Advertisement

Journal of Mammary Gland Biology and Neoplasia

, Volume 12, Issue 4, pp 237–247 | Cite as

Immune Components of Colostrum and Milk—A Historical Perspective

  • Thomas T. Wheeler
  • Alison J. Hodgkinson
  • Colin G. Prosser
  • Stephen R. Davis
Article

Abstract

Key developments in the understanding of the immune functions of milk and colostrum are reviewed, focusing on their proteinaceous components. The topics covered include the immunoglobulins, immune cells, immunomodulatory substances, and antimicrobial proteins. The contributions of new technologies and the introduction of fresh approaches from other fields are highlighted, as are the contributions that mammary biology research has made to the development of other fields. Finally, a summary of some current outstanding questions and likely future directions of the field are given.

Keywords

Lactation Mammary Antimicrobial 

Abbreviations

BPI

bactericidal/permeability increasing protein

DHA

docosahexaenoic acids

EPA

eicosapentaenoic acid

IgA

immunoglobulin A

IgG

immunoglobulin G

LBP

lipopolysaccharide binding protein

LC-PUFA

long chain-polyunsaturated fatty acids

Notes

Acknowledgement

The authors wish to acknowledge the efforts of Claire Miller and the staff at the AgResearch, Ruakura Information Services section in procuring the sometimes obscure original literature.

