RH, Alitalo K. Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol. 2007;8:464–78.CrossRefPubMedGoogle Scholar
  3. 3.
    Djonov V, Schmid M, Tschanz SA, Burri PH. Intussusceptive angiogenesis: its role in embryonic vascular network formation. Circ Res. 2000;86:286–92.PubMedGoogle Scholar
  4. 4.
    Makanya AN, Hlushchuk R, Djonov VG. Intussusceptive angiogenesis and its role in vascular morphogenesis, patterning and remodelling. Angiogenesis 2007;12:113–23.CrossRefGoogle Scholar
  5. 5.
    Kässmeier S, Plendl J, Custodis P, Bahramsoltani M. New insights in vascular development: vasculogenesis and endothelial progenitor cells. Anat Histol Embryol. 2009;38:1–11.CrossRefGoogle Scholar
  6. 6.
    Rabbany SY, Heissig B, Hattori K, Rafii S. Molecular pathways regulating mobilization of marrow-derived stem cells for tissue vascularization. Trends Mol Med. 2003;9:109–17.CrossRefPubMedGoogle Scholar
  7. 7.
    Papayannopoulou T. Current mechanitstic scenarios in hematopoietic stem/progenitor cell mobilization. Blood 2004;103:1580–5.CrossRefPubMedGoogle Scholar
  8. 8.
    Masuda H, Kalka C, Takahashi M, Yoshida M, Wada M, Kobori R, et al. Estrogen-mediated endothelial progenitor cell biology and kinetics for physiological postnatal vasculogenesis. Circ Res. 2007;101:598–606.CrossRefPubMedGoogle Scholar
  9. 9.
    Djonov V, Andres A-C, Ziemiecki A. Vascular remodelling during the normal and malignant life cycle of the mammary gland. Microsc Res Tech. 2001;52:182–9.CrossRefPubMedGoogle Scholar
  10. 10.
    In G, Garcia M, Ning H, Banie L, Guo YL, Lue TF, et al. Defining stem and progenitor cells within adipose tissue. Stem Cells Dev. 2008;17(6):1053–63.CrossRefGoogle Scholar
  11. 11.
    Hamou C, Callaghan MJ, Thangarajah H, Chang E, Chang EI, Grogan RH, et al. Mesenchymal stem cells can participate in ischemic neovascularization. Plast Reconstr Surg. 2009;123(2Suppl):45S–55S.CrossRefPubMedGoogle Scholar
  12. 12.
    Matsumoto M, Nishinakagawa H, Kurohmaru M, Hayashi Y, Otsuka J. Pregnancy and lactation affect the microvasculature of the mammary gland in mice. J Vet Med Sci. 1992;54(5):937–43.PubMedGoogle Scholar
  13. 13.
    Abdul-Awal M, Matsumoto M, Toyoshima Y, Nishinakagawa H. Ultrastructural and morphometrical studies on the endothelial cells of arteries supplying the abdomino-inguinal mammary gland of rats during the reproductive cycle. J Vet Med Sci. 1996;58(1):29–34.PubMedGoogle Scholar
  14. 14.
    Walker NI, Bennett RT, Kerr JF. Cell death by apoptosis during involution of the lactating breast in mice and rats. Am J Anat. 1989;185:19–32.CrossRefPubMedGoogle Scholar
  15. 15.
    Sevennersten-Sjaunja K, Olsson K. Endicrinology of milk production. Domest Anim Endocrinol. 2005;29(2):241–58.CrossRefGoogle Scholar
  16. 16.
    Naccarato AG, Viacava P, Bocci G, Fanelli G, Aretini P, Lonobile A, et al. Definition of the microvascular pattern of the normal human adult mammary gland. J Anat. 2003;203(6):599–603.CrossRefPubMedGoogle Scholar
  17. 17.
    Breen EC. VEGF in biological control. J Cell Biochem. 2007;102:1358–67.CrossRefPubMedGoogle Scholar
  18. 18.
