Amphiregulin as a Novel Target for Breast Cancer Therapy

  • Nicole E. Willmarth
  • Stephen P. Ethier


Amphiregulin, an EGF family growth factor, binds and activates the epidermal growth factor receptor (EGFR or ErbB1). Activation of the EGFR by amphiregulin can occur through autocrine, paracrine and juxtacrine mechanisms. Amphiregulin plays a role in several biological processes including nerve regeneration, blastocyst implantation, and bone formation. Amphiregulin also plays an important role in mammary duct formation as well as the outgrowth and branching of several other human tissues such as the lung, kidney and prostate. This effect is most likely due to the induction of genes involved in invasion and migration such as cytokines and matrix metalloproteases. Clinical studies have suggested that amphiregulin also plays a role in human breast cancer progression and its expression has been associated with aggressive disease. Therefore, amphiregulin may be a novel and effective target for the treatment of breast cancer and could represent an alternative to targeting the EGFR.


Amphiregulin Breast cancer EGFR 







epidermal growth factor


epidermal growth factor receptor


heparin binding epidermal growth factor


transforming growth factor alpha


Src homology 2


phosphotyrosine binding


phorbol 12-myristate-13-acetate


cyclic AMP


cAMP response element


serum responsive element


highly conserved specificity protein 1 element


Wnt responsive element


heparin sulfate proteoglycan


human mammary epithelial


TNF-α converting enzyme


extracellular matrix


  1. 1.
    Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2001;2(2):127–37.PubMedCrossRefGoogle Scholar
  2. 2.
    Normanno N, De Luca A, Bianco C, Strizzi L, Mancino M, Maiello MR, et al. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 2006;366(1):2–16.PubMedCrossRefGoogle Scholar
  3. 3.
    Davis CG. The many faces of epidermal growth factor repeats. New Biol 1990;2(5):410–9.PubMedGoogle Scholar
  4. 4.
    Massague J. Transforming growth factor-alpha. A model for membrane-anchored growth factors. J Biol Chem 1990;265(35):21393–6.PubMedGoogle Scholar
  5. 5.
    Chan SK, Hill ME, Gullick WJ. The role of the epidermal growth factor receptor in breast cancer. J Mammary Gland Biol Neoplasia 2006;11(1):3–11.PubMedCrossRefGoogle Scholar
  6. 6.
    Salomon DS, Brandt R, Ciardiello F, Normanno N. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol 1995;19(3):183–232.PubMedCrossRefGoogle Scholar
  7. 7.
    Miyamoto S, Hirata M, Yamazaki A, Kageyama T, Hasuwa H, Mizushima H, et al. Heparin-binding EGF-like growth factor is a promising target for ovarian cancer therapy. Cancer Res 2004;64(16):5720–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Shoyab M, McDonald VL, Bradley JG, Todaro GJ. Amphiregulin: a bifunctional growth-modulating glycoprotein produced by the phorbol 12-myristate 13-acetate-treated human breast adenocarcinoma cell line MCF-7. Proc Natl Acad Sci U S A 1988;85(17):6528–32.PubMedCrossRefGoogle Scholar
  9. 9.
    Plowman GD, Green JM, McDonald VL, Neubauer MG, Disteche CM, Todaro GJ, et al. The amphiregulin gene encodes a novel epidermal growth factor-related protein with tumor-inhibitory activity. Mol Cell Biol 1990;10(5):1969–81.PubMedGoogle Scholar
  10. 10.
    Harris RC, Chung E, Coffey RJ. EGF receptor ligands. Exp Cell Res 2003;284(1):2–13.PubMedCrossRefGoogle Scholar
  11. 11.
    Johansson CC, Yndestad A, Enserink JM, Ree AH, Aukrust P, Tasken K. The epidermal growth factor-like growth factor amphiregulin is strongly induced by the adenosine 3′,5′-monophosphate pathway in various cell types. Endocrinology 2004;145(11):5177–84.PubMedCrossRefGoogle Scholar
