ABC Transporters, Drug Resistance, and Cancer Stem Cells

  • Michael DeanEmail author


The protection of the body’s stem cells from damage or death due to toxins is a critical function of an organism, as the stem cells need to remain intact for the entire life of the organism. One of the principal mechanisms for protecting stem cells is through the expression of multifunctional efflux transporters from the ATP-binding cassette (ABC) gene family. These same transporters have been known for over 25 years to also play a role in multidrug resistance of tumor cells. An exciting outcome of the concept of the cancer stem cell is that the tumor initiating cell may be innately resistant to many standard therapies. This provides one mechanism in which cancer stem cells could survive cytotoxic or targeted therapies and lead to tumor regrowth or relapse. Gaining a better insight into the mechanisms of stem cell resistance to chemotherapy might therefore lead to new therapeutic targets and better anti-cancer strategies.


ATP-binding cassette transporters Cancer stem cell Multidrug resistance Estrogen Aromatase EGF receptor Transport inhibitors 



ATP-binding cassette


epidermal growth factor




nucleotide binding folds


multidrug resistant


side population


chronic myelogenous leukemia


acute lymphoblastic leukemia


tyrosine kinase inhibitor


  1. 1.
    Higgins CF. ABC transporters: From micro-organisms to man. Annu Rev Cell Biol. 1992;8:67–113. doi: 10.1146/annurev.cb.08.110192.000435.PubMedCrossRefGoogle Scholar
  2. 2.
    Childs S, Ling V. The MDR superfamily of genes and its biological implications. Important Adv Oncol. 1994;1994:21–36.Google Scholar
  3. 3.
    Dean M, Allikmets R. Evolution of ATP-binding cassette transporter genes. Curr Opin Genet Dev. 1995;5:779–85. doi: 10.1016/0959–437X(95)80011-S.PubMedCrossRefGoogle Scholar
  4. 4.
    Dean M, Rzhetsky A, Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res. 2001;11(7):1156–66. doi: 10.1101/gr.GR-1649R.PubMedCrossRefGoogle Scholar
  5. 5.
    Hyde SC, Emsley P, Hartshorn MJ, Mimmack MM, Gileadi U, Pearce SR, et al. Structural model of ATP-binding proteins associated with cystic fibrosis, multidrug resistance and bacterial transport. Nature. 1990;346(6282):362–5. doi: 10.1038/346362a0.PubMedCrossRefGoogle Scholar
  6. 6.
    Locher KP. Structure and mechanism of ABC transporters. Curr Opin Struct Biol. 2004;14(4):31. doi: 10.1016/ Scholar
  7. 7.
    Locher KP, Lee AT, Rees DC. The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science. 2002;296(5570):1091–8. doi: 10.1126/science.1071142.PubMedCrossRefGoogle Scholar
  8. 8.
    Kadaba NS, Kaiser JT, Johnson E, Lee A, Rees DC. The high-affinity E. coli methionine ABC transporter: structure and allosteric regulation. Science. 2008;321(5886):250–3. doi: 10.1126/science.1157987.PubMedCrossRefGoogle Scholar
  9. 9.
    Hvorup RN, Goetz BA, Niederer M, Hollenstein K, Perozo E, Locher KP. Asymmetry in the structure of the ABC transporter-binding protein complex BtuCD-BtuF. Science. 2007;317(5843):1387–90. doi: 10.1126/science.1145950.PubMedCrossRefGoogle Scholar
  10. 10.
