Journal of Mammary Gland Biology and Neoplasia

, Volume 12, Issue 4, pp 305–314 | Cite as

Genomewide Analysis of Secretory Activation in Mouse Models

  • Palaniappan Ramanathan
  • Ian Martin
  • Peter Thomson
  • Rosanne Taylor
  • Christopher Moran
  • Peter Williamson
Article

Abstract

Mouse models have been widely used to elucidate the biology of mammary gland development and secretory activation. Recent advances in the availability of genomic resources for mice will generate a renewed effort to define the genetic basis of lactation phenotypes and help identify candidate gene pathways. Specific aspects of these advances are relevant to the dairy industry and may provide a rationale for improving milk production in the dairy cow. Differences are evident in mammary gland morphology and various characteristics of milk production of inbred mouse strains, but few studies have undertaken any systematic phenotypic analysis of the different inbred strains of mice for lactation performance. Whole genome association analysis using recent strain-specific genotype data and detailed phenotype measurements from available inbred strains, along with transcript profiling of divergent inbred strains for lactation performance, provides a valuable approach to identify putative candidate genes and associated pathways underlying dairy QTL intervals. Here we discuss the utility of integrating mouse phenomic and genomic resources for understanding secretory activation in the mammary gland.

Keywords

Secretory activation whole genome association Transcriptome analysis 

Abbreviations

QTL

quantitative trait loci

Mprf

maternal performance

References

  1. 1.
    Khatkar MS, Thomson PC, Tammen I, Raadsma HW. Quantitative trait loci mapping in dairy cattle: review and meta-analysis. Genet Sel Evol. 2004;36:163–90.PubMedCrossRefGoogle Scholar
  2. 2.
    Polineni P, Aragonda P, Xavier SR, Furuta R, Adelson DL. The bovine QTL viewer: a web accessible database of bovine quantitative trait loci. BMC Bioinformatics. 2006;7:283–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Hu ZL, Fritz ER, Reecy JM. AnimalQTLdb: a livestock QTL database tool set for positional QTL information mining and beyond. Nucleic Acids Res. 2007;35:D604–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Grisart B, Coppieters W, Farnir F, Karim L, Ford C, Berzi P, et al. Positional candidate cloning of a QTL in dairy cattle: identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition. Genome Res. 2002;12:222–31.PubMedCrossRefGoogle Scholar
  5. 5.
    Khatib H, Heifetz E, Dekkers JC. Association of the protease inhibitor gene with production traits in Holstein dairy cattle. J Dairy Sci. 2005;88:1208–13.PubMedGoogle Scholar
  6. 6.
    Lathrop AE, Loeb L. Further investigations on the origin of tumors in mice. III. On the part played by internal secretion in the spontaneous development of tumors. J Cancer Res. 1916;1:1–19.PubMedGoogle Scholar
  7. 7.
    Cole HA. The mammary gland of the mouse, during the oestrous cycle, pregnancy and lactation. Proc R Soc Lond B Biol Sci. 1933;114:136–61.CrossRefGoogle Scholar
  8. 8.
    Gardner WU, Strong LC. The normal development of the mammary glands of virgin female mice of ten strains varying in susceptibility to spontaneous neoplasms. Am J Cancer. 1935;25:282–90.Google Scholar
  9. 9.
    Nandi S. Endocrine control of mammarygland development and function in the C3H/ He Crgl mouse. J Natl Cancer Inst. 1958;21:1039–63.PubMedGoogle Scholar
  10. 10.
    Nandi S, Bern HA. The hormones responsible for lactogenesis in BALB/cCrgl mice. Gen Comp Endocrinol. 1961;1:195–210.PubMedCrossRefGoogle Scholar
  11. 11.
    Falconer DS. Milk production in mice. J Agr Sci. 1947;37:224–35.Google Scholar
  12. 12.