References

  1. 1.
    Kitasato S. Das Verhalten der Cholerabacterien in der Milch. Z Hyg Infektionskrankh 1889;5:491–6.Google Scholar
  2. 2.
    Fokker AP. Ueber bacterienvernichtende Eigenschaften der Milch. Z Hyg Infektionskrankh 1890;9:41–55.Google Scholar
  3. 3.
    Ehrlich P. Ueber Immunität durch Vererbung und Säugung. Z Hyg Infektionskr 1892;12:183–203.Google Scholar
  4. 4.
    Isaacs CE. The antimicrobial function of milk lipids. Adv Nutr Res 2001;10:271–85.PubMedGoogle Scholar
  5. 5.
    Newburg DS. Innate immunity and human milk. J Nutr 2005;135(5):1308–12.PubMedGoogle Scholar
  6. 6.
    Ehrlich P, Brieger L. Beiträge zur Kenntnis der Milch immunisirter Thiere. Z Hyg Infektionskr 1893;13:336–46.Google Scholar
  7. 7.
    Campbell B, Petersen WE. Immune milk—a historical survey. Dairy Sci Abst 1963;25(9):345–58.Google Scholar
  8. 8.
    Famulener LW. On the transmission of immunity from mother to offspring. J Infect Disease 1912;10:332–40.Google Scholar
  9. 9.
    Orcutt ML, Howe PE. The relation between the accumulation of globulins and the appearance of agglutinins in the blood of new-born calves. J Exp Med 1922;36:291–308.PubMedGoogle Scholar
  10. 10.
    Smith T, Little RB. The significance of colostrum to the new-born calf. J Exp Med 1922;36:181–98.PubMedGoogle Scholar
  11. 11.
    Little RB, Orcutt ML. The transmission of agglutinins of Bacillus abortus from cow to calf in the colostrum. J Exp Med 1922;35:161–71.PubMedGoogle Scholar
  12. 12.
    Ratner B, Jackson HC, Gruehl HL. Transmission of protein hypersensitiveness from mother to offspring: I. Critique of placental permeability. J Immunol 1927;14:249–65.Google Scholar
  13. 13.
    Ratner B, Jackson HC, Gruehl HL. Transmission of protein hypersensitiveness from mother to offspring: II. The role of colostrum. J Immunol 1927;14:267–74.Google Scholar
  14. 14.
    Ratner B, Jackson HC, Gruehl HL. Transmission of protein hypersensitiveness from mother to offspring: III. The rôle of milk. J Immunol 1927;14:275–90.Google Scholar
  15. 15.
    Smith T. The immunological significance of colostrum. I. The relationship between colostrum, serum, and the milk of cows normal and immunized towards B. coli. J Exp Med 1930;51:473–81.PubMedGoogle Scholar
  16. 16.
    Ingram PL, Lovell R, Wood PC, Aschaffenburg R, Bartlett S, Kon SK, et al. Bacterium coli antibodies in colostrum and their relation to calf survival. J Pathol Bacteriol 1956;72:561–8.Google Scholar
  17. 17.
    Lascelles AK. A review of the literature on some aspects of immune milk. Dairy Sci Abstr 1963;25(9):359–64.Google Scholar
  18. 18.
    Richards CB, Marrack JR. Sheep serum gamma globulin. In: Peeters H, editor. Protides of the biological fluids bruges. Amsterdam: Elsevier Science; 1963. p. 154–156.Google Scholar
  19. 19.
    Hanson LA. Comparative immunological studies of the immune globulins of human milk and of blood serum. Int Arch Allergy Appl Immunol 1961;18:241–67.PubMedGoogle Scholar
  20. 20.
    Campbell B, Porter RM, Petersen WE. Plasmacytosis of the bovine udder during colostrum secretion and experimental cessation of milking. Nature 1950;166(4230):913.PubMedGoogle Scholar
  21. 21.
    Lee CS, Lascelles AK. Antibody-producing cells in antigenically stimulated mammary glands and in the gastro-intestinal tract of sheep. Aust J Exp Biol Med Sci 1970;48(5):525–35.PubMedGoogle Scholar
  22. 22.
    Blakemore F, Garner RJ. The maternal transference of antibodies in the bovine. J Comp Pathol 1956;66(4):287–9.PubMedGoogle Scholar
  23. 23.
    Butler JE. Characteristics of bovine immunoglobulins and related molecules. Review of the bovine immunoglobulins. J Dairy Sci 1971;54(9):1315–6.PubMedGoogle Scholar
  24. 24.
    Jones EA, Waldmann TA. The mechanism of intestinal uptake and transcellular transport of IgG in the neonatal rat. J Clin Invest 1972;51(11):2916–27.PubMedGoogle Scholar
  25. 25.
