Journal of Mammary Gland Biology and Neoplasia

, Volume 13, Issue 3, pp 309–321 | Cite as

Common Integration Sites for MMTV in Viral Induced Mouse Mammary Tumors

Article

Abstract

The paradigm of mammary cancer induction by the mouse mammary tumor virus (MMTV) is used to illustrate the body of evidence that supports the hypothesis that mammary epithelial stem/progenitor cells represent targets for oncogenic transformation. It is argued that this is not a special case applicable only to MMTV-induced mammary cancer, because MMTV acts as an environmental mutagen producing random interruptions in the somatic DNA of infected cells by insertion of proviral DNA copies. In addition to disrupting the host genome, the proviral DNA also influences gene expression through its associated enhancer sequences over significant inter-genomic distances. Genes commonly affected by MMTV insertion in multiple individual tumors include, the Wnt, FGF, RSpo gene families as well as eIF3e and Notch4. All of these gene families are known to play essential roles in stem cell maintenance and behavior in a variety of organs. The MMTV-induced mutations accumulate in cells that are long-lived and possess the properties of stem cells, namely, self-renewal and the capacity to produce divergent epithelial progeny through asymmetric division. The evidence shows that epithelial cells with these properties are present in normal mammary glands, may be infected with MMTV, become transformed to produce epithelial hyperplasia through MMTV-induced mutagenesis and progress to frank mammary malignancy. Retroviral marking via MMTV proviral insertion demonstrates that this process progresses from a single mammary epithelial cell that possesses all of the features ascribed to tissue-specific stem cells.