    Qiu Y, Bevan H, Weeraperuma S, Wratting D, Murphy D, Neal CR, et al. Mammary alveolar development during lactation is inhibited by the endogenous antiangiogenic growth factor isoform VEGF165b. FASEB J. 2008;22:1104–12.CrossRefPubMedGoogle Scholar
  19. 19.
    Pepper MS, Baetens D, Mandriota SJ, Di Sanza C, Oikemus S, Lane TF, et al. Regulation of VEGF and VEGF receptor expression in the rodent mammary gland during pregnancy, lactation and involution. Dev Dyn. 2000;218:507–24.CrossRefPubMedGoogle Scholar
  20. 20.
    Hovey RC, Goldhar AS, Baffi J, Vonderhaar BK. Transcriptional regulation of vascular endothelial growth factor expression in epithelial and stromal cells during mouse mammary gland development. Mol Endocrinol. 2001;15(5):819–31.CrossRefPubMedGoogle Scholar
  21. 21.
    Islam MS, Matsumoto M, Ishida R, Oka T, Kanouchi H. Change in VEGF expression in mouse mammary gland during reproductive cycle. J Vet Med Sci. 2010; e-pub ahead of print.Google Scholar
  22. 22.
    Rossiter H, Barresi C, Ghannadan M, Gruber F, Mildner M, Födinger D, et al. Inactivation of VEGF in mammary gland epithelium severely compromises mammary gland development and function. FASEB J. 2007;21:3994–4004.CrossRefPubMedGoogle Scholar
  23. 23.
    Semenza GL. HIF-1 and human disease: one highly involved factor. Genes Dev. 2000;14:1983–91.PubMedGoogle Scholar
  24. 24.
    Seagroves TN, Hadsell D, McManaman J, Palmer C, Liao D, McNulty W, et al. Hif1α is a critical regulator of secretory differentiation and activation, but not vascular expansion, in the mouse mammary gland. Development 2003;130:1713–24.CrossRefPubMedGoogle Scholar
  25. 25.
    Brisken C, Rajaram RD. Alveolar and lactogenic differentiation. J Mammary Gland Biol Neoplasia. 2006;11(3–4):239–48.CrossRefPubMedGoogle Scholar
  26. 26.
    Mallepel S, Krust A, Chambon P, Brisken C. Paracrine signalling through the epithelial estrogen receptor alpha is required for proliferation and morphogenesis in the mammary gland. Proc Natl Acad Sci USA. 2006;103(7):2196–201.CrossRefGoogle Scholar
  27. 27.
    Dabrosin C. Sex steroid regulation of angiogenesis in breast tissue. Angiogenesis 2005;8:127–36.CrossRefPubMedGoogle Scholar
  28. 28.
    Cid MC, Schnaper W, Kleinman HK. Estrogens and the vascular endothelium. Ann NY Acad Sci. 2002;966:143–57.CrossRefPubMedGoogle Scholar
  29. 29.
    Hyder SM. Sex steroid regulation of vascular endothelial growth factor in breast cancer. Endocr Relat Cancer. 2006;13:667–87.CrossRefPubMedGoogle Scholar
  30. 30.
    Bogin L, Degani H. Hormonal regulation of VEGF in orthotopic MCF-7 human breast cancer. Cancer Res. 2002;62:1948–51.PubMedGoogle Scholar
  31. 31.
    Dabrosin C. Variability of vascular endothelial growth factor in normal human breast tissue in vivo during the estrous cycle. J Clin Endocrinol Metab. 2003;88:2695–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Wu J, Richer J, Horwitz KB, Hyder S. Progestin-dependent induction of vascular endothelial growth factor in human braest cancer cells: preferential regulation by progesterone receptor B. Cancer Res. 2004;64:2238–44.CrossRefPubMedGoogle Scholar
  33. 33.
    Kazi AA, Jones JM, Koos RD. Chromatin immunoprecipitation analysis of gene expression in the rat uterus in vivo: estrogen-induced recruitment of both estrogen receptor alpha and hypoxia inducible factor 1 to the vascular endothelial growth factor promoter. Mol Endocrinol. 2005;19:2006–19.CrossRefPubMedGoogle Scholar
  34. 34.