    Kemler R, Mossmann H, Strohmaier U, Kickhofen B, Hammer DK. In vitro studies on the selective binding of IgG from different species to tissue sections of the bovine mammary gland. Eur J Immunol 1975;5(9):603–8.PubMedGoogle Scholar
  26. 26.
    Barrington GM, Besser TE, Gay CC, Davis WC, Reeves JJ, McFadden TB, et al. Regulation of the immunoglobulin G1 receptor: effect of prolactin on in vivo expression of the bovine mammary immunoglobulin G1 receptor. J Endocrinol 1999;163(1):25–31.PubMedGoogle Scholar
  27. 27.
    Smith KL, Muir LA, Ferguson LC, Conrad HR. Selective transport of IgGl into the mammary gland: role of estrogen and progesterone. J Dairy Sci 1971;54(12):1886–94.PubMedGoogle Scholar
  28. 28.
    Lascelles AK, McDowell GH. Localized humoral immunity with particular reference to ruminants. Transplant Rev 1974;19(0):170–208.PubMedGoogle Scholar
  29. 29.
    Barrington GM, Besser TE, Gay CC, Davis WC, Reeves JJ, McFadden TB. Effect of prolactin on in vitro expression of the bovine mammary immunoglobulin G1 receptor. J Dairy Sci 1997;80(1):94–100.PubMedGoogle Scholar
  30. 30.
    Roux ME, McWilliams M, Phillips-Quagliata JM, Weisz-Carrington P, Lamm ME. Origin of IgA-secreting plasma cells in the mammary gland. J Exp Med 1977;146(5):1311–22.PubMedGoogle Scholar
  31. 31.
    Weisz-Carrington P, Roux ME, Lamm ME. Plasma cells and epithelial immunoglobulins in the mouse mammary gland during pregnancy and lactation. J Immunol 1977;119(4):1306–7.PubMedGoogle Scholar
  32. 32.
    McDermott MR, Bienenstock J. Evidence for a common mucosal immunologic system. I. Migration of B immunoblasts into intestinal, respiratory, and genital tissues. J Immunol 1979;122(5):1892–8.PubMedGoogle Scholar
  33. 33.
    Tanneau GM, Oyant LHS, Chevaleyre CC, Salmon HP. Differential recruitment of T- and IgA B-lymphocytes in the developing mammary gland in relation to homing receptors and vascular addressins. J Histochem Cytochem 1999;47(12):1581–92.PubMedGoogle Scholar
  34. 34.
    Finke D, Acha-Orbea H. Differential migration of in vivo primed B and T lymphocytes to lymphoid and non-lymphoid organs. Eur J Immunol 2001;31(9):2603–11.PubMedGoogle Scholar
  35. 35.
    Hodgkinson AJ, Carpenter EA, Smith CS, Molan PC, Prosser CG. Adhesion molecule expression in the bovine mammary gland. Vet Immunol Immunopathol 2007;115(3–4):205–15.PubMedGoogle Scholar
  36. 36.
    Wilson E, Butcher EC. CCL28 controls immunoglobulin (Ig)A plasma cell accumulation in the lactating mammary gland and IgA antibody transfer to the neonate. J Exp Med 2004;200(6):805–9.PubMedGoogle Scholar
  37. 37.
    Crago SS, Kulhavy R, Prince SJ, Mestecky J. Secretory component of epithelial cells is a surface receptor for polymeric immunoglobulins. J Exp Med 1978;147(6):1832–7.PubMedGoogle Scholar
  38. 38.
    Apodaca G, Katz LA, Mostov KE. Receptor-mediated transcytosis of IgA in MDCK cells is via apical recycling endosomes. J Cell Biol 1994;125(1):67–86.PubMedGoogle Scholar
  39. 39.
    de Groot N, Van Kuik-Romeijn P, Lee SH, De Boer HA. Increased immunoglobulin A levels in milk by over-expressing the murine polymeric immunoglobulin receptor gene in the mammary gland epithelial cells of transgenic mice. Immunology 2000;101(2):218–24.PubMedGoogle Scholar
  40. 40.
    Rosato R, Jammes H, Belair L, Puissant C, Kraehenbuhl JP, Djiane J. Polymeric-Ig receptor gene expression in rabbit mammary gland during pregnancy and lactation: evolution and hormonal regulation. Mol Cell Endocrinol 1995;110(1–2):81–7.PubMedGoogle Scholar
  41. 41.
    Rincheval-Arnold A, Belair L, Djiane J. Developmental expression of pIgR gene in sheep mammary gland and hormonal regulation. J Dairy Res 2002;69(1):13–26.PubMedGoogle Scholar
  42. 42.
    Brown WR, Newcomb RW, Ishizaka K. Proteolytic degradation of exocrine and serum immunoglobulins. J Clin Invest 1970;49(7):1374–80.PubMedGoogle Scholar
  43. 43.