Keywords

Mammary tumors Cancer Mouse mammary tumor virus 

Abbreviations

MMTV

mouse mammary tumor virus

HAN

hyperplastic alveolar nodule

LRC

label retaining cells

MLV

murine leukemia virus

HOG

hyperplastic outgrowth

Tcf

T-cell factor

Lef

lymphocyte enhancing factor

RTK

receptor tyrosine kinase

ICD

intracellular domain

CIS

common integration site

RIS

retroviral integration site

References

  1. 1.
    Kamiya K, Gould MN, Clifton KH. Quantitative studies of ductal versus alveolar differentiation from rat mammary clonogens. Proc Soc Exp Biol Med 1998;219(3):217–25.PubMedGoogle Scholar
  2. 2.
    Stingl J, Eaves CJ, Zandieh I, Emerman JT. Characterization of bipotent mammary epithelial progenitor cells in normal adult human breast tissue. Breast Cancer Res Treat 2001;67(2):93–109. doi:10.1023/A:1010615124301.PubMedCrossRefGoogle Scholar
  3. 3.
    Stingl J, Eirew P, Ricketson I, Shackleton M, Vaillant F, Choi D, et al. Purification and unique properties of mammary epithelial stem cells. Nature 2006;439(7079):993–7.PubMedGoogle Scholar
  4. 4.
    Smith GH. Experimental mammary epithelial morphogenesis in an in vivo model: evidence for distinct cellular progenitors of the ductal and lobular phenotype. Breast Cancer Res Treat 1996;39(1):21–31. doi:10.1007/BF01806075.PubMedCrossRefGoogle Scholar
  5. 5.
    Medina D. The preneoplastic phenotype in murine mammary tumorigenesis. J Mammary Gland Biol Neoplasia 2000;5(4):393–407. doi:10.1023/A:1009529928422.PubMedCrossRefGoogle Scholar
  6. 6.
    Medina D. Mammary developmental fate and breast cancer risk. Endocr Relat Cancer 2005;12(3):483–95. doi:10.1677/erc.1.00804.PubMedCrossRefGoogle Scholar
  7. 7.
    Callahan R, Smith GH. MMTV-induced mammary tumorigenesis: gene discovery, progression to malignancy and cellular pathways. Oncogene 2000;19(8):992–1001. doi:10.1038/sj.onc.1203276.PubMedCrossRefGoogle Scholar
  8. 8.
    Kordon EC, Smith GH. An entire functional mammary gland may comprise the progeny from a single cell. Development 1998;125(10):1921–30.PubMedGoogle Scholar
  9. 9.
    Smith GH, Boulanger CA. Mammary stem cell repertoire: New insights in aging epithelial populations. Mech Ageing Dev 2002;123:1505–19. doi:10.1016/S0047-6374(02)00114-8.PubMedCrossRefGoogle Scholar
  10. 10.
    Rajkumar L, Kittrell FS, Guzman RC, Brown PH, Nandi S, Medina D. Hormone-induced protection of mammary tumorigenesis in genetically engineered mouse models. Breast Cancer Res 2007;9(1):R12. doi:10.1186/bcr1645.PubMedCrossRefGoogle Scholar
  11. 11.
    Gattelli A, Zimberlin MN, Meiss RP, Castilla LH, Kordon EC. Selection of early-occurring mutations dictates hormone-independent progression in mouse mammary tumor lines. J Virol 2006;80(22):11409–15. doi:10.1128/JVI.00234-06.PubMedCrossRefGoogle Scholar
  12. 12.
    Lee AE. Genetic and viral influences of mammary tumours in BR6 mice. Br J Cancer 1968;22(1):77–82.PubMedGoogle Scholar
  13. 13.
    Squartini F. Responsiveness and progression of mammary tumors in high-cancer-strain mice. J Natl Cancer Inst 1962;28:911–26.PubMedGoogle Scholar
  14. 14.
    van Nie R, Verstraeten AA. Studies of genetic transmission of mammary tumour virus by C3Hf mice. Int J Cancer 1975;16(6):922–31. doi:10.1002/ijc.2910160606.PubMedCrossRefGoogle Scholar
  15. 15.
    Foulds L. The histologic analysis of mammary tumors of mice. J Natl Cancer Inst 1956;17(6):701–801.PubMedGoogle Scholar
