Epithelial-Mesenchymal Transition (EMT) in Tumor-Initiating Cells and Its Clinical Implications in Breast Cancer

  • Chad J. Creighton
  • Jenny C. Chang
  • Jeffrey M. Rosen
Article

Abstract

There is increasing support for the hypothesis that most tumors contain a subpopulation of cells, referred to here as tumor initiating cells (TICs), with the ability to self-renew and to regenerate all the cell types within the tumor. TICs are enriched in breast cancer patients after common treatments, indicating their intrinsic therapeutic resistance. Two independently-derived gene transcription “signatures” of TICs from different studies indicate enrichment of TICs within the recently-identified “claudin-low” intrinsic molecular subtype of breast cancer. These are characterized by high expression of markers associated with epithelial-mesenchymal transition (EMT), suggesting that claudin-low cells may arise from more immature stem or progenitor cells than other breast cancers. EMT is a process by which cells acquire molecular alterations that facilitate dysfunctional cell–cell adhesive interactions and junctions, as well as a more spindle-shaped morphology. These processes may promote cancer cell progression and invasion into the surrounding microenvironment. Induction of EMT in immortalized human mammary epithelial cells results in an increased ability to form mammospheres, and in the expression of stem cell and TIC markers, suggesting that there may be a direct link between the EMT and the gain of TIC properties. Targeting specific molecular pathways—such as Notch, Wnt, and TGFß—associated with development and EMT in the TIC subpopulation, in addition to conventional chemo- and radiation therapies that target the bulk tumor, may ultimately provide a more effective strategy in treating breast cancer. Here, we review recent evidence of the involvement of EMT in breast cancer TICs, focusing on clinical studies.