    Shuster J. Pepsin hydrolysis of IgA-delineation of two populations of molecules. Immunochemistry 1971;8(5):405–11.PubMedGoogle Scholar
  44. 44.
    Phalipon A, Cardona A, Kraehenbuhl JP, Edelman L, Sansonetti PJ, Corthesy B. Secretory component: a new role in secretory IgA-mediated immune exclusion in vivo. Immunity 2002;17(1):107–15.PubMedGoogle Scholar
  45. 45.
    Groves ML, Gordon WG. Isolation of a new glycoprotein-a and a gamma-G-globulin from individual cow milks. Biochemistry 1967;6(8):2388–94.PubMedGoogle Scholar
  46. 46.
    de Oliveira IR, de Araujo AN, Bao SN, Giugliano LG. Binding of lactoferrin and free secretory component to enterotoxigenic Escherichia coli. FEMS Microbiol Lett 2001;203(1):29–33.PubMedGoogle Scholar
  47. 47.
    Marshall LJ, Perks B, Ferkol T, Shute JK. IL-8 released constitutively by primary bronchial epithelial cells in culture forms an inactive complex with secretory component. J Immunol 2001;167(5):2816–23.PubMedGoogle Scholar
  48. 48.
    Breed RS. The sanitary significance of body cells in milk.. J Infect Dis. 1914;14:93–9.Google Scholar
  49. 49.
    Holm GC. The types of leucocytes in market milk as related to bovine mastitis. J Am Vet Med Assoc 1934;35:735–46.Google Scholar
  50. 50.
    Nakajima S, Baba AS, Tamura N. Complement system in human colostrum: presence of nine complement components and factors of alternative pathway in human colostrum. Int Arch Allergy Appl Immunol 1977;54(5):428–33.PubMedGoogle Scholar
  51. 51.
    Reiter B, Brock JH. Inhibition of Escherichia coli by bovine colostrum and post-colostral milk. I. Complement-mediated bactericidal activity of antibodies to a serum susceptible strain of E. coli of the serotype O 111. Immunology 1975;28(1):71–82.PubMedGoogle Scholar
  52. 52.
    Smith CW, Goldman AS. The cells of human colostrum .I. In vitro studies of morphology and functions. Pediatr Res 1968;2(2):103–9.PubMedGoogle Scholar
  53. 53.
    Mohr JA. The possible induction and-or acquisition of cellular hypersensitivity associated with ingestion of colostrum. J Pediatr 1973;82(6):1062–4.PubMedGoogle Scholar
  54. 54.
    Beer AE, Billington RE, Head JR. Natural transplantation of leukocytes during suckling. Transplant Proc 1975;7:399–402.Google Scholar
  55. 55.
    Weiler IJ, Hickler W, Sprenger R. Demonstration that milk cells invade the suckling neonatal mouse. Am J Reprod Immunol 1983;4(2):95–8.PubMedGoogle Scholar
  56. 56.
    Sheldrake RF, Husband AJ. Intestinal uptake of intact maternal lymphocytes by neonatal rats and lambs. Res Vet Sci 1985;39(1):10–5.PubMedGoogle Scholar
  57. 57.
    Miller SC. Failure to demonstrate morphologically the presence of colostral or milk cells in the wall of the gastrointestinal tract of the suckling neonatal mouse. J Reprod Immunol 1981;3(3):187–94.PubMedGoogle Scholar
  58. 58.
    Keller MA, Kidd RM, Bryson YJ, Turner JL, Carter J. Lymphokine production by human milk lymphocytes. Infect Immun 1981;32(2):632–6.PubMedGoogle Scholar
  59. 59.
    Lawton JW, Shortridge KF, Wong RL, Ng MH. Interferon synthesis by human colostral leucocytes. Arch Dis Child 1979;54(2):127–30.PubMedGoogle Scholar
  60. 60.
    Donnet-Hughes A, Duc N, Serrant P, Vidal K, Schiffrin EJ. Bioactive molecules in milk and their role in health and disease: the role of transforming growth factor-beta. Immunol Cell Biol 2000;78(1):74–9.PubMedGoogle Scholar
  61. 61.
    Penttilla IA. Effects of transforming growth factor-beta and formula feeding on systemic immune responses to dietary beta-lactoglobulin in allergy-prone rats. Pediatr Res 2006;59:650–5.Google Scholar
  62. 62.
    Stavnezer J. Regulation of antibody production and class switching by TGF-beta. J Immunol 1995;155(4):1647–51.PubMedGoogle Scholar
  63. 63.
    Sordillo LM, Shafer-Weaver K, DeRosa D. Immunobiology of the mammary gland. J Dairy Sci 1997;80(8):1851–65.PubMedCrossRefGoogle Scholar
  64. 64.