  16. 16.
    Squartini F. Tumours of the mammary gland. IARC Sci Publ 1979;23:43–90.PubMedGoogle Scholar
  17. 17.
    Squartini F, Basolo F, Bistocchi M. Lobuloalveolar differentiation and tumorigenesis: two separate activities of mouse mammary tumor virus. Cancer Res 1983;43(12 Pt 1):5879–82.PubMedGoogle Scholar
  18. 18.
    Cairns J. Mutation selection and the natural history of cancer. Nature 1975;255(5505):197–200. doi:10.1038/255197a0.PubMedCrossRefGoogle Scholar
  19. 19.
    Cairns J. Somatic stem cells and the kinetics of mutagenesis and carcinogenesis. Proc Natl Acad Sci U S A 2002;99(16):10567–70. doi:10.1073/pnas.162369899.PubMedCrossRefGoogle Scholar
  20. 20.
    Smith GH. Label-retaining mammary epithelial cells divide asymmetrically and retain their template DNA strands. Development 2005;132:681–7. doi:10.1242/dev.01609.PubMedCrossRefGoogle Scholar
  21. 21.
    Booth BW, Smith GH. Estrogen receptor-alpha and progesterone receptor are expressed in label-retaining mammary epithelial cells that divide asymmetrically and retain their template DNA strands. Breast Cancer Res 2006;8(4):R49. doi:10.1186/bcr1538.PubMedCrossRefGoogle Scholar
  22. 22.
    Nusse R, Varmus HE. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 1982;31(1):99–109. doi:10.1016/0092-8674(82)90409-3.PubMedCrossRefGoogle Scholar
  23. 23.
    Peters G, Brookes S, Smith R, Dickson C. Tumorigenesis by mouse mammary tumor virus: evidence for a common region for provirus integration in mammary tumors. Cell 1983;33(2):369–77. doi:10.1016/0092-8674(83)90418-X.PubMedCrossRefGoogle Scholar
  24. 24.
    Theodorou V, Boer M, Weigelt B, Jonkers J, van der Valk M, Hilkens J. Fgf10 is an oncogene activated by MMTV insertional mutagenesis in mouse mammary tumors and overexpressed in a subset of human breast carcinomas. Oncogene 2004;23(36):6047–55. doi:10.1038/sj.onc.1207816.PubMedCrossRefGoogle Scholar
  25. 25.
    Theodorou V, Kimm MA, Boer M, Wessels L, Theelen W, Jonkers J, et al. MMTV insertional mutagenesis identifies genes, gene families and pathways involved in mammary cancer. Nat Genet 2007;39(6):759–69. doi:10.1038/ng2034.PubMedCrossRefGoogle Scholar
  26. 26.
    Lazo PA, Lee JS, Tsichlis PN. Long-distance activation of the Myc protooncogene by provirus insertion in Mlvi-1 or Mlvi-4 in rat T-cell lymphomas. Proc Natl Acad Sci U S A 1990;87(1):170–3. doi:10.1073/pnas.87.1.170.PubMedCrossRefGoogle Scholar
  27. 27.
    Gallahan D, Callahan R. Mammary tumorigenesis in feral mice: identification of a new int locus in mouse mammary tumor virus (Czech II)-induced mammary tumors. J Virol 1987;61(1):66–74.PubMedGoogle Scholar
  28. 28.
    Marchetti A, Buttitta F, Miyazaki S, Gallahan D, Smith GH, Callahan R. Int-6, a highly conserved, widely expressed gene, is mutated by mouse mammary tumor virus in mammary preneoplasia. J Virol 1995;69(3):1932–8.PubMedGoogle Scholar
  29. 29.
    Lowther W, Wiley K, Smith GH, Callahan R. A new common integration site, Int7, for the mouse mammary tumor virus in mouse mammary tumors identifies a gene whose product has furin-like and thrombospondin-like sequences. J Virol 2005;79(15):10093–6. doi:10.1128/JVI.79.15.10093-10096.2005.PubMedCrossRefGoogle Scholar
  30. 30.
    Mikkers H, Allen J, Knipscheer P, Romeijn L, Hart A, Vink E, et al. High-throughput retroviral tagging to identify components of specific signaling pathways in cancer. Nat Genet 2002;32(1):153–9. doi:10.1038/ng950.PubMedCrossRefGoogle Scholar