    Annilo T, Chen ZQ, Shulenin S, Costantino J, Thomas L, Lou H, et al. Evolution of the vertebrate ABC gene family: analysis of gene birth and death. Genomics. 2006;88(1):1–11. doi: 10.1016/j.ygeno.2006.03.001.PubMedCrossRefGoogle Scholar
  11. 11.
    Martinoia E, Klein M, Geisler M, Bovet L, Forestier C, Kolukisaoglu U, et al. Multifunctionality of plant ABC transporters–more than just detoxifiers. Planta. 2002;214(3):345–55. doi: 10.1007/s004250100661.PubMedCrossRefGoogle Scholar
  12. 12.
    Dean M, Annilo T. Evolution of the ATP-Binding Cassette (ABC) Transporter Superfamily in Vertebrates. Ann Rev Hum Genet Genom. 2005;6:123–42. doi: 10.1146/annurev.genom.6.080604.162122.CrossRefGoogle Scholar
  13. 13.
    Gottesman MM, Ludwig J, Xia D, Szakacs G. Defeating drug resistance in cancer. Discov Med. 2006;6(31):18–23.PubMedGoogle Scholar
  14. 14.
    Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer. 2002;2(1):48–58. doi: 10.1038/nrc706.PubMedCrossRefGoogle Scholar
  15. 15.
    Kartner N, Evernden-Porelle D, Bradley G, Ling V. Detection of P-glycoprotein in multidrug-resistant cell lines by monoclonal antibodies. Nature. 1985;316(6031):820–3. doi: 10.1038/316820a0.PubMedCrossRefGoogle Scholar
  16. 16.
    Chen CJ, Chin JE, Ueda K, Clark DP, Pastan I, Gottesman MM, et al. Internal duplication and homology with bacterial transport proteins in the mdr1 (P-glycoprotein) gene from multidrug-resistant human cells. Cell. 1986;47(3):381–9. doi: 10.1016/0092-8674(86)90595-7.PubMedCrossRefGoogle Scholar
  17. 17.
    Riordan JR, Deuchars K, Kartner N, Alon N, Trent J, Ling V. Amplification of P-glycoprotein genes in multidrug-resistant mammalian cell lines. Nature. 1985;316(6031):817–9. doi: 10.1038/316817a0.PubMedCrossRefGoogle Scholar
  18. 18.
    Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer. 2005;5(4):275–84. doi: 10.1038/nrc1590.PubMedCrossRefGoogle Scholar
  19. 19.
    Cole SPC, Bhardwaj G, Gerlach JH, Mackie JE, Grant CE, Almquist KC, et al. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science. 1992;258:1650–4. doi: 10.1126/science.1360704.PubMedCrossRefGoogle Scholar
  20. 20.
    Kim M, Turnquist H, Jackson J, Sgagias M, Yan Y, Gong M, et al. The multidrug resistance transporter ABCG2 (breast cancer resistance protein 1) effluxes Hoechst 33342 and is overexpressed in hematopoietic stem cells. Clin Cancer Res. 2002;8(1):22–8.PubMedGoogle Scholar
  21. 21.
    Allikmets R, Schriml LM, Hutchinson A, Romano-Spica V, Dean M. A human placenta-specific ATP-binding cassette gene (ABCP) on chromosome 4q22 that is involved in multidrug resistance. Cancer Res. 1998;58:5337–9.PubMedGoogle Scholar
  22. 22.
    Miyake K, Mickley L, Litman T, Zhan Z, Robey R, Cristensen B, et al. Molecular cloning of cDNAs which are highly overexpressed in mitoxantrone-resistant cells: demonstration of homology to ABC transport genes. Cancer Res. 1999;59:8–13.PubMedGoogle Scholar
  23. 23.
    Doyle LA, Yang W, Abruzzo LV, Krogmann T, Gao Y, Rishi AK, et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci U S A. 1998;95(26):15665–70. doi: 10.1073/pnas.95.26.15665.PubMedCrossRefGoogle Scholar
  24. 24.