  12. 12.
    Freimann S, Ben-Ami I, Dantes A, Ron-El R, Amsterdam A. EGF-like factor epiregulin and amphiregulin expression is regulated by gonadotropins/cAMP in human ovarian follicular cells. Biochem Biophys Res Commun 2004;324(2):829–34.PubMedCrossRefGoogle Scholar
  13. 13.
    Qin L, Partridge NC. Stimulation of amphiregulin expression in osteoblastic cells by parathyroid hormone requires the protein kinase A and cAMP response element-binding protein signaling pathway. J Cell Biochem 2005;96(3):632–40.PubMedCrossRefGoogle Scholar
  14. 14.
    Shao J, Lee SB, Guo H, Evers BM, Sheng H. Prostaglandin E2 stimulates the growth of colon cancer cells via induction of amphiregulin. Cancer Res 2003;63(17):5218–23.PubMedGoogle Scholar
  15. 15.
    Du B, Altorki NK, Kopelovich L, Subbaramaiah K, Dannenberg AJ. Tobacco smoke stimulates the transcription of amphiregulin in human oral epithelial cells: evidence of a cyclic AMP-responsive element binding protein-dependent mechanism. Cancer Res 2005;65(13):5982–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Lee SB, Huang K, Palmer R, Truong VB, Herzlinger D, Kolquist KA, et al. The Wilms tumor suppressor WT1 encodes a transcriptional activator of amphiregulin. Cell 1999;98(5):663–73.PubMedCrossRefGoogle Scholar
  17. 17.
    Kansra S, Stoll SW, Johnson JL, Elder JT. Src family kinase inhibitors block amphiregulin-mediated autocrine ErbB signaling in normal human keratinocytes. Mol Pharmacol 2005;67(4):1145–57.PubMedCrossRefGoogle Scholar
  18. 18.
    Normanno N, Selvam MP, Qi CF, Saeki T, Johnson G, Kim N, et al. Amphiregulin as an autocrine growth factor for c-Ha-ras- and c-erbB-2-transformed human mammary epithelial cells. Proc Natl Acad Sci U S A 1994;91(7):2790–4.PubMedCrossRefGoogle Scholar
  19. 19.
    Sorensen BS, Torring N, Bor MV, Nexo E. Quantitation of the mRNA expression of the epidermal growth factor system: selective induction of heparin-binding epidermal growth factor-like growth factor and amphiregulin expression by growth factor stimulation of prostate stromal cells. J Lab Clin Med 2000;136(3):209–17.PubMedCrossRefGoogle Scholar
  20. 20.
    Johnson GR, Prigent SA, Gullick WJ, Stromberg K. Characterization of high and low molecular weight forms of amphiregulin that differ in glycosylation and peptide core length. Evidence that the NH2-terminal region is not critical for bioactivity. J Biol Chem 1993;268(25):18835–43.PubMedGoogle Scholar
  21. 21.
    Brown CL, Meise KS, Plowman GD, Coffey RJ, Dempsey PJ. Cell surface ectodomain cleavage of human amphiregulin precursor is sensitive to a metalloprotease inhibitor. Release of a predominant N-glycosylated 43-kDa soluble form. J Biol Chem 1998;273(27):17258–68.PubMedCrossRefGoogle Scholar
  22. 22.
    Shoyab M, Plowman GD, McDonald VL, Bradley JG, Todaro GJ. Structure and function of human amphiregulin: a member of the epidermal growth factor family. Science 1989;243(4894 Pt 1):1074–6.PubMedCrossRefGoogle Scholar
  23. 23.
    Martinez-Lacaci I, Johnson GR, Salomon DS, Dickson RB. Characterization of a novel amphiregulin-related molecule in 12-O-tetradecanoylphorbol-13-acetate-treated breast cancer cells. J Cell Physiol 1996;169(3):497–508.PubMedCrossRefGoogle Scholar
  24. 24.
    Rademacher TW, Parekh RB, Dwek RA. Glycobiology. Annu Rev Biochem 1988;57:785–838.PubMedCrossRefGoogle Scholar
  25. 25.
    Thorne BA, Plowman GD. The heparin-binding domain of amphiregulin necessitates the precursor pro-region for growth factor secretion. Mol Cell Biol 1994;14(3):1635–46.PubMedGoogle Scholar