    Bateman N. The measurement of milk production of mice through preweaning growth of suckling young. Physiol Zool. 1954;27:163–73.Google Scholar
  13. 13.
    Cox D, Legates J, Cockerham C. Maternal influence on body weight. J Animal Sci. 1959;18:519–27.Google Scholar
  14. 14.
    Young CW, Legates JE. Genetic, phenotypic, and maternal interrelationships of growth in mice. Genetics. 1965;52:563–76.PubMedGoogle Scholar
  15. 15.
    el-Oksh HA, Sutherland TM, Williams JS. Prenatal and postnatal maternal influence on growth in mice. Genetics. 1967;57:79–94.PubMedGoogle Scholar
  16. 16.
    Hanrahan JP, Eisen EJ. A lactation curve for mice. Lab Anim Care. 1970;20:101–4.PubMedGoogle Scholar
  17. 17.
    Munford RE. Changes in the mammary glands of rats and mice during pregnancy, lactation and involution. 1. Histological structure. J Endocrinol. 1963;28:1–15.PubMedGoogle Scholar
  18. 18.
    Nagai J, Sarkar NK. Relationship between milk yield and mammary gland development in mice. J Dairy Sci. 1978;61:733–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Knight CH, Maltz E, Docherty AH. Milk yield and composition in mice: effects of litter size and lactation number. Comp Biochem Physiol A. 1986;84:127–33.PubMedCrossRefGoogle Scholar
  20. 20.
    Palmer CA, Neville MC, Anderson SM, McManaman JL. Analysis of lactation defects in transgenic mice. J Mammary Gland Biol Neoplasia. 2006;11:269–82.PubMedCrossRefGoogle Scholar
  21. 21.
    Peripato AC, De Brito RA, Vaughn TT, Pletscher LS, Matioli SR, Cheverud JM. Quantitative trait loci for maternal performance for offspring survival in mice. Genetics. 2002;162:1341–53.PubMedGoogle Scholar
  22. 22.
    Suto J, Yamanaka H, Sekikawa K. Genetic analysis of inferior nurturing ability in RR mice. Reproduction. 2002;123:52–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Suto J, Sekikawa K. Further mapping and characterization of Naq1, a quantitative trait locus responsible for maternal inferior nurturing ability in RR mice. J Vet Med Sci. 2004;66:1033–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Liljander M, Sallstrom MA, Andersson S, Wernhoff P, Andersson A, Holmdahl R, et al. Identification of genetic regions of importance for reproductive performance in female mice. Genetics. 2006;173:901–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Darvasi A, Soller M. Advanced intercross lines, an experimental population for fine genetic mapping. Genetics. 1995;141:1199–207.PubMedGoogle Scholar
  26. 26.
    Mott R, Talbot CJ, Turri MG, Collins AC, Flint J. A method for fine mapping quantitative trait loci in outbred animal stocks. Proc Natl Acad Sci U S A. 2000;97:12649–54.PubMedCrossRefGoogle Scholar
  27. 27.
    Williams RW, Gu J, Qi S, Lu L. The genetic structure of recombinant inbred mice: high-resolution consensus maps for complex trait analysis. Genome Biol 2 Res. 2001;0046:1–18.Google Scholar
  28. 28.
    Paigen K, Eppig JT. A mouse phenome project. Mamm Genome. 2000;11:715–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Bogue MA, Grubb SC. The mouse phenome project. Genetica. 2004;122:71–4.PubMedCrossRefGoogle Scholar
  30. 30.
    Bogue MA, Grubb SC, Maddatu TP, Bult CJ. Mouse Phenome Database (MPD). Nucleic Acids Res. 2007;35:D643–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Brown SD, Chambon P, de Angelis MH. EMPReSS: standardized phenotype screens for functional annotation of the mouse genome. Nat Genet. 2005;37:1155.PubMedCrossRefGoogle Scholar
  32. 32.
    Eisen EJ, Nagai J, Bakker H, Hayes JF. Effect of litter size at birth on lactation in mice. J Anim Sci. 1980;50:680–8.PubMedGoogle Scholar
  33. 33.
    Grupe A, Germer S, Usuka J, Aud D, Belknap JK, Klein RF, et al. In silico mapping of complex disease-related traits in mice. Science. 2001;292:1915–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Liao G, Wang J, Guo J, Allard J, Cheng J, Ng A, et al. In silico genetics: identification of a functional element regulating H2-Ealpha gene expression. Science. 2004;306:690–5.PubMedCrossRefGoogle Scholar