  31. 31.
    Qureshi SJ, Porteous DJ, Brookes AJ. Alu-based vectorettes and splinkerettes. More efficient and comprehensive polymerase chain reaction amplification of human DNA from complex sources. Genet Anal Tech Appl 1994;11(4):95–101. doi:10.1016/1050-3862(94)90046-9.PubMedGoogle Scholar
  32. 32.
    Lee FS, Lane TF, Kuo A, Shackleford GM, Leder P. Insertional mutagenesis identifies a member of the Wnt gene family as a candidate oncogene in the mammary epithelium of int-2/Fgf-3 transgenic mice. Proc Natl Acad Sci U S A 1995;92(6):2268–72. doi:10.1073/pnas.92.6.2268.PubMedCrossRefGoogle Scholar
  33. 33.
    Silver J, Keerikatte V. Novel use of polymerase chain reaction to amplify cellular DNA adjacent to an integrated provirus. J Virol 1989;63(5):1924–8.PubMedGoogle Scholar
  34. 34.
    Gallahan D, Callahan R. The mouse mammary tumor associated gene INT3 is a unique member of the NOTCH gene family (NOTCH4). Oncogene 1997;14(16):1883–90. doi:10.1038/sj.onc.1201035.PubMedCrossRefGoogle Scholar
  35. 35.
    Sarkar NH, Haga S, Lehner AF, Zhao W, Imai S, Moriwaki K. Insertional mutation of int protooncogenes in the mammary tumors of a new strain of mice derived from the wild in China: normal-and tumor-tissue-specific expression of int-3 transcripts. Virology 1994;203(1):52–62. doi:10.1006/viro.1994.1454.PubMedCrossRefGoogle Scholar
  36. 36.
    Peters G. Oncogenes at viral integration sites. Cell Growth Differ 1990;1(10):503–10.PubMedGoogle Scholar
  37. 37.
    Fehse B, Roeder I. Insertional mutagenesis and clonal dominance: biological and statistical considerations. Gene Ther 2008;15(2):143–53. doi:10.1038/sj.gt.3303052.PubMedCrossRefGoogle Scholar
  38. 38.
    Wu X, Luke BT, Burgess SM. Redefining the common insertion site. Virology 2006;344(2):292–5. doi:10.1016/j.virol.2005.08.047.PubMedCrossRefGoogle Scholar
  39. 39.
    Mohinta S, Wu H, Chaurasia P, Watabe K. Wnt pathway and breast cancer. Front Biosci 2007;12:4020–33. doi:10.2741/2368.PubMedCrossRefGoogle Scholar
  40. 40.
    Smolich BD, McMahon JA, McMahon AP, Papkoff J. Wnt family proteins are secreted and associated with the cell surface. Mol Biol Cell 1993;4(12):1267–75.PubMedGoogle Scholar
  41. 41.
    Hendrickx M, Leyns L. Non-conventional frizzled ligands and Wnt receptors. Dev Growth Differ 2008;50(4):229–43.PubMedGoogle Scholar
  42. 42.
    Binnerts ME, Kim KA, Bright JM, Patel SM, Tran K, Zhou M, et al. R-Spondin1 regulates Wnt signaling by inhibiting internalization of LRP6. Proc Natl Acad Sci U S A 2007;104(37):14700–5. doi:10.1073/pnas.0702305104.PubMedCrossRefGoogle Scholar
  43. 43.
    Kikuchi A, Yamamoto H. Tumor formation due to abnormalities in the beta-catenin-independent pathway of Wnt signaling. Cancer Sci 2008;99(2):202–8. doi:10.1111/j.1349-7006.2007.00675.x.PubMedCrossRefGoogle Scholar
  44. 44.
    Cotton LM, O’Bryan MK, Hinton BT. Cellular signaling by fibroblast growth factors (FGFs) and their receptors (FGFRs) in male reproduction. Endocr Rev 2008;29(2):193–216. doi:10.1210/er.2007-0028.PubMedCrossRefGoogle Scholar
  45. 45.
    Dillon C, Spencer-Dene B, Dickson C. A crucial role for fibroblast growth factor signaling in embryonic mammary gland development. J Mammary Gland Biol Neoplasia 2004;9(2):207–15. doi:10.1023/B:JOMG.0000037163.56461.1e.PubMedCrossRefGoogle Scholar