    Gauthier SF, Pouliot Y, Saint-Sauveur D. Immunomodulatory peptides obtained by the enzymatic hydrolysis of whey proteins. Int Dairy J 2006;16:1315–1323.Google Scholar
  65. 65.
    Silanikove N, Shapiro F, Shamay A, Leitner G. Role of xanthine oxidase, lactoperoxidase, and NO in the innate immune system of mammary secretion during active involution in dairy cows: manipulation with casein hydrolyzates. Free Radic Biol Med 2005;38(9):1139–51.PubMedGoogle Scholar
  66. 66.
    Elliott RB, Harris DP, Hill JP, Bibby NJ, Wasmuth HE. Type I (insulin-dependent) diabetes mellitus and cow milk: casein variant consumption. Diabetologia 1999;42(3):292–6.PubMedGoogle Scholar
  67. 67.
    Yu WH. Scientific rationale and benefits of nucleotide supplementation of infant formula. J Paediatr Child Health 2002;38:543–9.PubMedGoogle Scholar
  68. 68.
    Horrobin E. Low prevalences of coronary heart disease (CHD), psoriasis, asthma and rheumatoid arthritis in Eskimos: are they caused by high dietary intake of ecosapentaenoic acid (EPA), a genetic variation of essential fatty acid (EPA) metabolism or a combination of both? Med Hypothesis 1987;22:388–96.Google Scholar
  69. 69.
    Pastor N, Soler B, Mitmesser SH, Ferguson P, Lifschitz C. Infants fed docosahexaenoic acid- and arachidonic acid-supplemented formula have decreased incidence of bronchiolitis/bronchitis the first year of life. Clin Pediatr (Phila) 2006;45(9):850–5.CrossRefGoogle Scholar
  70. 70.
    Dunstan JA, Mori TA, Barden A, Beilin LJ, Taylor AL, Holt PG, et al. Maternal fish oil supplementation in pregnancy reduces interleukin-13 levels in cord blood of infants at high risk of atopy. Clin Exp Allergy 2003;33(4):442–8.PubMedGoogle Scholar
  71. 71.
    Grulee CG, Sanford HN, Herron PH. Breast and artificial feeding: influences on morbidity and mortality of twenty thousand infants. J Am Med Assoc 1934;103:735–9.Google Scholar
  72. 72.
    Jarvinen KM, Suomalainen H. Leucocytes in human milk and lymphocyte subsets in cow’s milk-allergic infants. Pediatr Allergy Immunol 2002;13(4):243–54.PubMedGoogle Scholar
  73. 73.
    Ruiz RG, Kemeny DM, Price JF. Higher risk of infantile atopic dermatitis from maternal atopy than from paternal atopy. Clin Exp Allergy 1992;22(8):762–6.PubMedGoogle Scholar
  74. 74.
    Han Y-S, Park H-Y, Ahn K-M, Lee J-S, Choi H-M, Lee S-I. Short-term effect of partially hydrolysed formula on the prevention of development of atopic dermatitis in infants at high risk. J Korean Med Sci 2003;18:547–51.PubMedGoogle Scholar
  75. 75.
    Saarinen KM, Savilahti E. Infant feeding patterns affect the subsequent immunological features in cow’s milk allergy. Clin Exp Allergy 2000;30(3):400–6.PubMedGoogle Scholar
  76. 76.
    Gdalevich M, Mimouni D, David M, Mimouni M. Breast-feeding and the onset of atopic dermatitis in childhood: a systematic review and meta-analysis of prospective studies. J Am Acad Dermatol 2001;45(4):520–7.PubMedGoogle Scholar
  77. 77.
    Fleming A. On a remarkable bacteriolytic element found in tissues and secretions. Proc Roy Soc Ser Biol Sci 1922;93:306–17.Google Scholar
  78. 78.
    Bordet J, Bordet M. Le pouvoir bacteriolytique du colostrum et du lait. Compt Rend 1924;179:1109–13.Google Scholar
  79. 79.
    Jones FS, Little RB. The bactericidal properties of cow’s milk. J Exp Med 1927;45:319–35.PubMedGoogle Scholar
  80. 80.
    Salton MR. The properties of lysozyme and its action on microorganisms. Bacteriol Rev 1957;21(2):82–100.PubMedGoogle Scholar
  81. 81.
    Jolles P, Jolles J. Lysozyme from human milk. Nature 1961;192:1187–1188.Google Scholar
  82. 82.
    Chandan RC, Shahani KM, Holly RG. Lysozyme content of human milk. Nature 1964;204:76–7.PubMedGoogle Scholar
  83. 83.
    Auclair JE. Studies on the antibacterial properties of cow’s milk. PhD Thesis, University of Reading 1953.Google Scholar
  84. 84.