  26. 26.
    Johnson GR, Wong L. Heparan sulfate is essential to amphiregulin-induced mitogenic signaling by the epidermal growth factor receptor. J Biol Chem 1994;269(43):27149–54.PubMedGoogle Scholar
  27. 27.
    Schuger L, Johnson GR, Gilbride K, Plowman GD, Mandel R. Amphiregulin in lung branching morphogenesis: interaction with heparan sulfate proteoglycan modulates cell proliferation. Development 1996;122(6):1759–67.PubMedGoogle Scholar
  28. 28.
    Cook PW, Ashton NM, Karkaria CE, Siess DC, Shipley GD. Differential effects of a heparin antagonist (hexadimethrine) or chlorate on amphiregulin, basic fibroblast growth factor, and heparin-binding EGF-like growth factor activity. J Cell Physiol 1995;163(2):418–29.PubMedCrossRefGoogle Scholar
  29. 29.
    Normanno N, Ciardiello F, Brandt R, Salomon DS. Epidermal growth factor-related peptides in the pathogenesis of human breast cancer. Breast Cancer Res Treat 1994;29(1):11–27.PubMedCrossRefGoogle Scholar
  30. 30.
    Johnson GR, Saeki T, Auersperg N, Gordon AW, Shoyab M, Salomon DS, et al. Response to and expression of amphiregulin by ovarian carcinoma and normal ovarian surface epithelial cells: nuclear localization of endogenous amphiregulin. Biochem Biophys Res Commun 1991;180(2):481–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Nylander N, Smith LT, Underwood RA, Piepkorn M. Topography of amphiregulin expression in cultured human keratinocytes: colocalization with the epidermal growth factor receptor and CD44. In Vitro Cell Dev Biol Anim 1998;34(2):182–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Modrell B, McDonald VL, Shoyab M. The interaction of amphiregulin with nuclei and putative nuclear localization sequence binding proteins. Growth Factors 1992;7(4):305–14.PubMedCrossRefGoogle Scholar
  33. 33.
    Kimura H, Fischer WH, Schubert D. Structure, expression and function of a schwannoma-derived growth factor. Nature 1990;348(6298):257–60.PubMedCrossRefGoogle Scholar
  34. 34.
    Brown CL, Coffey RJ, Dempsey PJ. The proamphiregulin cytoplasmic domain is required for basolateral sorting, but is not essential for constitutive or stimulus-induced processing in polarized Madin-Darby canine kidney cells. J Biol Chem 2001;276(31):29538–49.PubMedCrossRefGoogle Scholar
  35. 35.
    Sanderson MP, Dempsey PJ, Dunbar AJ. Control of ErbB signaling through metalloprotease mediated ectodomain shedding of EGF-like factors. Growth Factors 2006;24(2):121–36.PubMedCrossRefGoogle Scholar
  36. 36.
    Funatomi H, Itakura J, Ishiwata T, Pastan I, Thompson SA, Johnson GR, et al. Amphiregulin antisense oligonucleotide inhibits the growth of T3M4 human pancreatic cancer cells and sensitizes the cells to EGF receptor-targeted therapy. Int J Cancer 1997;72(3):512–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Culouscou JM, Remacle-Bonnet M, Carlton GW, Plowman GD, Shoyab M. Colorectum cell-derived growth factor (CRDGF) is homologous to amphiregulin, a member of the epidermal growth factor family. Growth Factors 1992;7(3):195–205.PubMedCrossRefGoogle Scholar
  38. 38.
    Johnson GR, Saeki T, Gordon AW, Shoyab M, Salomon DS, Stromberg K. Autocrine action of amphiregulin in a colon carcinoma cell line and immunocytochemical localization of amphiregulin in human colon. J Cell Biol 1992;118(3):741–51.PubMedCrossRefGoogle Scholar
  39. 39.