    Molitoris KH, Kazi AA, Koos RD. Inhibition of oxygen-induced hypoxia-inducible factor-1alpha degradation unmasks estradiol induction of vascular endothelial growth factor expression in ECC-1 cancer cells. Endocrinology 2009;150:5405–14.CrossRefPubMedGoogle Scholar
  35. 35.
    Ogba N, Doughman YQ, Chaplin LJ, Hu Y, Gargesha M, Watanabe M, et al. HEXIM1 modulates vascular endothelial growth factor expression and function in breast epithelial cells and mammary gland. Oncogene 2010;29:3939–49.CrossRefGoogle Scholar
  36. 36.
    Schulze K, McGowan KA, Hubchak S. Expression of an estrogen receptor by human coronary artery and umbilical vein endothelial cells. Circulation 1996;94:1402–7.Google Scholar
  37. 37.
    Schwertfeger KL, Rosen JM, Cohen DA. Mammary gland macrophages: pleiotropic functions in mammary development. J Mammary Gland Biol Neoplasia. 2006;11:229–38.CrossRefPubMedGoogle Scholar
  38. 38.
    Neville MC, MCFadden TB, Forsyth I. Hormonal regulation of mammary differentiation and milk secretion. J Mammary Gland Biol Neoplasia. 2002;7:49–66.CrossRefPubMedGoogle Scholar
  39. 39.
    Corbacho AM, Martinez De la Escalera G, Clapp C. Roles of prolactin and related members of the prolactin/growth hormone/placental lactogen family in angiogenesis. J Endocrinol. 2002;173:219–38.CrossRefPubMedGoogle Scholar
  40. 40.
    Clapp C, Thebault S, Martinez De La Escalera G. Role of prolactin in the regulation of vascular function in mammary gland. J Mammary Gland Biol Neoplasia. 2008;13:55–67.CrossRefPubMedGoogle Scholar
  41. 41.
    Merkle CJ, Schuler LA, Schaeffer RC, Gribbon JM, Montgomery DW. Structural and functional effects of high prolactin levels on injured endothelial cells: evidence for an endothelial prolactin receptor. Endocr 2000;13:37–46.CrossRefGoogle Scholar
  42. 42.
    Ueda E, Ozerdem U, Chen YH, Yao M, Huang KT, Sun H, et al. A molecular mimic demonstrates that phosphorylated human prolactin is a potent anti-angiogenic hormone. Endocr Relat Cancer. 2006;13:95–111.CrossRefPubMedGoogle Scholar
  43. 43.
    Ricken AM, Traenkner A, Merkwitz C, Hummitzsch K, Grosche J, Spanel-Borowski K. The short prolactin receptor predominates in endothelial cells of micro- and macrovascular origin. J Vasc Res. 2007;44:19–30.CrossRefPubMedGoogle Scholar
  44. 44.
    Goldhar AS, Vanderhaar BK, Trott JF, Hovey RC. Prolactin-induced expression of vascular endothelial growth factor via Egr-1. Mol Cell Endocrinol. 2005;232:9–19.CrossRefPubMedGoogle Scholar
  45. 45.
    Clapp C, Aranda J, Gonzalez C, Jeziorski MC, Martinez De La Escalera G. Vasoinhibins: endogenous regulators of angiogenesis and vascular function. Trends Endocrinol Metab. 2006;17:301–7.CrossRefPubMedGoogle Scholar
  46. 46.
    Baldocchi RA, Tan L, Nicoll CS. Processing of rat prolactin by rat tissue explants and serum in vivo. Endocrinology 1992;130:1653–9.CrossRefPubMedGoogle Scholar
  47. 47.
    Macotela Y, Aguilar MB, Guzman-Morales J, Rivera JC, Zemeno C, Lopez-Barrera F, et al. Matrix metalloproteases from chondrocytes generate an anti-angiogenic 16 kDa prolactin. J Cell Sci. 2006;119:1790–800.CrossRefPubMedGoogle Scholar
  48. 48.