    Wright RC, Tramer J. Factors influencing the activity of cheese starters. The role of milk peroxidase. J Dairy Res 1958;25:104–18.CrossRefGoogle Scholar
  85. 85.
    Theorell H, Akeson A. Highly purified milk peroxidase. Ark Kemi Mineral Geol 1943;B17(7):1–6.Google Scholar
  86. 86.
    Jago GR, Morrison M. Anti-streptococcal activity of lactoperoxidase III. Proc Soc Exp Biol Med 1962;111:585–8.PubMedGoogle Scholar
  87. 87.
    Sorensen M, Sorensen SPL. The proteins in whey. C R Trav Lab Carlsberg 1939;23:55–99.Google Scholar
  88. 88.
    Schäfer KH. Elektrophoretische Untersuchengen zum Milchweissproblem. Monatsschr Kinderheilkd 1951;99:69.Google Scholar
  89. 89.
    Oram JD, Reiter B. Inhibition of bacteria by lactoferrin and other iron-chelating agents. Biochim Biophys Acta 1968;170(2):351–65.PubMedGoogle Scholar
  90. 90.
    Kirkpatrick CH, Green I, Rich RR, Schade AL. Inhibition of growth of Candida albicans by iron-unsaturated lactoferrin: relation to host-defense mechanisms in chronic mucocutaneous candidiasis. J Infect Dis 1971;124(6):539–44.PubMedGoogle Scholar
  91. 91.
    Schardinger F. Ueber das Verhalten der Kuhmilch gegen Methylenblau und seine Verwendung sur Unterscheidung von ungekochter und gekochter Milch. Z Unters Nahr Genussm 1902;5:1113–21.Google Scholar
  92. 92.
    Green DE, Pauli R. The antibacterial action of the xanthine oxidase system. Proc Soc Exp Biol Med 1943;54:148–50.Google Scholar
  93. 93.
    Lipmann F, Owen CR. The antibacterial effect of enzymatic xanthine oxidation. Science 1943;98:246–8.PubMedGoogle Scholar
  94. 94.
    Gyorgy P, Dhanamitta S, Steers E. Protective effects of human milk in experimental staphylococcus infection. Science 1962;137:338–40.PubMedGoogle Scholar
  95. 95.
    Reiter B, Oram J. Bacterial inhibitors in milk and other biological fluids. Nature 1967;216:328–30.Google Scholar
  96. 96.
    Masson PL, Heremans JF, Dive C. An iron-binding protein common to many external secretions. Clin Chim Acta 1966;14:735–739.Google Scholar
  97. 97.
    Masson PL, Heremans JF, Schonne E. Lactoferrin, an iron-binding protein in neutrophilic leukocytes. J Exp Med 1969;130(3):643–58.PubMedGoogle Scholar
  98. 98.
    Harmon RJ, Schanbacher FL, Ferguson LC, Smith KL. Concentration of lactoferrin in milk of normal lactating cows and changes occurring during mastitis. Am J Vet Res 1975;36(7):1001–7.PubMedGoogle Scholar
  99. 99.
    Masson PL, Heremans JF. Metal-combining properties of human lactoferrin (red milk protein). 1. The involvement of bicarbonate in the reaction. Eur J Biochem 1968;6(4):579–84.PubMedGoogle Scholar
  100. 100.
    Goldsmith SJ, Eitenmiller RR, Barnhart HM, Toledo RT, Rao VN. Unsaturated iron-binding capacity of human milk. J Food Sci 1982;47:1298–304.Google Scholar
  101. 101.
    Arnold RR, Brewer M, Gauthier JJ. Bactericidal activity of human lactoferrin: sensitivity of a variety of microorganisms. Infect Immun 1980;28(3):893–8.PubMedGoogle Scholar
  102. 102.
    Tomita M, Bellamy W, Takase M, Yamauchi K, Wakabayashi H, Kawase K. Potent antibacterial peptides generated by pepsin digestion of bovine lactoferrin. J Dairy Sci 1991;74(12):4137–42.PubMedCrossRefGoogle Scholar
  103. 103.
    van der Strate BW, Beljaars L, Molema G, Harmsen MC, Meijer DK. Antiviral activities of lactoferrin. Antiviral Res 2001;52(3):225–39.PubMedGoogle Scholar
  104. 104.
    Reiter B. The lactoperoxidase-thiocyanate-hydrogen peroxide antibacterium system. Ciba Found Symp 1978;65:285–94.PubMedGoogle Scholar
  105. 105.
    de Wit JN, Hooydonk ACM. Structure, functions and applications of lactoperoxidase in natural antimicrobial systems. Neth Milk Dairy J 1996;50:227–44.Google Scholar
  106. 106.
    Kussendrager KD, van Hooijdonk AC. Lactoperoxidase: physico-chemical properties, occurrence, mechanism of action and applications. Br J Nutr. 2000;84(Suppl 1):S19–S25.PubMedGoogle Scholar
  107. 107.