    Damstrup L, Kuwada SK, Dempsey PJ, Brown CL, Hawkey CJ, Poulsen HS, et al. Amphiregulin acts as an autocrine growth factor in two human polarizing colon cancer lines that exhibit domain selective EGF receptor mitogenesis. Br J Cancer 1999;80(7):1012–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Castillo J, Erroba E, Perugorria MJ, Santamaria M, Lee DC, Prieto J, et al. Amphiregulin contributes to the transformed phenotype of human hepatocellular carcinoma cells. Cancer Res 2006;66(12):6129–38.PubMedCrossRefGoogle Scholar
  41. 41.
    Akagi M, Yokozaki H, Kitadai Y, Ito R, Yasui W, Haruma K, et al. Expression of amphiregulin in human gastric cancer cell lines. Cancer 1995;75(6 Suppl):1460–6.PubMedGoogle Scholar
  42. 42.
    Tsao MS, Zhu H, Viallet J. Autocrine growth loop of the epidermal growth factor receptor in normal and immortalized human bronchial epithelial cells. Exp Cell Res 1996;223(2):268–73.PubMedCrossRefGoogle Scholar
  43. 43.
    Varley C, Hill G, Pellegrin S, Shaw NJ, Selby PJ, Trejdosiewicz LK, et al. Autocrine regulation of human urothelial cell proliferation and migration during regenerative responses in vitro. Exp Cell Res 2005;306(1):216–29.PubMedCrossRefGoogle Scholar
  44. 44.
    Dong J, Opresko LK, Dempsey PJ, Lauffenburger DA, Coffey RJ, Wiley HS. Metalloprotease-mediated ligand release regulates autocrine signaling through the epidermal growth factor receptor. Proc Natl Acad Sci U S A 1999;96(11):6235–40.PubMedCrossRefGoogle Scholar
  45. 45.
    Kansra S, Stoll SW, Johnson JL, Elder JT. Autocrine extracellular signal-regulated kinase (ERK) activation in normal human keratinocytes: metalloproteinase-mediated release of amphiregulin triggers signaling from ErbB1 to ERK. Mol Biol Cell 2004;15(9):4299–309.PubMedCrossRefGoogle Scholar
  46. 46.
    Gschwind A, Hart S, Fischer OM, Ullrich A. TACE cleavage of proamphiregulin regulates GPCR-induced proliferation and motility of cancer cells. Embo J 2003;22(10):2411–21.PubMedCrossRefGoogle Scholar
  47. 47.
    Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF, et al. A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 1997;385(6618):729–33.PubMedCrossRefGoogle Scholar
  48. 48.
    Moss ML, Jin SL, Milla ME, Bickett DM, Burkhart W, Carter HL, et al. Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-alpha. Nature 1997;385(6618):733–6.PubMedCrossRefGoogle Scholar
  49. 49.
    Peschon JJ, Slack JL, Reddy P, Stocking KL, Sunnarborg SW, Lee DC, et al. An essential role for ectodomain shedding in mammalian development. Science 1998;282(5392):1281–4.PubMedCrossRefGoogle Scholar
  50. 50.
    Jackson LF, Qiu TH, Sunnarborg SW, Chang A, Zhang C, Patterson C, et al. Defective valvulogenesis in HB-EGF and TACE-null mice is associated with aberrant BMP signaling. Embo J 2003;22(11):2704–16.PubMedCrossRefGoogle Scholar
  51. 51.
    Luetteke NC, Qiu TH, Fenton SE, Troyer KL, Riedel RF, Chang A, et al. Targeted inactivation of the EGF and amphiregulin genes reveals distinct roles for EGF receptor ligands in mouse mammary gland development. Development 1999;126(12):2739–50.PubMedGoogle Scholar
  52. 52.
    Sahin U, Blobel CP. Ectodomain shedding of the EGF-receptor ligand epigen is mediated by ADAM17. FEBS Lett 2007;581(1):41–4.PubMedCrossRefGoogle Scholar
  53. 53.
    Izumi Y, Hirata M, Hasuwa H, Iwamoto R, Umata T, Miyado K, et al. A metalloprotease-disintegrin, MDC9/meltrin-gamma/ADAM9 and PKCdelta are involved in TPA-induced ectodomain shedding of membrane-anchored heparin-binding EGF-like growth factor. Embo J 1998;17(24):7260–72.PubMedCrossRefGoogle Scholar
  54. 54.
    Asakura M, Kitakaze M, Takashima S, Liao Y, Ishikura F, Yoshinaka T, et al. Cardiac hypertrophy is inhibited by antagonism of ADAM12 processing of HB-EGF: metalloproteinase inhibitors as a new therapy. Nat Med 2002;8(1):35–40.PubMedCrossRefGoogle Scholar