    Schinkel AH, Jonker JW. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev. 2003;55(1):3–29. doi: 10.1016/S0169-409X(02)00169-2.PubMedCrossRefGoogle Scholar
  25. 25.
    Scharenberg CW, Harkey MA, Torok-Storb B. The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood. 2002;99(2):507–12. doi: 10.1182/blood.V99.2.507.PubMedCrossRefGoogle Scholar
  26. 26.
    Zhou S, Morris JJ, Barnes Y, Lan L, Schuetz JD, Sorrentino BP. Bcrp1 gene expression is required for normal numbers of side population stem cells in mice, and confers relative protection to mitoxantrone in hematopoietic cells in vivo. Proc Natl Acad Sci U S A. 2002;99(19):12339–44. doi: 10.1073/pnas.192276999.PubMedCrossRefGoogle Scholar
  27. 27.
    Jonker JW, Buitelaar M, Wagenaar E, Van Der Valk MA, Scheffer GL, Scheper RJ, et al. The breast cancer resistance protein protects against a major chlorophyll-derived dietary phototoxin and protoporphyria. Proc Natl Acad Sci U S A. 2002;99(24):15649–54. doi: 10.1073/pnas.202607599.PubMedCrossRefGoogle Scholar
  28. 28.
    Schinkel AH, Smit JJ, van Tellingen O, Beijnen JH, Wagenaar E, van Deemter L, et al. Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell. 1994;77(4):491–502. doi: 10.1016/0092-8674(94)90212-7.PubMedCrossRefGoogle Scholar
  29. 29.
    Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med. 1996;183(4):1797–806. doi: 10.1084/jem.183.4.1797.PubMedCrossRefGoogle Scholar
  30. 30.
    Summer R, Kotton DN, Sun X, Ma B, Fitzsimmons K, Fine A. Side population cells and Bcrp1 expression in lung. Am J Physiol Lung Cell Mol Physiol. 2003;285(1):L97–104.PubMedGoogle Scholar
  31. 31.
    Alvi AJ, Clayton H, Joshi C, Enver T, Ashworth A, Vivanco MM, et al. Functional and molecular characterisation of mammary side population cells. Breast Cancer Res. 2003;5(1):R1–8. doi: 10.1186/bcr563.PubMedCrossRefGoogle Scholar
  32. 32.
    Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ, et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med. 2001;7(9):1028–34. doi: 10.1038/nm0901-1028.PubMedCrossRefGoogle Scholar
  33. 33.
    Lassalle B, Bastos H, Louis JP, Riou L, Testart J, Dutrillaux B, et al. ‘Side Population’ cells in adult mouse testis express Bcrp1 gene and are enriched in spermatogonia and germinal stem cells. Development. 2004;131(2):479–87. doi: 10.1242/dev.00918.PubMedCrossRefGoogle Scholar
  34. 34.
    Asakura A, Rudnicki MA. Side population cells from diverse adult tissues are capable of in vitro hematopoietic differentiation. Exp Hematol. 2002;30(11):1339–45. doi: 10.1016/S0301-472X(02)00954-2.PubMedCrossRefGoogle Scholar
  35. 35.
    Martin CM, Meeson AP, Robertson SM, Hawke TJ, Richardson JA, Bates S, et al. Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev Biol. 2004;265(1):262–75. doi: 10.1016/j.ydbio.2003.09.028.PubMedCrossRefGoogle Scholar
  36. 36.
    Lechner A, Leech CA, Abraham EJ, Nolan AL, Habener JF. Nestin-positive progenitor cells derived from adult human pancreatic islets of Langerhans contain side population (SP) cells defined by expression of the ABCG2 (BCRP1) ATP-binding cassette transporter. Biochem Biophys Res Commun. 2002;293(2):670–4. doi: 10.1016/S0006-291X(02)00275-9.PubMedCrossRefGoogle Scholar