    Bjorck L, Rosen C, Marshall V, Reiter B. Antibacterial activity of the lactoperoxidase system in milk against pseudomonads and other gram-negative bacteria. Appl Microbiol 1975;30(2):199–204.PubMedGoogle Scholar
  108. 108.
    Reiter B, Marshall VM, Bjorck L, Rosen CG. Nonspecific bactericidal activity of the lactoperoxidases-thiocyanate-hydrogen peroxide system of milk against Escherichia coli and some gram-negative pathogens. Infect Immun 1976;13(3):800–7.PubMedGoogle Scholar
  109. 109.
    Bjorck L, Claesson O. Xanthine oxidase as a source of hydrogen peroxide for the lactoperoxidase system in milk. J Dairy Sci 1979;62:1211–5.Google Scholar
  110. 110.
    Hunt J, Massey V. Purification and properties of milk xanthine dehydrogenase. J Biol Chem 1992;267(30):21479–85.PubMedGoogle Scholar
  111. 111.
    Tubaro E, Lotti B, Santiangeli C, Cavallo G. Xanthine oxidase increase in polymorphonuclear leucocytes and macrophages in mice in three pathological situations. Biochem Pharmacol 1980;29(3):1945–8.PubMedGoogle Scholar
  112. 112.
    Bungener W. Influence of allopurinol on the multiplication of rodent malaria parasites. Tropenmed Parasitol 1974;25(3):309–12.PubMedGoogle Scholar
  113. 113.
    Chipman DM, Sharon N. Mechanism of lysozyme action. Science 1969;165(892):454–65.PubMedGoogle Scholar
  114. 114.
    Cohn ZA, Hirsch JG. The isolation and properties of the specific cytoplasmic granules of rabbit polymorphonuclear leucocytes. J Exp Med 1960;112:983–1004.PubMedGoogle Scholar
  115. 115.
    Leffell MS, Spitznagel JK. Association of lactoferrin with lysozyme in granules of human polymorphonuclear leukocytes. Infect Immun 1972;6(5):761–5.PubMedGoogle Scholar
  116. 116.
    Lahov E, Regelson W. Antibacterial and immunostimulating casein-derived substances from milk: casecidin, isracidin peptides. Food Chem Toxicol 1996;34(1):131–45.PubMedGoogle Scholar
  117. 117.
    Medzhitov R, Janeway CA Jr. Innate immunity: impact on the adaptive immune response. Curr Opin Immunol 1997;9(1):4–9.PubMedGoogle Scholar
  118. 118.
    Lehrer RI, Ganz T. Defensins of vertebrate animals. Curr Opin Immunol 2002;14(1):96–102.PubMedGoogle Scholar
  119. 119.
    Zanetti M. Cathelicidins, multifunctional peptides of the innate immunity. J Leukoc Biol 2004;75(1):39–48.PubMedGoogle Scholar
  120. 120.
    Goldammer T, Zerbe H, Molenaar A, Schuberth HJ, Brunner RM, Kata SR, et al. Mastitis increases mammary mRNA abundance of beta-defensin 5, toll-like-receptor 2 (TLR2), and TLR4 but not TLR9 in cattle. Clin Diagn Lab Immunol 2004;11(1):174–85.PubMedGoogle Scholar
  121. 121.
    Swanson K, Gorodetsky S, Good L, Davis S, Musgrave D, Stelwagen K, et al. Expression of a beta-defensin mRNA, lingual antimicrobial peptide, in bovine mammary epithelial tissue is induced by mastitis. Infect Immun 2004;72(12):7311–4.PubMedGoogle Scholar
  122. 122.
    Armogida SA, Yannaras NM, Melton AL, Srivastava MD. Identification and quantification of innate immune system mediators in human breast milk. Allergy Asthma Proc 2004;25(5):297–304.PubMedGoogle Scholar
  123. 123.
    Murakami M, Dorschner RA, Stern LJ, Lin KH, Gallo RL. Expression and secretion of cathelicidin antimicrobial peptides in murine mammary glands and human milk. Pediatr Res 2005;57(1):10–5.PubMedGoogle Scholar
  124. 124.
    McDonald TL, Larson MA, Mack DR, Weber A. Elevated extrahepatic expression and secretion of mammary-associated serum amyloid A 3 (M-SAA3) into colostrum. Vet Immunol Immunopathol 2001;83(3–4):203–11.PubMedGoogle Scholar
  125. 125.
    Maes P, Damart D, Rommens C, Montreuil J, Spik G, Tartar A. The complete amino acid sequence of bovine milk angiogenin. FEBS Lett 1988;241(1–2):41–5.PubMedGoogle Scholar
  126. 126.
    Hooper LV, Stappenbeck TS, Hong CV, Gordon JI. Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat Immunol 2003;4(3):269–73.PubMedGoogle Scholar
  127. 127.