  55. 55.
    Lemjabbar H, Basbaum C. Platelet-activating factor receptor and ADAM10 mediate responses to Staphylococcus aureus in epithelial cells. Nat Med 2002;8(1):41–6.PubMedCrossRefGoogle Scholar
  56. 56.
    Merchant NB, Rogers CM, Trivedi B, Morrow J, Coffey RJ. Ligand-dependent activation of the epidermal growth factor receptor by secondary bile acids in polarizing colon cancer cells. Surgery 2005;138(3):415–21.PubMedCrossRefGoogle Scholar
  57. 57.
    Chokki M, Eguchi H, Hamamura I, Mitsuhashi H, Kamimura T. Human airway trypsin-like protease induces amphiregulin release through a mechanism involving protease-activated receptor-2-mediated ERK activation and TNF alpha-converting enzyme activity in airway epithelial cells. Febs J 2005;272(24):6387–99.PubMedCrossRefGoogle Scholar
  58. 58.
    Lemjabbar H, Li D, Gallup M, Sidhu S, Drori E, Basbaum C. Tobacco smoke-induced lung cell proliferation mediated by tumor necrosis factor alpha-converting enzyme and amphiregulin. J Biol Chem 2003;278(28):26202–7.PubMedCrossRefGoogle Scholar
  59. 59.
    Schafer B, Marg B, Gschwind A, Ullrich A. Distinct ADAM metalloproteinases regulate G protein-coupled receptor-induced cell proliferation and survival. J Biol Chem 2004;279(46):47929–38.PubMedCrossRefGoogle Scholar
  60. 60.
    Inui S, Higashiyama S, Hashimoto K, Higashiyama M, Yoshikawa K, Taniguchi N. Possible role of coexpression of CD9 with membrane-anchored heparin-binding EGF-like growth factor and amphiregulin in cultured human keratinocyte growth. J Cell Physiol 1997;171(3):291–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Willmarth NE, Ethier SP. Autocrine and juxtacrine effects of amphiregulin on the proliferative, invasive, and migratory properties of normal and neoplastic human mammary epithelial cells. J Biol Chem 2006;281(49):37728–37.PubMedCrossRefGoogle Scholar
  62. 62.
    Qin L, Tamasi J, Raggatt L, Li X, Feyen JH, Lee DC, et al. Amphiregulin is a novel growth factor involved in normal bone development and in the cellular response to parathyroid hormone stimulation. J Biol Chem 2005;280(5):3974–81.PubMedCrossRefGoogle Scholar
  63. 63.
    Nilsson A, Kanje M. Amphiregulin acts as an autocrine survival factor for adult sensory neurons. Neuroreport 2005;16(3):213–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Nilsson A, Moller K, Dahlin L, Lundborg G, Kanje M. Early changes in gene expression in the dorsal root ganglia after transection of the sciatic nerve; effects of amphiregulin and PAI-1 on regeneration. Brain Res Mol Brain Res 2005;136(1–2):65–74.PubMedCrossRefGoogle Scholar
  65. 65.
    Das SK, Chakraborty I, Paria BC, Wang XN, Plowman G, Dey SK. Amphiregulin is an implantation-specific and progesterone-regulated gene in the mouse uterus. Mol Endocrinol 1995;9(6):691–705.PubMedCrossRefGoogle Scholar
  66. 66.
    Tsark EC, Adamson ED, Withers GE 3rd, Wiley LM. Expression and function of amphiregulin during murine preimplantation development. Mol Reprod Dev 1997;47(3):271–83.PubMedCrossRefGoogle Scholar
  67. 67.
    Rittie L, Varani J, Kang S, Voorhees JJ, Fisher GJ. Retinoid-induced epidermal hyperplasia is mediated by epidermal growth factor receptor activation via specific induction of its ligands heparin-binding EGF and amphiregulin in human skin in vivo. J Invest Dermatol 2006;126(4):732–9.PubMedCrossRefGoogle Scholar
  68. 68.
    Chung E, Cook PW, Parkos CA, Park YK, Pittelkow MR, Coffey RJ. Amphiregulin causes functional downregulation of adherens junctions in psoriasis. J Invest Dermatol 2005;124(6):1134–40.PubMedCrossRefGoogle Scholar