  35. 35.
    Pletcher MT, McClurg P, Batalov S, Su AI, Barnes SW, Lagler E, et al. Use of a dense single nucleotide polymorphism map for in silico mapping in the mouse. PLoS Biol. 2004;2:e393.PubMedCrossRefGoogle Scholar
  36. 36.
    Payseur BA, Place M. Prospects for association mapping in classical inbred mouse strains. Genetics. 2007;175:1999–2008.PubMedCrossRefGoogle Scholar
  37. 37.
    Cervino AC, Darvasi A, Fallahi M, Mader CC, Tsinoremas NF. An integrated in silico gene mapping strategy in inbred mice. Genetics. 2007;175:321–33.PubMedCrossRefGoogle Scholar
  38. 38.
    Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21:263–5.PubMedCrossRefGoogle Scholar
  39. 39.
    Caramins M, Martin ICA, Wade C, Dilati K, Chang G, Cheung CC, et al. Fine mapping of platelet count QTL by use of in silico association studies in mice. (in press).Google Scholar
  40. 40.
    Liu P, Wang Y, Vikis H, Maciag A, Wang D, Lu Y, et al. Candidate lung tumor susceptibility genes identified through whole-genome association analyses in inbred mice. Nat Genet. 2006;38:888–95.PubMedCrossRefGoogle Scholar
  41. 41.
    Wade CM, Daly MJ. Inbred laboratory mouse haplotype map. http://www.broad.mit.edu/personal/claire/MouseHapMap/Inbred.htm. 2006.
  42. 42.
    Allison DB, Cui X, Page GP, Sabripour M. Microarray data analysis: from disarray to consolidation and consensus. Nat Rev Genet. 2006;7:55–65.PubMedCrossRefGoogle Scholar
  43. 43.
    Lemkin PF, Thornwall GC, Walton KD, Hennighausen L. The microarray explorer tool for data mining of cDNA microarrays: application for the mammary gland. Nucleic Acids Res. 2000;28:4452–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Sorlie T. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A.. 2003;100:8418–23.PubMedCrossRefGoogle Scholar
  45. 45.
    Master SR, Hartman JL, D’Cruz CM, Moody SE, Keiper EA, Ha I, et al. Functional microarray analysis of mammary organogenesis reveals a developmental role in adaptive thermogenesis. Mol Endocrinol. 2002;16:1185–203.PubMedCrossRefGoogle Scholar
  46. 46.
    Rudolph MC, McManaman JL, Hunter L, Phang T, Neville MC. Functional development of the mammary gland: use of expression profiling and trajectory clustering to reveal changes in gene expression during pregnancy, lactation, and involution. J Mammary Gland Biol Neoplasia. 2003;8:287–307.PubMedCrossRefGoogle Scholar
  47. 47.
    Clarkson RW, Wayland MT, Lee J, Freeman T, Watson CJ. Gene expression profiling of mammary gland development reveals putative roles for death receptors and immune mediators in post-lactational regression. Breast Cancer Res. 2004;6:R92–109.PubMedCrossRefGoogle Scholar
  48. 48.
    Stein T, Morris JS, Davies CR, Weber-Hall SJ, Duffy MA, Heath VJ, et al. Involution of the mouse mammary gland is associated with an immune cascade and an acute-phase response, involving LBP, CD14 and STAT3. Breast Cancer Res. 2004;6:R75–91.PubMedCrossRefGoogle Scholar
  49. 49.
    Riley LG, Zubair M, Thomson PC, Holt M, Xavier SP, Wynn PC, et al. Lactational performance of Quackenbush Swiss line 5 mice. J Anim Sci. 2006;84:2118–25.PubMedCrossRefGoogle Scholar
  50. 50.
    McClurg P, Pletcher MT, Wiltshire T, Su AI. Comparative analysis of haplotype association mapping algorithms. BMC Bioinformatics. 2006;7:61.PubMedCrossRefGoogle Scholar
  51. 51.
    Hawken RJ, Cavanagh JA, Meadows JR, Khatkar MS, Husaini Y, Zenger KR, et al. Technical note: Whole-genome amplification of DNA extracted from cattle semen samples. J Dairy Sci. 2006;89:2217–21.PubMedGoogle Scholar
  52. 52.