Keywords

Tumorigenic cells Cancer stem cells EMT Epithelial-mesenchymal transition 

Abbreviations

EMT

Epithelial-mesenchymal transition

TIC

Tumor-initiating cells

References

  1. 1.
    Vargo-Gogola T, Rosen J. Modelling breast cancer: one size does not fit all. Nat Rev Cancer. 2007;7:659–72.CrossRefPubMedGoogle Scholar
  2. 2.
    Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 2001;98(19):10869–74.CrossRefPubMedGoogle Scholar
  3. 3.
    Visvader J, Lindeman G. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer. 2008;8:755–68.CrossRefPubMedGoogle Scholar
  4. 4.
    Al-Hajj M, Wicha M, Benito-Hernandez A, Morrison S, Clarke M. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100:3983–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Li X, Lewis M, Huang J, Gutierrez C, Osborne C, Wu M, et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst. 2008;100(9):672–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Creighton C, Li X, Landis M, Dixon J, Neumeister V, Sjolund A, et al. Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci U S A. 2009;106(33):13820–5.CrossRefPubMedGoogle Scholar
  7. 7.
    Bonnet D, Dick J. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoetic cell. Nat Med. 1997;3:730–7.CrossRefPubMedGoogle Scholar
  8. 8.
    Ricci-Vitiani L, Lombardi D, Pilozzi E, Biffoni M, Todaro M, Peschle C, et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445:111–5.CrossRefPubMedGoogle Scholar
  9. 9.
    Singh S, Hawkins C, Clarke I, Squire J, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature. 2004;432:396–401.CrossRefPubMedGoogle Scholar
  10. 10.
    Dontu G, Abdallah W, JM F, Jackson K, Clarke M, Kawamura M, et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 2003;17(10):1253–70.CrossRefPubMedGoogle Scholar
  11. 11.
    Dontu G, Jackson K, McNicholas E, Kawamura M, Abdallah W, Wicha M. Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res. 2004;6(6):R605–15.CrossRefPubMedGoogle Scholar
  12. 12.
    Dontu G, Al-Hajj M, Abdallah W, Clarke M, Wicha M. Stem cells in normal breast development and breast cancer. Cell Prolif. 2003;36(suppl_1):59–72.CrossRefPubMedGoogle Scholar
  13. 13.
    Bao S, Wu Q, McLendon R, Hao Y, Shi Q, Hjelmeland A, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444:756–60.CrossRefPubMedGoogle Scholar
  14. 14.
    Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir I, et al. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer. 2006;5:67.CrossRefPubMedGoogle Scholar
  15. 15.
    Jones R, Matsui W, Smith B. Cancer stem cells: are we missing the target? J Natl Cancer Inst. 2004;96(8):583–5.CrossRefPubMedGoogle Scholar
  16. 16.
    Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A. 2003;100(14):8418–23.CrossRefPubMedGoogle Scholar
  17. 17.
    Herschkowitz J, Simin K, Weigman V, Mikaelian I, Usary J, Hu Z, et al. Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol. 2007;8:R76.16.CrossRefGoogle Scholar
  18. 18.
    Hennessy B, Gonzalez-Angulo A, Stemke-Hale K, Gilcrease M, Krishnamurthy S, Lee J, et al. Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics. Cancer Res. 2009;69(10):4116–24.CrossRefPubMedGoogle Scholar
  19. 19.
    Liu R, Wang X, Chen G, Dalerba P, Gurney A, Hoey T, et al. The prognostic role of a gene signature from tumorigenic breast-cancer cells. N Engl J Med. 2007;356:217–26.CrossRefPubMedGoogle Scholar
  20. 20.
    Shipitsin M, Campbell L, Argani P, Weremowicz S, Bloushtain-Qimron N, Yao J, et al. Molecular definition of breast tumor heterogeneity. Cancer Cell. 2007;11(3):259–73.CrossRefPubMedGoogle Scholar
  21. 21.
    van de Vijver MJ, He YD, Van’t Veer LJ, Dai H, Hart AA, Voskuil DW, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347:1999–2009.CrossRefPubMedGoogle Scholar
  22. 22.
    Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A. 2003;100(14):8418–23.CrossRefPubMedGoogle Scholar
  23. 23.
    Lim E, Vaillant F, Wu D, Forrest N, Pal B, Hart A, et al. Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med. 2009;15(8):907–13.CrossRefPubMedGoogle Scholar
  24. 24.
    Guarino M, Rubino B, Ballabio G. The role of epithelial-mesenchymal transition in cancer pathology. Pathology. 2007;39:305–18.CrossRefPubMedGoogle Scholar
  25. 25.
    Damonte P, Gregg J, Borowsky A, Keister B, Cardiff R. EMT tumorigenesis in the mouse mammary gland. Lab Invest. 2007;87:1218–26.CrossRefPubMedGoogle Scholar
  26. 26.