  46. 46.
    Callahan R, Egan SE. Notch signaling in mammary development and oncogenesis. J Mammary Gland Biol Neoplasia 2004;9(2):145–63. doi:10.1023/B:JOMG.0000037159.63644.81.PubMedCrossRefGoogle Scholar
  47. 47.
    Muskavitch MA. Delta-notch signaling and Drosophila cell fate choice. Dev Biol 1994;166(2):415–30. doi:10.1006/dbio.1994.1326.PubMedCrossRefGoogle Scholar
  48. 48.
    Uyttendaele H, Marazzi G, Wu G, Yan Q, Sassoon D, Kitajewski J. Notch4/int-3, a mammary proto-oncogene, is an endothelial cell-specific mammalian Notch gene. Development 1996;122(7):2251–9.PubMedGoogle Scholar
  49. 49.
    Robbins J, Blondel BJ, Gallahan D, Callahan R. Mouse mammary tumor gene int-3: a member of the notch gene family transforms mammary epithelial cells. J Virol 1992;66(4):2594–9.PubMedGoogle Scholar
  50. 50.
    Dievart A, Beaulieu N, Jolicoeur P. Involvement of Notch1 in the development of mouse mammary tumors. Oncogene 1999;18(44):5973–81. doi:10.1038/sj.onc.1202991.PubMedCrossRefGoogle Scholar
  51. 51.
    Struhl G, Fitzgerald K, Greenwald I. Intrinsic activity of the Lin-12 and Notch intracellular domains in vivo. Cell 1993;74(2):331–45. doi:10.1016/0092-8674(93)90424-O.PubMedCrossRefGoogle Scholar
  52. 52.
    Gallahan D, Jhappan C, Robinson G, Hennighausen L, Sharp R, Kordon E, et al. Expression of a truncated Int3 gene in developing secretory mammary epithelium specifically retards lobular differentiation resulting in tumorigenesis. Cancer Res 1996;56(8):1775–85.PubMedGoogle Scholar
  53. 53.
    Hu C, Dievart A, Lupien M, Calvo E, Tremblay G, Jolicoeur P. Overexpression of activated murine Notch1 and Notch3 in transgenic mice blocks mammary gland development and induces mammary tumors. Am J Pathol 2006;168(3):973–90. doi:10.2353/ajpath.2006.050416.PubMedCrossRefGoogle Scholar
  54. 54.
    Jhappan C, Gallahan D, Stahle C, Chu E, Smith GH, Merlino G, et al. Expression of an activated Notch-related int-3 transgene interferes with cell differentiation and induces neoplastic transformation in mammary and salivary glands. Genes Dev 1992;6(3):345–55. doi:10.1101/gad.6.3.345.PubMedCrossRefGoogle Scholar
  55. 55.
    Smith GH, Gallahan D, Diella F, Jhappan C, Merlino G, Callahan R. Constitutive expression of a truncated INT3 gene in mouse mammary epithelium impairs differentiation and functional development. Cell Growth Differ 1995;6(5):563–77.PubMedGoogle Scholar
  56. 56.
    Asano K, Merrick WC, Hershey JW. The translation initiation factor eIF3-p48 subunit is encoded by int-6, a site of frequent integration by the mouse mammary tumor virus genome. J Biol Chem 1997;272(38):23477–80. doi:10.1074/jbc.272.38.23477.PubMedCrossRefGoogle Scholar
  57. 57.
    Diella F, Levi G, Callahan R. Characterization of the INT6 mammary tumor gene product. DNA Cell Biol 1997;16(7):839–47.PubMedCrossRefGoogle Scholar
  58. 58.
    Miyazaki S, Rasmussen S, Imatani A, Diella F, Sullivan DT, Callahan R. Characterization of the Drosophila ortholog of mouse eIF-3p48/INT-6. Gene 1999;233(1–2):241–7. doi:10.1016/S0378-1119(99)00130-4.PubMedCrossRefGoogle Scholar
  59. 59.
    Mayeur GL, Hershey JW. Malignant transformation by the eukaryotic translation initiation factor 3 subunit p48 (eIF3e). FEBS Lett 2002;514(1):49–54. doi:10.1016/S0014-5793(02)02307-4.PubMedCrossRefGoogle Scholar
  60. 60.