    Egesten A, Dyer KD, Batten D, Domachowske JB, Rosenberg HF. Ribonucleases and host defense: identification, localization and gene expression in adherent monocytes in vitro. Biochim Biophys Acta 1997;1358(3):255–60.PubMedGoogle Scholar
  128. 128.
    Rosenberg HF, Domachowske JB. Eosinophils, eosinophil ribonucleases, and their role in host defense against respiratory virus pathogens. J Leukoc Biol 2001;70(5):691–8.PubMedGoogle Scholar
  129. 129.
    Donaldson L, Vuocolo T, Gray C, Strandberg Y, Reverter A, McWilliam S, et al. Construction and validation of a bovine innate immune microarray. BMC Genomics 2005;6:135.PubMedGoogle Scholar
  130. 130.
    Swanson KM, Henderson HV, Farr VC, Davis SR, Oden K, Stelwagen K, et al. The use of microarrays to investigate gene regulation in the bovine mammary gland during Streptococcus uberis mastitis. Proc NZ Soc Anim Prod 2004;64:14–6.Google Scholar
  131. 131.
    Stein T, Morris JS, Davies CR, Weber-Hall SJ, Duffy MA, Heath VJ, et al. Involution of the mouse mammary gland is associated with an immune cascade and an acute-phase response, involving LBP, CD14 and STAT3. Breast Cancer Res 2004;6(2):R75–R91.PubMedGoogle Scholar
  132. 132.
    Clarkson RW, Wayland MT, Lee J, Freeman T, Watson CJ. Gene expression profiling of mammary gland development reveals putative roles for death receptors and immune mediators in post-lactational regression. Breast Cancer Res 2004;6(2):R92–R109.PubMedGoogle Scholar
  133. 133.
    Hogarth CJ, Fitzpatrick JL, Nolan AM, Young FJ, Pitt A, Eckersall PD. Differential protein composition of bovine whey: a comparison of whey from healthy animals and from those with clinical mastitis. Proteomics 2004;4(7):2094–100.PubMedGoogle Scholar
  134. 134.
    Smolenski G, Haines S, Kwan FY, Bond J, Farr V, Davis SR, et al. Characterisation of host defence proteins in milk using a proteomic approach. J Proteome Res 2007;6(1):207–15.PubMedGoogle Scholar
  135. 135.
    Takakura N, Wakabayashi H, Yamauchi K, Takase M. Influences of orally administered lactoferrin on IFN-gamma and IL-10 production by intestinal intraepithelial lymphocytes and mesenteric lymph-node cells. Biochem Cell Biol 2006;84(3):363–8.PubMedGoogle Scholar
  136. 136.
    Bowdish DM, Davidson DJ, Hancock RE. Immunomodulatory properties of defensins and cathelicidins. Curr Top Microbiol Immunol 2006;306:27–66.PubMedCrossRefGoogle Scholar
  137. 137.
    Hodgkinson AJ, Cannon RD, Holmes AR, Fischer FJ, Willix-Payne DJ. Production from dairy cows of semi-industrial quantities of milk-protein concentrate (MPC) containing efficacious anti-Candida albicans IgA antibodies. J Dairy Res 2007;74(3):269–75.PubMedGoogle Scholar
  138. 138.
    Finlay BB, Hancock RE. Can innate immunity be enhanced to treat microbial infections? Nat Rev Microbiol 2004;2(6):497–504.PubMedGoogle Scholar
  139. 139.
    Caccavo D, Pellegrino NM, Altamura M, Rigon A, Amati L, Amoroso A, et al. Antimicrobial and immunoregulatory functions of lactoferrin and its potential therapeutic application. J Endotoxin Res 2002;8(6):403–17.PubMedGoogle Scholar
  140. 140.
    Kerr DE, Plaut K, Bramley AJ, Williamson CM, Lax AJ, Moore K, et al. Lysostaphin expression in mammary glands confers protection against staphylococcal infection in transgenic mice. Nat Biotechnol 2001;19(1):66–70.PubMedGoogle Scholar
  141. 141.
    Sun H-C, Xue F-M, Qian K, Fang H-X, Qiu H-L, Zhang X-Y, et al. Intramammary expression and therapeutic effect of a human lysozyme-expressing vector for treating bovine mastitis. J Zhejiang Univ Science B 2006;7:324–330.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Thomas T. Wheeler
    • 1
  • Alison J. Hodgkinson
    • 1
  • Colin G. Prosser
    • 2
  • Stephen R. Davis
    • 3
  1. 1.Dairy Science and Technologies SectionAgResearch, Ruakura Research CentreHamiltonNew Zealand
  2. 2.Dairy Goat Co-operative (NZ) Ltd.HamiltonNew Zealand
  3. 3.Vialactia Biosciences Ltd.Newmarket, AucklandNew Zealand

Personalised recommendations