    Zenger KR, Khatkar MS, Cavanagh JA, Hawken RJ, Raadsma HW. Genome-wide genetic diversity of Holstein Friesian cattle reveals new insights into Australian and global population variability, including impact of selection. Anim Genet. 2007;38:7–14.PubMedCrossRefGoogle Scholar
  53. 53.
    Khatkar MS, Collins A, Cavanagh JA, Hawken RJ, Hobbs M, Zenger KR, et al. A first-generation metric linkage disequilibrium map of bovine chromosome 6. Genetics. 2006;174:79–85.PubMedCrossRefGoogle Scholar
  54. 54.
    Khatkar MS, Zenger KR, Hobbs M, Hawken RJ, Cavanagh JA, Barris W, et al. A primary assembly of a bovine haplotype block map based on a 15,036-single-nucleotide polymorphism panel genotyped in Holstein–Friesian cattle. Genetics. 2007;176:763–72.PubMedCrossRefGoogle Scholar
  55. 55.
    Ron M, Israeli G, Seroussi E, Weller JI, Gregg JP, Shani M, et al. Combining mouse mammary gland gene expression and comparative mapping for the identification of candidate genes for QTL of milk production traits in cattle. BMC Genomics. 2007;8:183–208.PubMedCrossRefGoogle Scholar
  56. 56.
    Kumar S, Clarke AR, Hooper ML, Horne DS, Law AJ, Leaver J, et al. Milk composition and lactation of beta-casein-deficient mice. Proc Natl Acad Sci U S A. 1994;91:6138–42.PubMedCrossRefGoogle Scholar
  57. 57.
    Stinnakre MG, Vilotte JL, Soulier S, Mercier JC. Creation and phenotypic analysis of alpha-lactalbumin-deficient mice. Proc Natl Acad Sci U S A. 1994;91:6544–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Jhappan C, Geiser AG, Kordon EC, Bagheri D, Hennighausen L, Roberts AB, et al. Targeting expression of a transforming growth factor beta 1 transgene to the pregnant mammary gland inhibits alveolar development and lactation. EMBO J. 1993;12:1835–45.PubMedGoogle Scholar
  59. 59.
    Fowler KJ, Walker F, Alexander W, Hibbs ML, Nice EC, Bohmer RM, et al. A mutation in the epidermal growth factor receptor in waved-2 mice has a profound effect on receptor biochemistry that results in impaired lactation. Proc Natl Acad Sci U S A. 1995;92:1465–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Wagner KU, Young WS 3rd, Liu X, Ginns EI, Li M, Furth PA, Hennighausen L. Oxytocin and milk removal are required for post-partum mammary-gland development. Genes Funct. 1997;1:233–44.PubMedGoogle Scholar
  61. 61.
    Ormandy CJ, Binart N, Kelly PA. Mammary gland development in prolactin receptor knockout mice. J Mammary Gland Biol Neoplasia. 1997;2:355–64.PubMedCrossRefGoogle Scholar
  62. 62.
    Liu X, Robinson GW, Wagner KU, Garrett L, Wynshaw-Boris A, Hennighausen L. Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Dev. 1997;11:179–86.PubMedCrossRefGoogle Scholar
  63. 63.
    Wynick D, Small C, Bacon A, Holmes F, Norman M, Ormandy C, et al. Galanin regulates prolactin release and lactotroph proliferation. Proc Natl Acad Sci U S A. 1998;95:12671–6.PubMedCrossRefGoogle Scholar
  64. 64.
    Li L, Keverne EB, Aparicio SA, Ishino F, Barton SC, Surani MA. Regulation of maternal behavior and offspring growth by paternally expressed Peg3. Science. 1999;284:330–333.PubMedCrossRefGoogle Scholar
  65. 65.
    Luetteke N, Qiu T, Fenton S, Troyer K, Riedel R, Chang A, et al. Targeted inactivation of the EGF and amphiregulin genes reveals distinct roles for EGF receptor ligands in mouse mammary gland development. Development. 1999;126:2739–50.PubMedGoogle Scholar
  66. 66.
    Fata JE, Kong YY, Li J, Sasaki T, Irie-Sasaki J, Moorehead RA, et al. The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development. Cell. 2000;103:41–50.PubMedCrossRefGoogle Scholar
  67. 67.
    Mori S, Nishikawa S, Yokota Y. Lactation defect in mice lacking the helix–loop–helix inhibitor Id2. EMBO J. 2000;19:5772–81.PubMedCrossRefGoogle Scholar
  68. 68.