  69. 69.
    Sternlicht MD, Sunnarborg SW, Kouros-Mehr H, Yu Y, Lee DC, Werb Z. Mammary ductal morphogenesis requires paracrine activation of stromal EGFR via ADAM17-dependent shedding of epithelial amphiregulin. Development 2005;132(17):3923–33.PubMedCrossRefGoogle Scholar
  70. 70.
    Grovdal LM, Stang E, Sorkin A, Madshus IH. Direct interaction of Cbl with pTyr 1045 of the EGF receptor (EGFR) is required to sort the EGFR to lysosomes for degradation. Exp Cell Res 2004;300(2):388–95.PubMedCrossRefGoogle Scholar
  71. 71.
    Sebastian S, Settleman J, Reshkin SJ, Azzariti A, Bellizzi A, Paradiso A. The complexity of targeting EGFR signalling in cancer: from expression to turnover. Biochim Biophys Acta 2006;1766(1):120–39.PubMedGoogle Scholar
  72. 72.
    Stern KA, Place TL, Lill NL. EGF and amphiregulin differentially regulate Cbl recruitment to endosomes and EGF receptor fate. Biochem J 2008;410:585–94.PubMedCrossRefGoogle Scholar
  73. 73.
    Adam RM, Borer JG, Williams J, Eastham JA, Loughlin KR, Freeman MR. Amphiregulin is coordinately expressed with heparin-binding epidermal growth factor-like growth factor in the interstitial smooth muscle of the human prostate. Endocrinology 1999;140(12):5866–75.PubMedCrossRefGoogle Scholar
  74. 74.
    Mahtouk K, Hose D, Reme T, De Vos J, Jourdan M, Moreaux J, et al. Expression of EGF-family receptors and amphiregulin in multiple myeloma. Amphiregulin is a growth factor for myeloma cells. Oncogene 2005;24(21):3512–24.PubMedCrossRefGoogle Scholar
  75. 75.
    Blanchet S, Ramgolam K, Baulig A, Marano F, Baeza-Squiban A. Fine particulate matter induces amphiregulin secretion by bronchial epithelial cells. Am J Respir Cell Mol Biol 2004;30(4):421–7.PubMedCrossRefGoogle Scholar
  76. 76.
    Chokki M, Mitsuhashi H, Kamimura T. Metalloprotease-dependent amphiregulin release mediates tumor necrosis factor-alpha-induced IL-8 secretion in the human airway epithelial cell line NCI-H292. Life Sci 2006;78(26):3051–7.PubMedCrossRefGoogle Scholar
  77. 77.
    Streicher KL, Willmarth NE, Garcia J, Boerner JL, Dewey TG, Ethier SP. Activation of a nuclear factor kappaB/interleukin-1 positive feedback loop by amphiregulin in human breast cancer cells. Mol Cancer Res 2007;5(8):847–61.PubMedCrossRefGoogle Scholar
  78. 78.
    Coffey RJ, Hawkey CJ, Damstrup L, Graves-Deal R, Daniel VC, Dempsey PJ, et al. Epidermal growth factor receptor activation induces nuclear targeting of cyclooxygenase-2, basolateral release of prostaglandins, and mitogenesis in polarizing colon cancer cells. Proc Natl Acad Sci U S A 1997;94(2):657–62.PubMedCrossRefGoogle Scholar
  79. 79.
    Tsai ST, Yang KY, Jin YT, Lin YC, Chang MT, Wu LW. Amphiregulin as a tumor promoter for oral squamous cell carcinoma: involvement of cyclooxygenase 2. Oral Oncol 2006;42(4):381–90.PubMedCrossRefGoogle Scholar
  80. 80.
    Giusti C, Desruisseau S, Ma L, Calvo F, Martin PM, Berthois Y. Transforming growth factor beta-1 and amphiregulin act in synergy to increase the production of urokinase-type plasminogen activator in transformed breast epithelial cells. Int J Cancer 2003;105(6):769–78.PubMedCrossRefGoogle Scholar
  81. 81.
    Silvy M, Giusti C, Martin PM, Berthois Y. Differential regulation of cell proliferation and protease secretion by epidermal growth factor and amphiregulin in tumoral versus normal breast epithelial cells. Br J Cancer 2001;84(7):936–45.PubMedCrossRefGoogle Scholar
  82. 82.