  37. 37.
    Terunuma A, Jackson KL, Kapoor V, Telford WG, Vogel JC. Side population keratinocytes resembling bone marrow side population stem cells are distinct from label-retaining keratinocyte stem cells. J Invest Dermatol. 2003;121(5):1095–103. doi: 10.1046/j.1523-1747.2003.12531.x.PubMedCrossRefGoogle Scholar
  38. 38.
    Zhou S, Zong Y, Lu T, Sorrentino BP. Hematopoietic cells from mice that are deficient in both Bcrp1/Abcg2 and Mdr1a/1b develop normally but are sensitized to mitoxantrone. Biotechniques. 2003;35(6):1248–52.PubMedGoogle Scholar
  39. 39.
    Ee PL, Kamalakaran S, Tonetti D, He X, Ross DD, Beck WT. Identification of a novel estrogen response element in the breast cancer resistance protein (ABCG2) gene. Cancer Res. 2004;64(4):1247–51. doi: 10.1158/0008-5472.CAN-03-3583.PubMedCrossRefGoogle Scholar
  40. 40.
    van Herwaarden AE, Wagenaar E, Merino G, Jonker JW, Rosing H, Beijnen JH, et al. Multidrug transporter ABCG2/breast cancer resistance protein secretes riboflavin (vitamin B2) into milk. Mol Cell Biol. 2007;27(4):1247–53. doi: 10.1128/MCB.01621-06.PubMedCrossRefGoogle Scholar
  41. 41.
    Olsen HG, Nilsen H, Hayes B, Berg PR, Svendsen M, Lien S, et al. Genetic support for a quantitative trait nucleotide in the ABCG2 gene affecting milk composition of dairy cattle. BMC Genet. 2007;8:32. doi: 10.1186/1471-2156-8-32.PubMedCrossRefGoogle Scholar
  42. 42.
    Cohen-Zinder M, Seroussi E, Larkin DM, Loor JJ, Everts-van der Wind A, Lee JH, et al. Identification of a missense mutation in the bovine ABCG2 gene with a major effect on the QTL on chromosome 6 affecting milk yield and composition in Holstein cattle. Genome Res. 2005;15(7):936–44. doi: 10.1101/gr.3806705.PubMedCrossRefGoogle Scholar
  43. 43.
    Farke C, Meyer HH, Bruckmaier RM, Albrecht C. Differential expression of ABC transporters and their regulatory genes during lactation and dry period in bovine mammary tissue. J Dairy Res. 2008;75(4):406–14. doi: 10.1017/S002202990800335X.PubMedCrossRefGoogle Scholar
  44. 44.
    Masri S, Phung S, Wang X, Wu X, Yuan YC, Wagman L, et al. Genome-wide analysis of aromatase inhibitor-resistant, tamoxifen-resistant, and long-term estrogen-deprived cells reveals a role for estrogen receptor. Cancer Res. 2008;68(12):4910–8. doi: 10.1158/0008-5472.CAN-08–0303.PubMedCrossRefGoogle Scholar
  45. 45.
    Park BH, Davidson NE. PI3 kinase activation and response to Trastuzumab Therapy: what’s neu with herceptin resistance? Cancer Cell. 2007;12(4):297–9. doi: 10.1016/j.ccr.2007.10.004.PubMedCrossRefGoogle Scholar
  46. 46.
    Korkaya H, Paulson A, Iovino F, Wicha MS. HER2 regulates the mammary stem/progenitor cell population driving tumorigenesis and invasion. Oncogene. 2008;27(47):6120–30. doi: 10.1038/onc.2008.207.PubMedCrossRefGoogle Scholar
  47. 47.
    Charafe-Jauffret E, Monville F, Ginestier C, Dontu G, Birnbaum D, Wicha MS. Cancer stem cells in breast: current opinion and future challenges. Pathobiology. 2008;75(2):75–84. doi: 10.1159/000123845.PubMedCrossRefGoogle Scholar
  48. 48.