    Lindeman G, Wittlin S, Lada H, Naylor M, Santamaria M, Zhang JG, et al. SOCS1 deficiency results in accelerated mammary gland development and rescues lactation in prolactin receptor-deficient mice. Genes Dev. 2001;15:1631–6.PubMedCrossRefGoogle Scholar
  69. 69.
    Park DS, Lee H, Frank PG, Razani B, Nguyen AV, Parlow AF, et al. Caveolin-1-deficient mice show accelerated mammary gland development during pregnancy, premature lactation, and hyperactivation of the Jak-2/STAT5a signaling cascade. Mol Biol Cell. 2002;13:3416–30.PubMedCrossRefGoogle Scholar
  70. 70.
    Vorbach C, Scriven A, Capecchi MR. The housekeeping gene xanthine oxidoreductase is necessary for milk fat droplet enveloping and secretion: gene sharing in the lactating mammary gland. Genes Dev. 2002;16:3223–35.PubMedCrossRefGoogle Scholar
  71. 71.
    Hadsell DL, Bonnette S, George J, Torres D, Klimentidis Y, Gao S, et al. Diminished milk synthesis in upstream stimulatory factor 2 null mice is associated with decreased circulating oxytocin and decreased mammary gland expression of eukaryotic initiation factors 4E and 4G. Mol Endocrinol. 2003;17:2251–67.PubMedCrossRefGoogle Scholar
  72. 72.
    Long W, Wagner KU, Lloyd KC, Binart N, Shillingford JM, Hennighausen L, et al. Impaired differentiation and lactational failure of Erbb4-deficient mammary glands identify ERBB4 as an obligate mediator of STAT5. Development. 2003;130:5257–68.PubMedCrossRefGoogle Scholar
  73. 73.
    Tepera SB, McCrea PD, Rosen JM. A beta-catenin survival signal is required for normal lobular development in the mammary gland. J Cell Sci. 2003;116:1137–49.PubMedCrossRefGoogle Scholar
  74. 74.
    Schwertfeger KL, McManaman JL, Palmer CA, Neville MC, Anderson SM. Expression of constitutively activated Akt in the mammary gland leads to excess lipid synthesis during pregnancy and lactation. J Lipid Res. 2003;44:1100–12.PubMedCrossRefGoogle Scholar
  75. 75.
    Seagroves TN, Hadsell D, McManaman J, Palmer C, Liao D, McNulty W, et al. HIF1alpha is a critical regulator of secretory differentiation and activation, but not vascular expansion, in the mouse mammary gland. Development. 2003;130:1713–24.PubMedCrossRefGoogle Scholar
  76. 76.
    Nemade R, Bierie B, Nozawa M, Bry C, Smith G, Vasioukhin V, et al. Biogenesis and function of mouse mammary epithelium depends on the presence of functional alpha-catenin. Mech Dev. 2004;121:91–9.PubMedCrossRefGoogle Scholar
  77. 77.
    Qi C, Kashireddy P, Zhu YT, Rao SM, Zhu YJ. Null mutation of peroxisome proliferator-activated receptor-interacting protein in mammary glands causes defective mammopoiesis. J Biol Chem. 2004;279:33696–701.PubMedCrossRefGoogle Scholar
  78. 78.
    Wagner KU, Krempler A, Triplett AA, Qi Y, George NM, Zhu J, et al. Impaired alveologenesis and maintenance of secretory mammary epithelial cells in Jak2 conditional knockout mice. Mol Cell Biol. 2004;24:5510–20.PubMedCrossRefGoogle Scholar
  79. 79.
    Ogg SL, Weldon AK, Dobbie L, Smith AJ, Mather IH. Expression of butyrophilin (Btn1a1) in lactating mammary gland is essential for the regulated secretion of milk-lipid droplets. Proc Natl Acad Sci U S A. 2004;101:10084–9.PubMedCrossRefGoogle Scholar
  80. 80.
    Shekar PC, Goel S, Rani SD, Sarathi DP, Alex JL, Singh S, et al. Kappa-casein-deficient mice fail to lactate. Proc Natl Acad Sci U S A. 2006;103:8000–5.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Palaniappan Ramanathan
    • 1
    • 2
  • Ian Martin
    • 1
  • Peter Thomson
    • 1
    • 2
  • Rosanne Taylor
    • 1
  • Christopher Moran
    • 1
    • 2
  • Peter Williamson
    • 1
    • 2
  1. 1.Centre for Advanced Technologies in Animal Genetics and Reproduction, Faculty of Veterinary ScienceUniversity of SydneySydneyAustralia
  2. 2.CRC for Innovative Dairy Products, Faculty of Veterinary ScienceUniversity of SydneySydneyAustralia

Personalised recommendations