    Chung E, Graves-Deal R, Franklin JL, Coffey RJ. Differential effects of amphiregulin and TGF-alpha on the morphology of MDCK cells. Exp Cell Res 2005;309(1):149–60.PubMedCrossRefGoogle Scholar
  83. 83.
    Billings SD, Southall MD, Li T, Cook PW, Baldridge L, Moores WB, et al. Amphiregulin overexpression results in rapidly growing keratinocytic tumors: an in vivo xenograft model of keratoacanthoma. Am J Pathol 2003;163(6):2451–8.PubMedGoogle Scholar
  84. 84.
    Ishikawa N, Daigo Y, Takano A, Taniwaki M, Kato T, Hayama S, et al. Increases of amphiregulin and transforming growth factor-alpha in serum as predictors of poor response to gefitinib among patients with advanced non-small cell lung cancers. Cancer Res 2005;65(20):9176–84.PubMedCrossRefGoogle Scholar
  85. 85.
    Kondapaka SB, Fridman R, Reddy KB. Epidermal growth factor and amphiregulin up-regulate matrix metalloproteinase-9 (MMP-9) in human breast cancer cells. Int J Cancer 1997;70(6):722–6.PubMedCrossRefGoogle Scholar
  86. 86.
    Ma L, Gauville C, Berthois Y, Millot G, Johnson GR, Calvo F. Antisense expression for amphiregulin suppresses tumorigenicity of a transformed human breast epithelial cell line. Oncogene 1999;18(47):6513–20.PubMedCrossRefGoogle Scholar
  87. 87.
    Kenney NJ, Smith GH, Maroulakou IG, Green JH, Muller WJ, Callahan R, et al. Detection of amphiregulin and Cripto-1 in mammary tumors from transgenic mice. Mol Carcinog 1996;15(1):44–56.PubMedCrossRefGoogle Scholar
  88. 88.
    Qi CF, Liscia DS, Normanno N, Merlo G, Johnson GR, Gullick WJ, et al. Expression of transforming growth factor alpha, amphiregulin and cripto-1 in human breast carcinomas. Br J Cancer 1994;69(5):903–10.PubMedGoogle Scholar
  89. 89.
    LeJeune S, Leek R, Horak E, Plowman G, Greenall M, Harris AL. Amphiregulin, epidermal growth factor receptor, and estrogen receptor expression in human primary breast cancer. Cancer Res 1993;53(15):3597–602.PubMedGoogle Scholar
  90. 90.
    Panico L, D’Antonio A, Salvatore G, Mezza E, Tortora G, De Laurentiis M, et al. Differential immunohistochemical detection of transforming growth factor alpha, amphiregulin and CRIPTO in human normal and malignant breast tissues. Int J Cancer 1996;65(1):51–6.PubMedCrossRefGoogle Scholar
  91. 91.
    Ma L, de Roquancourt A, Bertheau P, Chevret S, Millot G, Sastre-Garau X, et al. Expression of amphiregulin and epidermal growth factor receptor in human breast cancer: analysis of autocriny and stromal-epithelial interactions. J Pathol 2001;194(4):413–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Visscher DW, Sarkar FH, Kasunic TC, Reddy KB. Clinicopathologic analysis of amphiregulin and heregulin immunostaining in breast neoplasia. Breast Cancer Res Treat 1997;45(1):75–80.PubMedCrossRefGoogle Scholar
  93. 93.
    Normanno N, Kim N, Wen D, Smith K, Harris AL, Plowman G, et al. Expression of messenger RNA for amphiregulin, heregulin, and cripto-1, three new members of the epidermal growth factor family, in human breast carcinomas. Breast Cancer Res Treat 1995;35(3):293–7.PubMedCrossRefGoogle Scholar
  94. 94.
    LaMarca HL, Rosen JM. Estrogen regulation of mammary gland development and breast cancer: amphiregulin takes center stage. Breast Cancer Res 2007;9(4):304.PubMedCrossRefGoogle Scholar
  95. 95.
    Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature 2000;406(6797):747–52.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Cancer BiologyThomas Jefferson UniversityPhiladelphiaUSA
  2. 2.Breast Cancer Program, Karmanos Cancer Institute, Department of PathologyWayne State University School of MedicineDetroitUSA

Personalised recommendations