    Ge G, Greenspan DS. Developmental roles of the BMP1/TLD metalloproteinases. Birth Defects Res Embryo Today. 2006;78:47–68.CrossRefGoogle Scholar
  49. 49.
    Tang J, Wong RN. Evolution in the structure and function of aspartic proteases. J Cell Biochem. 1987;33:53–63.CrossRefPubMedGoogle Scholar
  50. 50.
    Lkhider M, Castino R, Bouguyon E, Isidoro C, Olliver-Bousquet M. Cathepsin D released by lactating mammary epithelial cells is involved in prolactin cleavage under physiological conditions. J Cell Sci. 2004;117:5155–64.CrossRefPubMedGoogle Scholar
  51. 51.
    Castino R, Delpal S, Bouguyon R, Isidoro C, Olliver-Bousquet M. Prolactin promotes the secretion of active cathepsin D at the basal side of rat mammary acini. Endocrinology 2008;149:4095–105.CrossRefPubMedGoogle Scholar
  52. 52.
    Zaragoza R, Torres L, Garcia C, Eroles P, Corrales F, Bosch A, et al. Nitration of cathepsin D enhances its proteolytic activity during mammary gland remodelling after lactation. Biochem J. 2009;419:279–88.CrossRefPubMedGoogle Scholar
  53. 53.
    Castino R, Bellio N, Nicotra G, Follo C, Trinchera NF, Isidoro C. Cathepsin d-Bax death pathway in oxidative stressed neuroblastoma cells. Free Radical Biol Med. 2007;42:1305–16.CrossRefGoogle Scholar
  54. 54.
    Zhang J, Hughes S. Role of the ephrin and Eph receptor tyrosine kinase families in angiogenesis and development of the cardiovascular system. J Pathol. 2006;208:453–61.CrossRefPubMedGoogle Scholar
  55. 55.
    Erber R, Eichelsbacher U, Powajbo V, Korn T, Djonov V, Lin J, et al. EphB4 controls blood vascular morphogenesis during postnatal angiogenesis. EMBO J. 2006;25:628–41.CrossRefPubMedGoogle Scholar
  56. 56.
    Sawamiphak S, Seidel S, Essmann CL, Wilkinson GA, Pitulescu ME, Acker T, et al. Ephrin-B2 regulates VEGFR2 function in developmental angiogenesis. Nature 2010;465:487–91.CrossRefPubMedGoogle Scholar
  57. 57.
    Wang Y, Nakamura M, Pitulescu ME, Schmidt TS, Bochenek ML, Sakakibara A, et al. Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature 2010;465:483–6.CrossRefPubMedGoogle Scholar
  58. 58.
    Nikolova Z, Djonov V, Zürcher G, Andres A-C, Ziemiecki A. Cell-type specific and estrogen dependent expression of the receptor tyrosine kinase EphB4 and its ligand ephrin-B2 during mammary gland morphogenesis. J Cell Sci. 1998;111:2741–51.PubMedGoogle Scholar
  59. 59.
    Munarini N, Jaeger R, Abderhalden S, Zürcher G, Rohrbach V, Lörcher S, et al. Altered mammary epithelial development, pattern formation and involution in transgenic mice expressing the EphB4 receptor tyrosine kinase. J Cell Sci. 2002;115:25–37.PubMedGoogle Scholar
  60. 60.
    Haldimann M, Custer D, Stirnimann C, Munarini N, Weiler S, Zürcher G, et al. Deregulated ephrin-B2 expression interferes with the development of both the glandular epithelium and vasculature and promotes metastasis formation. Int J Oncol. 2009;35:525–36.PubMedGoogle Scholar
  61. 61.
    Andres A-C, Ziemiecki A. Eph and ephrin signalling in mammary gland morphogenesis and cancer. J Mammary Gland Biol Neoplasia. 2003;8:475–85.CrossRefPubMedGoogle Scholar
  62. 62.
    Schneider BP, Miller KD. Angiogenesis of breast cancer. J Clin Oncol. 2005;23:1782–90.CrossRefPubMedGoogle Scholar
  63. 63.