    Sleeman KE, Kendrick H, Robertson D, Isacke CM, Ashworth A, Smalley MJ. Dissociation of estrogen receptor expression and in vivo stem cell activity in the mammary gland. J Cell Biol. 2007;176(1):19–26. doi: 10.1083/jcb.200604065.PubMedCrossRefGoogle Scholar
  49. 49.
    Houghton PJ, Germain GS, Harwood FC, Schuetz JD, Stewart CF, Buchdunger E, et al. Imatinib mesylate is a potent inhibitor of the ABCG2 (BCRP) transporter and reverses resistance to topotecan and SN-38 in vitro. Cancer Res. 2004;64(7):2333–7. doi: 10.1158/0008-5472.CAN-03-3344.PubMedCrossRefGoogle Scholar
  50. 50.
    Ozvegy-Laczka C, Hegedus T, Varady G, Ujhelly O, Schuetz JD, Varadi A, et al. High-affinity interaction of tyrosine kinase inhibitors with the ABCG2 multidrug transporter. Mol Pharmacol. 2004;65(6):1485–95. doi: 10.1124/mol.65.6.1485.PubMedCrossRefGoogle Scholar
  51. 51.
    Burger H, van Tol H, Boersma AW, Brok M, Wiemer EA, Stoter G, et al. Imatinib mesylate (STI571) is a substrate for the breast cancer resistance protein (BCRP)/ABCG2 drug pump. Blood. 2004;104(9):2940–2. doi: 10.1182/blood-2004-04-1398.PubMedCrossRefGoogle Scholar
  52. 52.
    Dierks C, Beigi R, Guo GR, Zirlik K, Stegert MR, Manley P, et al. Expansion of Bcr-Abl-positive leukemic stem cells is dependent on Hedgehog pathway activation. Cancer Cell. 2008;14(3):238–49. doi: 10.1016/j.ccr.2008.08.003.PubMedCrossRefGoogle Scholar
  53. 53.
    Hirschmann-Jax C, Foster AE, Wulf GG, Nuchtern JG, Jax TW, Gobel U, et al. A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci U S A. 2004;101(39):14228–33. doi: 10.1073/pnas.0400067101.PubMedCrossRefGoogle Scholar
  54. 54.
    Rabindran SK, Ross DD, Doyle LA, Yang W, Greenberger LM. Fumitremorgin C reverses multidrug resistance in cells transfected with the breast cancer resistance protein. Cancer Res. 2000;60(1):47–50.PubMedGoogle Scholar
  55. 55.
    Tarasova NI, Seth R, Tarasov SG, Kosakowska-Cholody T, Hrycyna CA, Gottesman MM, et al. Transmembrane inhibitors of P-glycoprotein, an ABC transporter. J Med Chem. 2005;48(11):3768–75. doi: 10.1021/jm049065t.PubMedCrossRefGoogle Scholar
  56. 56.
    Cisternino S, Mercier C, Bourasset F, Roux F, Scherrmann JM. Expression, up-regulation, and transport activity of the multidrug-resistance protein Abcg2 at the mouse blood-brain barrier. Cancer Res. 2004;64(9):3296–301. doi: 10.1158/0008-5472.CAN-03-2033.PubMedCrossRefGoogle Scholar
  57. 57.
    Dean M. Towards a unified model of tumor suppression: lessons learned from the human patched gene. Biochim Biophys Acta. 1997;1332:M43–52.PubMedGoogle Scholar
  58. 58.
    Hahn H, Wicking C, Zaphiropoulous PG, Gailani MR, Shanley S, Chidambaram A, et al. Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell. 1996;85:841–51. doi: 10.1016/S0092-8674(00)81268-4.PubMedCrossRefGoogle Scholar
  59. 59.
    Lee LM, Seftor EA, Bonde G, Cornell RA, Hendrix MJ. The fate of human malignant melanoma cells transplanted into zebrafish embryos: assessment of migration and cell division in the absence of tumor formation. Dev Dyn. 2005;233(4):1560–70. doi: 10.1002/dvdy.20471.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Laboratory of Experimental Immunology, Cancer and Inflammation ProgramNational Cancer InstituteFrederickUSA

Personalised recommendations