    Kokkinos M, Wafai R, Wong M, Newgreen D, Thompson E, Waltham M. Vimentin and epithelial-mesenchymal transition in human breast cancer—observations in vitro and in vivo. Cells Tissues Organs. 2007;185:191–203.CrossRefPubMedGoogle Scholar
  27. 27.
    Lee J, Dedhar S, Kalluri R, Thompson E. The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol. 2006;172:973–81.CrossRefPubMedGoogle Scholar
  28. 28.
    Sarrio D, Rodriguez-Pinilla S, Hardisson D, Cano A, Moreno-Bueno G, Palacios J. Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res. 2008;68:989–97.CrossRefPubMedGoogle Scholar
  29. 29.
    Trimboli A, Fukino K, de Bruin A, Wei G, Shen L, Tanner S, et al. Direct evidence for epithelial-mesenchymal transitions in breast cancer. Cancer Res. 2008;68:937–45.CrossRefPubMedGoogle Scholar
  30. 30.
    Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007;449(7163):682–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Sarrio D, Rodriguez-Pinilla SM, Hardisson D, Cano A, Moreno-Bueno G, Palacios J. Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res. 2008;68(4):989–97.CrossRefPubMedGoogle Scholar
  32. 32.
    Trimboli AJ, Fukino K, de Bruin A, Wei G, Shen L, Tanner SM, et al. Direct evidence for epithelial-mesenchymal transitions in breast cancer. Cancer Res. 2008;68(3):937–45.CrossRefPubMedGoogle Scholar
  33. 33.
    Shimono Y, Zabala M, Cho R, Lobo N, Dalerba P, Qian D, et al. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell. 2009;138(3):592–603.CrossRefPubMedGoogle Scholar
  34. 34.
    Gregory P, Bracken C, Bert A, Goodall G. MicroRNAs as regulators of epithelial-mesenchymal transition. Cell Cycle. 2008;7(20):3112–8.PubMedGoogle Scholar
  35. 35.
    Wellner U, Schubert J, Burk U, Schmalhofer O, Zhu F, Sonntag A, et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol. 2009;11(12):1487–95.CrossRefPubMedGoogle Scholar
  36. 36.
    Iliopoulos D, Polytarchou C, Hatziapostolou M, Kottakis F, Maroulakou I, Struhl K, et al. MicroRNAs differentially regulated by Akt isoforms control EMT and stem cell renewal in cancer cells. Sci Signal. 2009;2(92):ra62.CrossRefPubMedGoogle Scholar
  37. 37.
    Mani S, Guo W, Liao M, Eaton E, Ayyanan A, Zhou A, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133(4):704–15.CrossRefPubMedGoogle Scholar
  38. 38.
    Mani SA, Yang J, Brooks M, Schwaninger G, Zhou A, Miura N, et al. Mesenchyme Forkhead 1 (FOXC2) plays a key role in metastasis and is associated with aggressive basal-like breast cancers. Proc Natl Acad Sci U S A. 2007;104(24):10069–74.CrossRefPubMedGoogle Scholar
  39. 39.
    Gupta P, Onder T, Jiang G, Tao K, Kuperwasser C, Weinberg R, et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell. 2009;138(4):645–59.CrossRefPubMedGoogle Scholar
  40. 40.
    Huber M, Kraut N, Beug H. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol. 2005;17(5):548–58.CrossRefPubMedGoogle Scholar
  41. 41.
    Dontu G, El-Ashry D, Wicha MS. Breast cancer, stem/progenitor cells and the estrogen receptor. Trends Endocrinol Metab. 2004;15(5):193–7.CrossRefPubMedGoogle Scholar
  42. 42.
    Dontu G, Jackson KW, McNicholas E, Kawamura MJ, Abdallah WM, Wicha MS. Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res. 2004;6(6):R605–15.CrossRefPubMedGoogle Scholar
  43. 43.
    Dontu G, Liu S, Wicha MS. Stem cells in mammary development and carcinogenesis: implications for prevention and treatment. Stem Cell Rev. 2005;1(3):207–13.CrossRefPubMedGoogle Scholar
  44. 44.
    Dontu G, Wicha MS. Survival of mammary stem cells in suspension culture: implications for stem cell biology and neoplasia. J Mammary Gland Biol Neoplasia. 2005;10(1):75–86.CrossRefPubMedGoogle Scholar
  45. 45.
    Liu S, Dontu G, Wicha MS. Mammary stem cells, self-renewal pathways, and carcinogenesis. Breast Cancer Res. 2005;7(3):86–95.CrossRefPubMedGoogle Scholar
  46. 46.
    Liu S, Ginestier C, Charafe-Jauffret E, Foco H, Kleer CG, Merajver SD, et al. BRCA1 regulates human mammary stem/progenitor cell fate. Proc Natl Acad Sci U S A. 2008;105(5):1680–5.CrossRefPubMedGoogle Scholar
  47. 47.
    Korkaya H, Paulson A, Iovino F, Wicha M. HER2 regulates the mammary stem/progenitor cell population driving tumorigenesis and invasion. Oncogene. 2008;27(47):6120–30.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Chad J. Creighton
    • 1
  • Jenny C. Chang
    • 2
  • Jeffrey M. Rosen
    • 2
  1. 1.Dan L. Duncan Cancer Center Division of BiostatisticsBaylor College of MedicineHoustonUSA
  2. 2.Lester and Sue Smith Breast CenterBaylor College of MedicineHoustonUSA

Personalised recommendations