    Rasmussen SB, Kordon E, Callahan R, Smith GH. Evidence for the transforming activity of a truncated Int6 gene, in vitro. Oncogene 2001;20(38):5291–301. doi:10.1038/sj.onc.1204624.PubMedCrossRefGoogle Scholar
  61. 61.
    Mack DL, Boulanger CA, Callahan R, Smith GH. Expression of truncated Int6/eIF3e in mammary alveolar epithelium leads to persistent hyperplasia and tumorigenesis. Breast Cancer Res 2007;9(4):R42. doi:10.1186/bcr1742.PubMedCrossRefGoogle Scholar
  62. 62.
    Marchetti A, Buttitta F, Pellegrini S, Bertacca G, Callahan R. Reduced expression of INT-6/eIF3-p48 in human tumors. Int J Oncol 2001;18(1):175–9.PubMedGoogle Scholar
  63. 63.
    Buttitta F, Martella C, Barassi F, Felicioni L, Salvatore S, Rosini S, et al. Int6 expression can predict survival in early-stage non-small cell lung cancer patients. Clin Cancer Res 2005;11(9):3198–204. doi:10.1158/1078-0432.CCR-04-2308.PubMedCrossRefGoogle Scholar
  64. 64.
    Escot C, Hogg E, Callahan R. Mammary tumorigenesis in feral Mus cervicolor popaeus. J Virol 1986;58(2):619–25.PubMedGoogle Scholar
  65. 65.
    Marchetti A, Robbins J, Campbell G, Buttitta F, Squartini F, Bistocchi M, et al. Host genetic background effect on the frequency of mouse mammary tumor virus-induced rearrangements of the int-1 and int-2 loci in mouse mammary tumors. J Virol 1991;65(8):4550–4.PubMedGoogle Scholar
  66. 66.
    Kapoun AM, Shackleford GM. Preferential activation of Fgf8 by proviral insertion in mammary tumors of Wnt1 transgenic mice. Oncogene 1997;14(24):2985–9. doi:10.1038/sj.onc.1201146.PubMedCrossRefGoogle Scholar
  67. 67.
    Shackleford GM, MacArthur CA, Kwan HC, Varmus HE. Mouse mammary tumor virus infection accelerates mammary carcinogenesis in Wnt-1 transgenic mice by insertional activation of int-2/Fgf-3 and hst/Fgf-4. Proc Natl Acad Sci U S A 1993;90(2):740–4. doi:10.1073/pnas.90.2.740.PubMedCrossRefGoogle Scholar
  68. 68.
    Kwan H, Pecenka V, Tsukamoto A, Parslow TG, Guzman R, Lin TP, et al. Transgenes expressing the Wnt-1 and int-2 proto-oncogenes cooperate during mammary carcinogenesis in doubly transgenic mice. Mol Cell Biol 1992;12(1):147–54.PubMedGoogle Scholar
  69. 69.
    Chatterjee G, Rosner A, Han Y, Zelazny ET, Li B, Cardiff RD, et al. Acceleration of mouse mammary tumor virus-induced murine mammary tumorigenesis by a p53 172H transgene: influence of FVB background on tumor latency and identification of novel sites of proviral insertion. Am J Pathol 2002;161(6):2241–53.PubMedGoogle Scholar
  70. 70.
    Gadd M, Pisc C, Branda J, Ionescu-Tiba V, Nikolic Z, Yang C, et al. Regulation of cyclin D1 and p16(INK4A) is critical for growth arrest during mammary involution. Cancer Res 2001;61(24):8811–9.PubMedGoogle Scholar
  71. 71.
    Zelazny E, Li B, Anagnostopoulos AM, Coleman A, Perkins AS. Cooperating oncogenic events in murine mammary tumorigenesis: assessment of ErbB2, mutant p53, and mouse mammary tumor virus. Exp Mol Pathol 2001;70(3):183–93. doi:10.1006/exmp.2001.2357.PubMedCrossRefGoogle Scholar
  72. 72.
    Montagna C, Andrechek ER, Padilla-Nash H, Muller WJ, Ried T. Centrosome abnormalities, recurring deletions of chromosome 4, and genomic amplification of HER2/neu define mouse mammary gland adenocarcinomas induced by mutant HER2/neu. Oncogene 2002;21(6):890–8. doi:10.1038/sj.onc.1205146.PubMedCrossRefGoogle Scholar
  73. 73.