    Chen A, Cuevas I, Kenny PA, Miyake H, Mace K, Ghajar C, et al. Endothelial cell migration and vascular growth factor expression are the result of loss of breast tissue polarity. Cancer Res. 2009;69:6721–9.CrossRefPubMedGoogle Scholar
  64. 64.
    Bossung V, Harbeck N. Angiogenesis inhibitiors in the management of breast cancer. Curr Opin Obstet Gynecol. 2010;22:79–86.CrossRefPubMedGoogle Scholar
  65. 65.
    Gordon MS, Mendelson DS, Kato G. Tumor angiogenesis and novel antiangiogenic strategies. Int J Cancer. 2010;126:1777–87.PubMedGoogle Scholar
  66. 66.
    Greenberg S, Rugo HS. Triple-negative breast cancer: role of antiangiogenic agents. Cancer J. 2010;16:33–8.CrossRefPubMedGoogle Scholar
  67. 67.
    Benjamin LE, Golijanin D, Itin A, Pode D, Keshet E. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J Clin Invest. 1999;103:159–65.CrossRefPubMedGoogle Scholar
  68. 68.
    Hlushchuk R, Riestener O, Baum O, Wood J, Gruber G, Pruschy M, et al. Tumor recovery by angiogenic switch from sprouting to intussusceptive angiogenesis after treatment with PTK787/ZK222584 or ionizing irradiation. Am J Pathol. 2008;173:1173–85.CrossRefPubMedGoogle Scholar
  69. 69.
    Le Bourhis X, Romon R, Hondermarck H. Role of endothelial progenitor cells in breast cancer angiogenesis: from fundamental research to clinical ramification. Breast Cancer Res Treat. 2010;120:17–24.CrossRefPubMedGoogle Scholar
  70. 70.
    Shaked Y, Ciarrocchi A, Franco M, Lee CR, Man S, Cheung AM, et al. Therapy-induced acute recruitment of circulating endothelial progenitor cells to tumors. Science 2006;313:1785–7.CrossRefPubMedGoogle Scholar
  71. 71.
    Shaked Y, Henke E, Roodhart JM, Manusco P, Langenberg MH, Colleoni M, et al. Rapid chemotherapy-induced acute endothelial progenitor cell mobilization: implications for antiangiogenic drugs as chemosensitizing agents. Cancer Cell. 2008;14:263–73.CrossRefPubMedGoogle Scholar
  72. 72.
    Ip MM, Masso-Welch PA, Ip C. Prevetion of mammary cancer with conjugated linoleic acid: role of the stroma and the epithelium. J Mammary Gland Biol Neoplasia. 2003;8:103–17.CrossRefPubMedGoogle Scholar
  73. 73.
    Sturm JM. Angiogenic responses elicited from chorioallantoic membrane vessels by neoplastic preneoplastic and normal mammary tissues from GR mice. Am J Pathol. 1983;111:282–7.Google Scholar
  74. 74.
    Masood R, Cai J, Zheng T, Smith DL, Hinton DR, Gill PS. Vascular endothelial growth factor (VEGF) is an autocrine growth factor for VEGF positive human tumors. Blood 2001;98:1904–13.CrossRefPubMedGoogle Scholar
  75. 75.
    Schoeffner DJ, Matheny SL, Akahane T, Factor V, Berry A, Merlino G, et al. VEGF contributes to mammary tumor growth in transgenic mice through paracrine and autocrine mechanisms. Lab Invest. 2005;85:608–23.CrossRefPubMedGoogle Scholar
  76. 76.
    Shekar MP, Werdell J, Tait L. Interaction with endothelial cells is a prerequisite for branching ductal-alveolar morphogenesis and hyperplasia of preneoplastic human breast epithalial cells: regulation by estrogens. Cancer Res. 2000;60:439–49.Google Scholar
  77. 77.
    Djonov V, Baum O, Burri PH. Vascular remodelling by intussusceptive angiogenesis. Cell Tissue Res. 2003;314:107–17.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Clinical ResearchUniversity of BernBernSwitzerland
  2. 2.Institute of AnatomyUniversity of BernBernSwitzerland

Personalised recommendations