    Montagna C, Lyu MS, Hunter K, Lukes L, Lowther W, Reppert T, et al. The Septin 9 (MSF) gene is amplified and overexpressed in mouse mammary gland adenocarcinomas and human breast cancer cell lines. Cancer Res 2003;63(9):2179–87.PubMedGoogle Scholar
  74. 74.
    Weaver ZA, McCormack SJ, Liyanage M, du Manoir S, Coleman A, Schrock E, et al. A recurring pattern of chromosomal aberrations in mammary gland tumors of MMTV-cmyc transgenic mice. Genes Chromosomes Cancer 1999;25(3):251–60. doi:10.1002/(SICI)1098-2264(199907)25:3<251::AID-GCC7>3.0.CO;2-3. PubMedCrossRefGoogle Scholar
  75. 75.
    Podsypanina K, Li Y, Varmus HE. Evolution of somatic mutations in mammary tumors in transgenic mice is influenced by the inherited genotype. BMC Med 2004;2:24. doi:10.1186/1741-7015-2-24.PubMedCrossRefGoogle Scholar
  76. 76.
    van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 2002;347(25):1999–2009. doi:10.1056/NEJMoa021967.PubMedCrossRefGoogle Scholar
  77. 77.
    Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ, et al. The genomic landscapes of human breast and colorectal cancers. Science 2007;318(5853):1108–13. doi:10.1126/science.1145720.PubMedCrossRefGoogle Scholar
  78. 78.
    Etkind P, Du J, Khan A, Pillitteri J, Wiernik PH. Mouse mammary tumor virus-like ENV gene sequences in human breast tumors and in a lymphoma of a breast cancer patient. Clin Cancer Res 2000;6(4):1273–8.PubMedGoogle Scholar
  79. 79.
    Liu B, Wang Y, Melana SM, Pelisson I, Najfeld V, Holland JF, et al. Identification of a proviral structure in human breast cancer. Cancer Res 2001;61(4):1754–9.PubMedGoogle Scholar
  80. 80.
    Melana SM, Holland JF, Pogo BG. Search for mouse mammary tumor virus-like env sequences in cancer and normal breast from the same individuals. Clin Cancer Res 2001;7(2):283–4.PubMedGoogle Scholar
  81. 81.
    Wang Y, Go V, Holland JF, Melana SM, Pogo BG. Expression of mouse mammary tumor virus-like env gene sequences in human breast cancer. Clin Cancer Res 1998;4(10):2565–8.PubMedGoogle Scholar
  82. 82.
    Wang Y, Holland JF, Bleiweiss IJ, Melana S, Liu X, Pelisson I, et al. Detection of mammary tumor virus env gene-like sequences in human breast cancer. Cancer Res 1995;55(22):5173–9.PubMedGoogle Scholar
  83. 83.
    Wang Y, Jiang JD, Xu D, Li Y, Qu C, Holland JF, et al. A mouse mammary tumor virus-like long terminal repeat superantigen in human breast cancer. Cancer Res 2004;64(12):4105–11. doi:10.1158/0008-5472.CAN-03-3880.PubMedCrossRefGoogle Scholar
  84. 84.
    Zammarchi F, Pistello M, Piersigilli A, Murr R, Di Cristofano C, Naccarato AG, et al. MMTV-like sequences in human breast cancer: a fluorescent PCR/laser microdissection approach. J Pathol 2006;209(4):436–44. doi:10.1002/path.1997.PubMedCrossRefGoogle Scholar
  85. 85.
    Melana SM, Nepomnaschy I, Sakalian M, Abbott A, Hasa J, Holland JF, et al. Characterization of viral particles isolated from primary cultures of human breast cancer cells. Cancer Res 2007;67(18):8960–5. doi:10.1158/0008-5472.CAN-06-3892.PubMedCrossRefGoogle Scholar
  86. 86.
    Indik S, Gunzburg WH, Kulich P, Salmons B, Rouault F. Rapid spread of mouse mammary tumor virus in cultured human breast cells. Retrovirology 2007;4:73. doi:10.1186/1742-4690-4-73.PubMedCrossRefGoogle Scholar

Copyright information

© The Author(s) 2008

Authors and Affiliations

  1. 1.Mammary Gland Biology and Tumorigenesis LaboratoryNational Cancer InstituteBethesdaUSA
  2. 2.National Cancer InstituteBethesdaUSA

Personalised recommendations